Department of Pure Mathematics

Module 110PMA207 - Linear Algebra

Assignment 10

1. Let V be an n-dimensional vector space and let f_{1}, \ldots, f_{n} be any linear functionals on V. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and for every i and every j where $1 \leq i, j \leq n$ let $a_{i, j}:=f_{i}\left(v_{j}\right)$.
(a) Let $x=\sum_{j=1}^{n} \lambda_{j} v_{j}$ be a vector in V. Show that

$$
\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right)
$$

(b) Show that if the column vectors of the matrix $\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ are linearly dependent, then there exists a non-zero vector $x \in V$ such that for all functionals $f_{i}(1 \leq i \leq n)$ we have $f_{i}(x)=0$.
(c) Show that the functionals f_{1}, \ldots, f_{n} are linearly dependent if and only if there exists a non-zero vector x such that for all functionals $f_{i}(1 \leq i \leq n)$ we have $f_{i}(x)=0$.
2. (a) Show that no matter what the numbers a, b, c, d, e, f are, the determinant of the matrix

$$
\left(\begin{array}{ccc}
a & b & 7 \\
c & d & 14 \\
e & f & -21
\end{array}\right)
$$

is always a multiple of 7 .
(b) Let

$$
A=\left(\begin{array}{cccc}
9 & 0 & 2 & 4 \\
24 & 8 & 4 & 11 \\
12 & 6 & 6 & 4 \\
6 & 0 & 0 & 1
\end{array}\right)
$$

Use the fact that 7 is a divisor of each of $902020,2484055,1266020$, and 600005 , to show that $\operatorname{det}(A)$ is a multiple of 7 .
3. Find necessary and sufficient conditions for the real numbers a and b such that the vectors $v_{1}=(a, b, 1), v_{2}=(0,0,1)$, and $v_{3}=(b, a, 1)$ are linearly independent.
4. (a) Let

$$
B=\left(\begin{array}{ccc}
1 & -1 & c \\
-1 & c & 1 \\
c & 1 & -1
\end{array}\right)
$$

Find a real value for c such that $\operatorname{det}(B)=0$.
(b) For this real value c, find a non-zero vector $x \in \mathbb{R}^{3}$ such that $B x=0$.

