Department of Pure Mathematics

Module 110PMA207 - Linear Algebra

Assignment 8

- 1. Let $f, g \in V^*$ be two linear functionals, then the sum (f+g) of f and g is again a mapping from V to \mathbb{R} , defined by (f+g)(x) := f(x) + g(x) (for every $x \in V$). Show that the mapping (f+g) is linear.
- 2. Let $\{e_1, e_2\}$ be the standard basis of \mathbb{R}^2 and let f be the linear functional on \mathbb{R}^2 defined as follows:

$$f(e_1) = 3, f(e_2) = -1$$

- (a) Compute f((2, -5)).
- (b) Find all vectors $x \in \mathbb{R}^2$ such that f(x) = 0.

(c) Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = f((x_1, x_2))\}$. Show that W is a 2-dimensional subspace of \mathbb{R}^3 and find a vector which is orthogonal to every vector in W.

3. Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : -x_1 + 2x_2 - 3x_3 = 0\}.$ Find a non-trivial linear functional g on \mathbb{R}^3 such that

$$W = \{x : g(x) = 0\}.$$

4. Let

where $x^{**}(y^*) := y^*(x)$ (for all $y^* \in V^*$).

(a) Show that for all $x \in V$, all $y^* \in V^*$, and all $\lambda \in \mathbb{R}$ we have

$$\varphi(x)(\lambda y^*) = \lambda \varphi(x)(y^*).$$

(b) Show that for all $x \in V$ and all $\lambda \in \mathbb{R}$, the mapping $\varphi(\lambda x)$ is equal to the mapping $\lambda \varphi(x)$, by showing that for all $y^* \in V^*$ we have

$$\varphi(\lambda x)(y^*) = \lambda \varphi(x)(y^*)$$

(c) Show that φ is injective.