Department of Pure Mathematics

Module 110PMA207 - Linear Algebra

Assignment 8

1. Let $f, g \in V^{*}$ be two linear functionals, then the sum $(f+g)$ of f and g is again a mapping from V to \mathbb{R}, defined by $(f+g)(x):=f(x)+g(x)$ (for every $x \in V$). Show that the mapping $(f+g)$ is linear.
2. Let $\left\{e_{1}, e_{2}\right\}$ be the standard basis of \mathbb{R}^{2} and let f be the linear functional on \mathbb{R}^{2} defined as follows:

$$
f\left(e_{1}\right)=3, f\left(e_{2}\right)=-1
$$

(a) Compute $f((2,-5))$.
(b) Find all vectors $x \in \mathbb{R}^{2}$ such that $f(x)=0$.
(c) Let $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=f\left(\left(x_{1}, x_{2}\right)\right)\right\}$. Show that W is a 2dimensional subspace of \mathbb{R}^{3} and find a vector which is orthogonal to every vector in W.
3. Let $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}:-x_{1}+2 x_{2}-3 x_{3}=0\right\}$.

Find a non-trivial linear functional g on \mathbb{R}^{3} such that

$$
W=\{x: g(x)=0\} .
$$

4. Let

$$
\begin{aligned}
\varphi: V & \longrightarrow V^{* *} \\
x & \longmapsto x^{* *}
\end{aligned}
$$

where $x^{* *}\left(y^{*}\right):=y^{*}(x)$ (for all $\left.y^{*} \in V^{*}\right)$.
(a) Show that for all $x \in V$, all $y^{*} \in V^{*}$, and all $\lambda \in \mathbb{R}$ we have

$$
\varphi(x)\left(\lambda y^{*}\right)=\lambda \varphi(x)\left(y^{*}\right) .
$$

(b) Show that for all $x \in V$ and all $\lambda \in \mathbb{R}$, the mapping $\varphi(\lambda x)$ is equal to the mapping $\lambda \varphi(x)$, by showing that for all $y^{*} \in V^{*}$ we have

$$
\varphi(\lambda x)\left(y^{*}\right)=\lambda \varphi(x)\left(y^{*}\right) .
$$

(c) Show that φ is injective.

