Department of Pure Mathematics

Module 110PMA207 - Linear Algebra
Assignment 9

1. Let $x=(2,-1,3) \in \mathbb{R}^{3}$ and let $y^{*}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a linear functional defined by $y^{*}\left(e_{1}\right)=-1, y^{*}\left(e_{2}\right)=3, y^{*}\left(e_{3}\right)=2$.
(a) Compute $x^{* *}\left(y^{*}\right)$.
(b) Find a non-zero functional $y_{0}^{*}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $x^{* *}\left(y_{0}^{*}\right)=0$.
2. Let $\varphi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be a linear mapping and let

$$
A=\left(\begin{array}{ccccc}
-1 & 1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1
\end{array}\right)
$$

be the corresponding matrix with respect to the natural bases in \mathbb{R}^{5} and \mathbb{R}^{3} respectively. Further let φ^{*} be the dual mapping of φ and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a linear functional defined by $f\left(e_{1}\right)=-2, f\left(e_{2}\right)=5, f\left(e_{3}\right)=0$.
(a) Compute $\left(\varphi^{*}(f)\right)((-1,1,-1,1,-1))$.
(b) Find a non-zero vector $x \in \mathbb{R}^{5}$ such that $\left(\varphi^{*}(f)\right)(x)=0$.
(c) For which vectors $x \in \mathbb{R}^{5}$ we have $\left(\varphi^{*}(f)\right)(x)=0$?
3. Compute the determinant of the following matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -2 & 4 & -8 \\
1 & 3 & 9 & 27 \\
1 & -4 & 16 & -64
\end{array}\right)
$$

4. Write the determinant of the matrix

$$
M=\left(\begin{array}{ccc}
5-\lambda & -2 \frac{2}{5} & 4 \\
5 & -1-\lambda & 0 \\
0 & 1 \frac{2}{5} & -4-\lambda
\end{array}\right)
$$

as a polynomial in λ.

