Department of Pure Mathematics

Module 110PMA207 – Linear Algebra

Assignment 9

- 1. Let $x = (2, -1, 3) \in \mathbb{R}^3$ and let $y^* : \mathbb{R}^3 \to \mathbb{R}$ be a linear functional defined by $y^*(e_1) = -1, y^*(e_2) = 3, y^*(e_3) = 2.$
 - (a) Compute $x^{**}(y^*)$.
 - (b) Find a non-zero functional $y_0^* : \mathbb{R}^3 \to \mathbb{R}$ such that $x^{**}(y_0^*) = 0$.
- 2. Let $\varphi : \mathbb{R}^5 \to \mathbb{R}^3$ be a linear mapping and let

$$A = \begin{pmatrix} -1 & 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & 1 \end{pmatrix}$$

be the corresponding matrix with respect to the natural bases in \mathbb{R}^5 and \mathbb{R}^3 respectively. Further let φ^* be the dual mapping of φ and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a linear functional defined by $f(e_1) = -2$, $f(e_2) = 5$, $f(e_3) = 0$.

- (a) Compute $(\varphi^*(f))((-1,1,-1,1,-1))$.
- (b) Find a non-zero vector $x \in \mathbb{R}^5$ such that $(\varphi^*(f))(x) = 0$.
- (c) For which vectors $x \in \mathbb{R}^5$ we have $(\varphi^*(f))(x) = 0$?
- 3. Compute the determinant of the following matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & 4 & -8 \\ 1 & 3 & 9 & 27 \\ 1 & -4 & 16 & -64 \end{pmatrix}$$

4. Write the determinant of the matrix

$$M = \begin{pmatrix} 5 - \lambda & -2\frac{2}{5} & 4\\ 5 & -1 - \lambda & 0\\ 0 & 1\frac{2}{5} & -4 - \lambda \end{pmatrix}$$

as a polynomial in λ .