Modules 110PMA003 \& 110PMA107

Department of Pure Mathematics

Lecture Notes by Lorenz Halbeisen

1 Number systems and their features

1.1 Natural numbers: addition

We could just say that the natural numbers is the set $\{0,1,2,3, \ldots\}$, denoted by \mathbb{N}, but this is not a definition. (What is the meaning of "..."; and what about the sequence " , |, \|, |\|, $\|\|\|, \ldots$, which can easily be identified with the set \mathbb{N} ?)

A more mathematical definition of the natural numbers is the following:
(a) \diamond is a natural number (\diamond is just a symbol, you can also take any other symbol)
(b) If n is a natural number (n is also just a symbol), then $s(n)$-the "successor of n-is also a natural number.
(c) If n is a natural number, then either $n=0$ or there exists a natural number m such that $n=s(m)$.
(d) If n and m are natural numbers and $s(m)=s(n)$, then $n=m$.

What kind of "objects" (this means, what kind of natural numbers) we get with this construction?

By (a) and (b), we get that $\diamond, s(\diamond), s(s(\diamond)), \ldots, s(s(\ldots s(s(\diamond)) \ldots)), \ldots$ are all natural numbers.

Are all these things different?
Yes! Assume towards a contradiction that two of the above objects are equal, say $s(s(s(\diamond)))=s(s(s(s(s(\diamond)))))$. In order to use (d), put $n=s(s(\diamond))$ and $m=$ $s(s(s(s(\diamond))))$. Now, by (d) we get $n=m$, and thus $s(s(\diamond))=s(s(s(s(\diamond))))$. Again by (d) we get $s(\diamond)=s(s(s(\diamond)))$ and finally we end up with

$$
\begin{equation*}
\diamond=s(s(\diamond)) . \tag{*}
\end{equation*}
$$

Put $m=s(\diamond)$, then by $(*)$ we have $\diamond=s(m)$ and therefore by (c) we get $\diamond \neq \diamond$, which is obviously a contradiction.

Addition

The addition " + " of two natural numbers is defined as follows:
(i) For any natural number n we define $n+\diamond:=n$ (the symbol \diamond is called the neutral element with respect to addition)
(ii) For natural numbers n and m we define $n+s(m):=s(n+m)$.

Example: $s(s(\diamond))+s(s(s(\diamond)))$? By putting $n=s(s(\diamond))$ and $m=s(s(\diamond))$, by (ii) we get $n+s(m)=s(n+m)$, hence, $s(s(\diamond))+s(s(s(\diamond)))=s(s(s(\diamond))+s(s(\diamond)))$. Again by (ii) we get $s(s(\diamond))+s(s(\diamond))=s(s(s(\diamond))+s(\diamond))$, and therefore, $s(s(s(\diamond))+$ $s(s(\diamond)))=s(s(s(s(\diamond))+s(\diamond)))$. Again by (ii) we get $s(s(s(s(\diamond))+s(\diamond)))=$ $s(s(s(s(s(\diamond))+\diamond)))$, and using (i), we finally get

$$
s(s(\diamond))+s(s(s(\diamond)))=s(s(s(s(s(\diamond)))))
$$

Usually, one identifies \diamond with 0 (called "zero"), $s(\diamond)$ with 1 (called "one"), $s(s(\diamond))$ with 2 (called "two"), \ldots, and $s(n)$ with $n+1$. So, 0 becomes the neutral element with respect to addition.

Natural numbers as sets

We can define natural numbers as sets of natural numbers as follows:
(α) $0:=\emptyset(\emptyset$ is the empty set $)$
(β) $n+1:=n \cup\{n\}$ (where $\{n\}$ is the set containing just the single element n)
In this notation, for example the number 3 is $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$, which is the same as $\{0,1,2\}$. In general, the natural number n is the set of all natural numbers which are smaller than n, so in particular, since there is no natural number smaller than 0 , we get $0=\emptyset$.

