Modules 110PMA003 & 110PMA107

Department of Pure Mathematics

Lecture Notes by Lorenz Halbeisen

1 Number systems and their features

1.1 Natural numbers: addition

We could just say that the **natural numbers** is the set $\{0, 1, 2, 3, ...\}$, denoted by \mathbb{N} , but this is not a definition. (What is the meaning of "..."; and what about the sequence ", |, ||, |||, |||, ...", which can easily be identified with the set \mathbb{N} ?)

A more mathematical definition of the natural numbers is the following:

- (a) \diamond is a natural number (\diamond is just a symbol, you can also take any other symbol)
- (b) If n is a natural number (n is also just a symbol), then s(n)—the "successor of n—is also a natural number.
- (c) If n is a natural number, then either n = 0 or there exists a natural number m such that n = s(m).
- (d) If n and m are natural numbers and s(m) = s(n), then n = m.

What kind of "objects" (this means, what kind of natural numbers) we get with this construction?

By (a) and (b), we get that \diamond , $s(\diamond)$, $s(s(\diamond))$, ..., $s(s(\ldots s(\diamond)) \ldots))$,... are all natural numbers.

Are all these things different?

Yes! Assume towards a contradiction that two of the above objects are equal, say $s(s(s(\diamond))) = s(s(s(s(\diamond))))$. In order to use (d), put $n = s(s(\diamond))$ and $m = s(s(\diamond))$. Now, by (d) we get n = m, and thus $s(s(\diamond)) = s(s(s(\diamond)))$. Again by (d) we get $s(\diamond) = s(s(s(\diamond)))$ and finally we end up with

$$\diamond = s(s(\diamond)) \,. \tag{(*)}$$

Put $m = s(\diamond)$, then by (*) we have $\diamond = s(m)$ and therefore by (c) we get $\diamond \neq \diamond$, which is obviously a contradiction.

Addition

The **addition** "+" of two natural numbers is defined as follows:

- (i) For any natural number n we define $n + \diamond := n$ (the symbol \diamond is called the **neutral element** with respect to addition)
- (ii) For natural numbers n and m we define n + s(m) := s(n + m).

Example: $s(s(\diamond)) + s(s(s(\diamond)))$? By putting $n = s(s(\diamond))$ and $m = s(s(\diamond))$, by (ii) we get n + s(m) = s(n + m), hence, $s(s(\diamond)) + s(s(\diamond)) = s(s(s(\diamond)) + s(s(\diamond)))$. Again by (ii) we get $s(s(\diamond)) + s(s(\diamond)) = s(s(s(\diamond)) + s(\diamond))$, and therefore, $s(s(s(\diamond)) + s(s(\diamond)) + s(s(\diamond))) = s(s(s(\diamond)) + s(\diamond)))$. Again by (ii) we get $s(s(s(\diamond)) + s(\diamond))) = s(s(s(s(\diamond)) + s(\diamond)))$, and using (i), we finally get $s(s(\diamond)) + s(s(s(\diamond)) + s(s(\diamond))) = s(s(s(s(\diamond)))))$.

Usually, one identifies \diamond with 0 (called "zero"), $s(\diamond)$ with 1 (called "one"), $s(s(\diamond))$ with 2 (called "two"), ..., and s(n) with n + 1. So, 0 becomes the neutral element with respect to addition.

Natural numbers as sets

We can define natural numbers as sets of natural numbers as follows:

- (α) 0 := \emptyset (\emptyset is the empty set)
- (β) $n+1 := n \cup \{n\}$ (where $\{n\}$ is the set containing just the single element n)

In this notation, for example the number 3 is $\{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}$, which is the same as $\{0, 1, 2\}$. In general, the natural number *n* is the set of all natural numbers which are smaller than *n*, so in particular, since there is no natural number smaller than 0, we get $0 = \emptyset$.