1.2 Integers: inverse elements

To each natural number n we introduce an inverse element $(-n)$ and define

$$
n+(-n):=0 .
$$

Since 0 is the neutral element with respect to addition, we obviously have $(-0)=0$. Now, since $0=0+0=\underbrace{n+(-n)}_{=0}+\underbrace{m+(-m)}_{=0}=(n+m)+(-n)+(-m)$, we get

$$
(-n)+(-m)=(-(n+m)),
$$

and therefore, the addition is also defined for these new inverse elements.
We also write $n-m$ instead of $n+(-m)$, which is in fact the definition of the subtraction.

The set of integers is $\{\ldots,-3,-2,-1,0,1,2,3\}$ and is denoted by \mathbb{Z}.

Multiplication

First we define the multiplication "." for natural numbers in a similar way as we have done it for the addition:
(i) For any natural number n we define $1 \cdot n:=n$ (the number 1 is called the neutral element with respect to multiplication)
(ii) For natural numbers n and m we define $n \cdot(m+1):=(n \cdot m)+n$.

Some calculations: In the following we use the basic laws of calculation (these laws will be explained below). Let x and y be integers.

1. $0 \cdot x$?
$0 \cdot x=(0+0) \cdot x=0 \cdot x+0 \cdot x$, and therefore, by adding $(-0 \cdot x)$ on both sides,

$$
\underbrace{0 \cdot x+(-0 \cdot x)}_{=0}=0 \cdot x+\underbrace{0 \cdot x+(-0 \cdot x)}_{=0},
$$

and therefore, $0=0 \cdot x+0$ which implies $0=0 \cdot x$.
2. $(-1) \cdot x$?
$((-1) \cdot x)+x \underset{\substack{\uparrow \\ 1 \text { is neutral }}}{=}((-1) \cdot x)+1 \cdot x \underset{\substack{\uparrow \\ \text { distributive law }}}{=}((-1)+1) \cdot x \underset{\substack{\uparrow \\(-1)+1=0}}{=} 0 \cdot x \underset{\text { by } 1 .}{=} 0$.
So, $((-1) \cdot x)+x=0=(-x)+x$, which implies $((-1) \cdot x)=(-x)$.
3. $(-(-x))$? (What is the inverse of an inverse element?)

By definition, $(-x)+(-(-x))=0=(-x)+x$, which implies $(-(-x))=x$.
4. $(-x) \cdot(-y)$? (What is the product of two inverse elements?)
$(-x) \cdot(-y) \underset{\substack{\uparrow \\ \text { by 2. }}}{=}((-1) \cdot x) \cdot((-1) \cdot y) \underset{\substack{\text { commuta- } \\ \text { tive law }}}{=} \underbrace{((-1) \cdot(-1))=1}_{\begin{array}{c}\hat{\uparrow} \\ \text { by } 2 .\end{array}} \begin{gathered}\uparrow \\ \text { by } 3 .\end{gathered}$,
5. $(-x) \cdot y$?
$(-x) \cdot y \underset{\substack{\uparrow \\ \text { by 2. }}}{=}((-1) \cdot x) \cdot y \underset{\substack{\text { associa- } \\ \text { tive law }}}{=}(-1) \cdot(x \cdot y) \underset{\substack{\uparrow \\ \text { by } 2 .}}{=}(-(x \cdot y))$.
6. $(-x)+(-x)$?
$(-x)+(-x) \underset{\substack{\uparrow \\ \text { by 2. }}}{=}((-1) \cdot x)+((-1) \cdot x) \underset{\substack{\text { distribu- } \\ \text { tive law }}}{=}(-1) \cdot(x+x) \underset{\substack{\uparrow\\}}{=}$
$(-1) \cdot(1 \cdot x+1 \cdot x) \underset{\substack{\text { distribu- } \\ \text { tive law }}}{=}(-1) \cdot((1+1) \cdot x) \underset{\substack{\uparrow \\ 1+1=2}}{=}(-1) \cdot(2 \cdot x) \underset{\substack{\uparrow \\ \text { by } 2 .}}{=}-2 \cdot x$.

In \mathbb{Z}, not every element has an inverse element with respect to multiplication (for $x \in$ \mathbb{Z}, an inverse element w.r.t. multiplication would be a number y such that $x \cdot y=1$). In fact, just 1 and (-1) have inverse elements with respect to multiplication, all other elements, like 2 or (-5) don't have inverse elements with respect to multiplication.

However, a set like the integers together with the two operations addition and multiplication, with the inverse operation "-" (with respect to addition) and with the two neutral elements 0 and 1 (0 w.r.t. addition and 1 w.r.t. multiplication), such a set is called a ring, or more precisely, a commutative ring (since the multiplication is commutative). So, $(\mathbb{Z}, 0,+,-, 1, \cdot)$ is a ring. Later we will also see a non-commutative ring, namely the ring of matrices.

