1.3 Rational numbers: a so-called field

To each non-zero integer $q \neq 0$ we introduce an inverse element $\frac{1}{q}$ and define

$$
q \cdot \frac{1}{q}:=1
$$

Since 1 is the neutral element with respect to multiplication, we obviously have $\frac{1}{1}=1$ (like $(-0)=0$) and we can identify each $q \in \mathbb{Z}$ with $\frac{q}{1}$.

Further, for non-zero integers $q, s \in \mathbb{Z}$, we define:
(a) $\frac{p}{q} \cdot \frac{r}{s}:=\frac{p \cdot r}{q \cdot s} \quad$ (this defines the multiplication of two fractions)
(b) $\frac{p}{q}+\frac{r}{s}:=\frac{p \cdot s+r \cdot q}{q \cdot s} \quad$ (this defines the addition of two fractions)
(c) $\frac{p}{q}=\frac{r}{s}$ if, and only if, $p \cdot s=r \cdot q$ (this defines when two fractions are equal)

For non-zero integers $q, s \in \mathbb{Z}$, similar as above we could prove the following:

- $1 \cdot \frac{p}{q}=\frac{p}{q}$ (this says that 1 is still neutral w.r.t. the multiplication).
- $\frac{1}{\left(\frac{1}{q}\right)}=q \quad($ like $(-(x))=x)$.
- $\frac{\left(\frac{p}{q}\right)}{\left(\frac{r}{s}\right)}=\frac{p \cdot s}{q \cdot r}$.
- If $\frac{p}{q} \cdot \frac{r}{s}=0$, then p or r (or both) must be 0 .

We also write $p: q$ instead of $p \cdot \frac{1}{q}$, which is in fact the definition of the division.
Let $\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\right\}$ be the set of rational numbers.
Remember: $\frac{p}{q}=\frac{r}{s} \Longleftrightarrow p \cdot s=r \cdot q$, thus, for example 3 and $\frac{-51}{-17}$ are just different representations of the same(!) rational number.

Summary

For all $x, y, z \in \mathbb{Q}$ we have the following:
(a) $x+y=y+x \quad ; \quad x \cdot y=y \cdot x$
(commutative law)
(b) $(x+y)+z=x+(y+z) ;(x \cdot y) \cdot z=x \cdot(y \cdot z) \quad$ (associative law)
(c) $x \cdot(y+z)=(x \cdot y)+(x \cdot z) \quad$ (distributive law)
(d) $x+0=x \quad ; 1 \cdot x=x \quad$ (neutral elements w.r.t. "+" and "•")
(e) $x+(-x)=0$
(x has an inverse w.r.t. "+")
$x \neq 0$, then $x \cdot \frac{1}{x}=1 \quad(x \neq 0$ has an inverse w.r.t. "." $)$

Note that " + " and "." are not symmetric (e.g., distributive law, inverse elements).
A set together with two operations "+ and ".", with two neutral elements 0 and 1 , and with two inverse operations "-" and ":" so that all conditions (a)-(e) are satisfied, such a set is called a field. So, $(\mathbb{Q}, 0,+,-, 1, \cdot,:)$ is a field. In the following we will see two other fields, namely the set of real numbers and the set of complex numbers.

