
1.4 Real numbers: filling the gaps

We consider the set of real numbers, denoted by R, as the points on an infinite
straight line – called the real line – on which we have fixed two different points, say
“0” and “1”. We consider the distance between 0 and 1 as one unit, and therefore, the
points 0 and 1 define a measure on the real line. This measure has also a direction,
namely from 0 to 1, denoted ~01, thus, the distance between two points can also be
negative. Further, we identify a point r on the real line with its distance to 0 (with
respect to the measure ~01) and this distance is called a real number.

For any rational number p
q
∈ Q there is a point on the line which represents p

q
, so,

Q ⊆ R (each rational number is also a real number).

A real number which is not a rational number is called irrational.

Are there irrational numbers?

The answer is YES, and in fact, there are even “much more” irrational numbers than
rational numbers. Moreover, if we would be able to pick any number from the real
line, then the likelihood of the number we picked beeing rational is 0. Of course, we
will not prove this, but we will see that irrational numbers exist, e.g.,

√
2:

First we have to show that
√

2 is a real number: Take a right-angled triangle with
two sides each of length 1, then by Pythagoras’ theorem, the third side is of length√

2. So,
√

2 is the length of a line, and hence, by definition,
√

2 is a real number.

Now, assume towards a contradiction that
√

2 is rational, so, assume that
√

2 = p
q

for some positive p, q ∈ N.

We may assume that not both numbers p and q are even. (Why? If p and q are both

even, we can divide p as well as q by 2. Of course,
( p

2
)

( q
2
)

= p
q

=
√

2. If p
2

and q
2

are both

still even, we divide p
2

as well as q
2

by 2. Doing this again and again, we end up with

a rational number p′

q′
=
√

2, where not both numbers p′ and q′ are even.)

First, let us assume that p is even, and therefore, q is odd. Since p is even, p = 2m
(for some m ∈ N). Since p

q
=
√

2, we get

2 =
(p

q

)2

=
p2

q2
=

(2m)2

q2
=

4m2

q2
.

Hence, we get 2q2 = 4m2, which implies q2 = 2m2, and therefore, q2 is even. On
the other hand, since q is odd and “odd”·“odd”=“odd”, also q2 is odd, which is a
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contradiction.

Now, if p is odd, then also p2 is odd. Again, assuming
√

2 = p
q

gives us p2

q2 = 2, and

therefore p2 = 2q2, thus, p2 is even, which is a contraction.

So, since there are irrational points on the real line, there are some gaps between
the rational numbers and one could ask how large these gaps are. In fact, it is quite
easy to see that between any two real numbers, say r and s where r < s, there are
(infinitely) many rational numbers. (To see this, let n ∈ N be such that 1

n
< s−r

4

and consider the set of rational numbers {0,± 1
n
,± 2

n
,± 3

n
, . . .}. Then at least 4 points

of this set lie between r and s. Thus, since 4 can be replaced by any number and
r, s were arbitrary, there are infinitely many rational numbers between any two real
numbers.) Having this picture in mind, one says that Q is dense in R.

Powers and roots

For positive natural numbers n, m ∈ N and x ∈ R we have:

(a) xn · ym = x(n+m)

(b)
(
xn
)m

= x(n·m)

Now, we apply these two rules to define x
p
q for any positive x ∈ R and any rational

number p
q
∈ Q.

First we define x0: xn = x(n+0) =
↑

by (a)

xn · x0, and so, dividing both sides by xn we get

1 = x0 .

In the following, let p
q
∈ Q be a rational number and let x ∈ R be a non-negative real

number. Let us define first x
1
q :(

x
1
q
)q

=
↑

by (b)

xq 1
q = x1 = x ,

which says that x
1
q · x

1
q · . . . · x

1
q︸ ︷︷ ︸

q-times

= x, and therefore, x
1
q = q
√

x. Hence, in general we

get

x
p
q = q
√

xp =
(

q
√

x
)p

.
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Let us also define x−
p
q :

x−
p
q · x

p
q =
↑

by (a)

x−
p
q
+ p

q = x0 = 1 ,

thus,

x−
p
q =

1

x
p
q

.

Until now we have defined xa for any non-negative real number x ∈ R and any rational
number a ∈ Q, and later we will define it also for irrational real numbers a ∈ R. (We
could also do it now by using the fact that Q is dense in R and that for 0 < a < b we
have xa < xb (for x > 1) and xa > xb (for 0 < x < 1), but later, with the exponential
function, we will get it for free.)

The exponential function

Before we define the exponential function, we have to introduce some notation.

For a positive natural number n ∈ N, define n! := 1 · 2 · . . . · n, called n factorial.
Further define 0! := 1. For example, 1! = 1, 3! = 1 · 2 · 3 = 6, 6! = 1 · . . . · 6 = 720,
and we have n! = (n− 1)! · n.

Assume we have a sequence of real numbers, say s0, s1, s2, . . ., then∑
i=k

`si = (sk + sk+1 + . . . + s`)

where “
∑

” is the capital Greek letter “S”, called “sigma”, and stands for “sum”; and∑
i=k

∞si = (sk + sk+1 + . . .)

where “∞” stands for “infinity”.

Some examples:

1. Let sn := 1
2n , thus, s0 = 1

20 = 1, s1 = 1
21 = 1

2
, s2 = 1

22 = 1
4
, . . . , s10 = 1

210 =
1

1024
, . . . For example, we have the following:∑4
i=2 = (s2 + s3 + s4) =

(
1
4

+ 1
8

+ 1
16

)
= 7

16∑0
i=0 = (s0) = 1∑∞
i=0 = (s0 + s1 + . . .) =

(
1
1

+ 1
2

+ 1
4

+ . . .
)

= 2 (will be proved later)
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2. Further, we have
∞∑

n=0

1
n+1

= (1 + 1
2

+ 1
3

+ 1
4

+ . . .) = ∞ (will be proved later).

So, not every infinite sum (also called series) where the summands tends to 0
(which means get smaller and smaller) if finite!

3. On the other, an alternating series (a series the terms of which are alternately
positive and negative) where the summands tend to 0 is always finite.

For example,
∞∑

n=0

(−1)n

n+1
=
(
1− 1

2
+ 1

3
− 1

4
± . . .

)
≈ 0.6931471 . . .

Now, we are prepared to define the (real-valued) function exp as follows:

exp(z) :=
∞∑

n=0

zn

n!

So, exp(z) =
(

z0

0!
+ z1

1!
+ z2

2!
+ z3

3!
+ z4

4!
+ . . .

)
=
(
1 + z + z2

2
+ z3

6
+ z4

24
+ . . .

)
and for any

z, exp(z) is a series.

One can show that exp(z) has the same features as a power function, e.g., exp(z1 +
z2) = exp(z1) · exp(z2) (like x(n+m) = xn · xm), and so, there must be a real number e
such that exp(z) = ez. What is e ? Since e = e1 = exp(1) we get

e =
∞∑

n=0

1

n!
= 1 + 1 +

1

2
+

1

6
+

1

24
+ . . .

The number e is called Euler number and is named after Leonhard Euler (1707–
1783), one of the most prolific mathematicians of all time.

What is the value of e ? To get a good approximation, we consider the first few terms
of the series of e−1, which is an alternating series:

e−1 =
∞∑

n=0

(−1)n

n!
=

11
30 < e−1︷ ︸︸ ︷

1
3 < e−1︷ ︸︸ ︷

0 < e−1︷ ︸︸ ︷
1︸︷︷︸

1 > e−1

− 1 +
1

2︸ ︷︷ ︸
1
2 > e−1

− 1

6
+

1

24

︸ ︷︷ ︸
3
8 > e−1

− 1

120
+

1

720

︸ ︷︷ ︸
53
144 > e−1

∓ . . .

Thus, 11
30

< 1
e

< 53
144

and therefore, 30
11

< e < 144
53

. In fact,

e ≈ 2.718281828459045534884808148490265011787414550781 . . .
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Now, we like to show that e is irrational, but first we show the simple fact that for
any positive natural number p, p! · e−1 /∈ N:

p! · e−1 = p!
(
1− 1 + 1

2
− 1

6
+ 1

24
− . . .

)
= p!− p! +

p!

2
− . . .± p!

p!︸ ︷︷ ︸
∈ N, since p!

n! ∈ N
whenever n ≤ p

depending on the parity of p

↓
∓ p!

(p + 1)!
± . . .︸ ︷︷ ︸

/∈ N, since it is an alter-
nating series and the first

term has absolute value < 1

e is irrational: Assume towards a contradiction, that e is rational, so, e = p
q

for

some p, q ∈ N. If e = p
q
, then 1

e
= e−1 = q

p
= q·(p−1)!

p·(p−1)!
= q·(p−1)!

p!
, and therefore,

p! · e−1 = q · (p− 1)! ∈ N, which contradicts the previous fact that p! · e−1 /∈ N.
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