1.5 Complex numbers: $\sqrt{-1}$

We introduce a new number " i " and define $i^{2}:=-1$, thus, $i=\sqrt{-1}$.
Let $\mathbb{C}=\{(a+i b): a, b \in \mathbb{R}\}$ be the set of complex numbers.
Before we define how to add, subtract, multiply and divide complex numbers, we give introduce some notation.

Let $z=(a+i b) \in \mathbb{C}$ be a complex number. The real number a is called the real part of z and is denoted by $\operatorname{Re}(z)$, so, $\operatorname{Re}(z)=a$; the real number b is called the imaginary part of z and is denoted by $\operatorname{Im}(z), \operatorname{so}, \operatorname{Im}(z)=b$.

Let again $z=(a+i b) \in \mathbb{C}$ be a complex number. If the imaginary part of z is 0 , so, if $b=0$, then we write just a instead of $(a+i 0)$. Thus, we consider real numbers as complex numbers with imaginary part equals to 0 , which implies that each real numbers is also a complex number and therefore, $\mathbb{R} \subseteq \mathbb{C}$. On the other hand, since there is no real number r such that $r^{2}=-1$, not every complex number is a real number.

We can represent complex numbers on a 2-dimensional diagram, called Argand diagram (or Gaussian plane). An Argand diagram is a Cartesian coordinate system (also called rectangular coordinate system) where one axis is called the real axis and the other one is called the imaginary axis.

For a complex number $z=(a+i b)$, we define $|z|:=\sqrt{a^{2}+b^{2}}$ and call $|z|$ the modulus of z. The modulus of a complex number is the same as the absolute value $|r|$ of a real number r (where $|r|=r$ for $r \geq 0$, and $|r|=-r$ for $r \leq 0$).

If $z=(a+i b)$ and $b<0$, then we write $z=(a-i|b|)$ rather than $z=(a+i b)$. For example we write $(3-i 2)$ rather than $(3+i(-2))$.

Addition in \mathbb{C}

Let $z_{1}=\left(a_{1}+i b_{1}\right)$ and $z_{2}=\left(a_{2}+i b_{2}\right)$ be two complex numbers, then

$$
z_{1}+z_{2}:=\left(\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)\right) .
$$

In particular, $(a+i b)+(0+i 0)=(a+i b)$, thus, 0 is still neutral with respect to addition. Further we have $(a+i b)+(-a-i b)=(0+i 0)=0$, so, $(-a-i b)$ is the inverse element (with respect to addition) of $(a+i b)$, and therefore, we also have
subtraction in \mathbb{C}, defined as follows:

$$
z_{1}-z_{2}:=\left(\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right)\right) .
$$

Multiplication in \mathbb{C}

Let $z_{1}=\left(a_{1}+i b_{1}\right)$ and $z_{2}=\left(a_{2}+i b_{2}\right)$ be two complex numbers, then

$$
z_{1} \cdot z_{2}:=\left(\left(a_{1} \cdot a_{2}-b_{1} \cdot b_{2}\right)+i\left(a_{1} \cdot b_{2}+b_{1} \cdot a_{2}\right)\right) .
$$

To get this, just expand $\left(a_{1}+i b_{1}\right) \cdot\left(a_{2}+i b_{2}\right)$ and remember that $i^{2}=1$. In particular, $(a+i b) \cdot(1+i 0)=(a+i b)$, thus, 1 is still neutral with respect to multiplication. Further we have

$$
(a+i b) \cdot\left(\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}\right)=(1+i 0)=1,
$$

thus, $\left(\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}\right)$ is the inverse element (with respect to multiplication) of ($a+i b$), and therefore, we also have division in \mathbb{C}, defined as follows (for $z_{2} \neq 0$):

$$
\frac{z_{1}}{z_{2}}:=\left(\left(\frac{a_{1} \cdot a_{2}+b_{1} \cdot b_{2}}{a_{2}^{2}+b_{2}^{2}}\right)+i\left(\frac{b_{1} \cdot a_{2}-a_{1} \cdot b_{2}}{a_{2}^{2}+b_{2}^{2}}\right)\right) .
$$

Conjugates

For a complex number $z=(a+i b)$, we define $\bar{z}:=(a-i b)$ and call \bar{z} the conjugate of z. In the Argand diagram, the conjugate of a complex number z is just the reflection of z on the real axis, therefore, $\overline{(\bar{z})}=z$ (the conjugate of the conjugate of z is equal to z). Further, if $\operatorname{Im}(z)=0$, then $\bar{z}=z$ (if r is a real number, then $\bar{r}=r$).

A simple calculation shows that for any complex number z we have

$$
\operatorname{Re}(z) \frac{z+\bar{z}}{2} \quad \text { and } \quad \operatorname{Im}(z) \frac{z+\bar{z}}{2 i} .
$$

Further, it is also quite easy to see that

$$
\overline{z_{1}+z_{2}+\ldots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\ldots \overline{z_{n}}
$$

and

$$
\overline{z_{1} \cdot z_{2} \cdot \ldots \cdot z_{n}}=\overline{z_{1}} \cdot \overline{z_{2}} \cdot \ldots \cdot \overline{z_{n}} .
$$

Thus, the conjugate of a sum is the sum of the conjugates and the conjugate of a product is the product of the conjugates. Further we get $\overline{-z}=-\bar{z}$ and $\overline{\left(\frac{1}{z}\right)}=\frac{1}{\bar{z}}$,
thus, the conjugate of the inverse (w.r.t. addition and multiplication respectively) is the inverse of the conjugate.

If $z=(a+i b)$, then $z \cdot \bar{z}=(a+i b) \cdot(a-i b)=\left(\left(a^{2}+b^{2}\right)+i 0\right)=a^{2}+b^{2}$, and therefore, since $|z|=\sqrt{a^{2}+b^{2}}$, we have $z \cdot \bar{z}=|z|^{2}$. Hence, we get the following: If z_{1} and $z_{2} \neq 0$ are complex numbers, then

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1}}{z_{2}} \cdot \underbrace{\frac{\overline{z_{2}}}{\overline{z_{2}}}}_{=1}=\frac{z_{1} \cdot \overline{z_{2}}}{z_{2} \cdot \overline{z_{2}}}=\frac{z_{1} \cdot \overline{z_{2}}}{\left|z_{2}\right|^{2}},
$$

which is in fact the same as above.

The unit circle in \mathbb{C}

Let $S_{1}:=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle in \mathbb{C}.
For a $z_{0} \in S_{1}$, let the argument of z_{0}, denoted by $\arg \left(z_{0}\right)$, be the length of the arc from 1 counterclockwise to z_{0} of the unit circle. Counterclockwise is also called positive direction, and hence, clockwise is also called negative direction.

Remark: We may go around several times, if we like, until we stop at z_{0}. Thus, $\arg \left(z_{0}\right)$ is not unique!

The argument of a z_{0} on the unit circle is in fact an angle and we will denote angles by Greek letters like $\alpha, \beta, \varphi, \psi$.

For a non-zero complex number $z \in \mathbb{C}$, let

$$
\arg (z):=\arg \underbrace{\left(\frac{z}{|z|}\right)}_{\in S_{1}},
$$

and let $\arg (0):=0$.
Since the whole unit circle is of length 2π, the angle φ is the same as the angle $\varphi \pm k 2 \pi$ (where $k \in \mathbb{N}$). However, we usually consider an angle φ as a non-negative real number less than 2π (this means $0 \leq \varphi<2 \pi$).

For any non-zero complex number $z \in \mathbb{C}$, there is a unique $z_{0} \in \mathbb{C}$, namely $z_{0}=\frac{z}{|z|}$, such that $z=r \cdot z_{0}$ for some positive $r \in \mathbb{R}$ (in fact, $r=|z|$). If $z=0$, then we can write $z=0 \cdot z_{0}$, which is also in this form, but the $z_{0} \in S_{1}$ is no longer unique.

For $z_{0} \in S_{1}$, let $\cos \left(\arg \left(z_{0}\right)\right):=\operatorname{Re}\left(z_{0}\right)$ and $\sin \left(\arg \left(z_{0}\right)\right):=\operatorname{Im}\left(z_{0}\right)$. (Note that this corresponds to the usual definition of cosine and sine!) Hence, each complex number $z \in \mathbb{C}$ can be written in the form $z=r \cdot(\cos (\varphi)+i \sin (\varphi))$, where $r=|z|$ and $\varphi=\arg (z)$.

By Pythagoras, for each angle φ we have $\cos (\varphi)^{2}+\sin (\varphi)^{2}=1$ (this is because for any $z_{0}=(a+i b) \in S_{1}$ with $\arg \left(z_{0}\right)=\varphi$ we have $\left|z_{0}\right|=\sqrt{a^{2}+b^{2}}=1$, and by definition we have $a=\cos (\varphi)$ and $b=\sin (\varphi))$. Further, for any φ we easily get

$$
\begin{aligned}
\cos (\varphi+2 \pi) & =\cos (\varphi), & & \cos (-\varphi)
\end{aligned}=\cos (\varphi), ~ 子, ~ \sin (-\varphi)=-\sin (\varphi) .
$$

$e^{i \varphi}:$

Above we defined $e^{z}:=\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$. Now, let us replace z by $i \varphi$:

$$
\begin{aligned}
e^{i \varphi} & =\left(\frac{(i \varphi)^{0}}{0!}+\frac{(i \varphi)^{1}}{1!}+\frac{(i \varphi)^{2}}{2!}+\frac{(i \varphi)^{3}}{3!}+\frac{(i \varphi)^{4}}{4!}+\frac{(i \varphi)^{5}}{5!}+\ldots\right) \\
& =\left(1+i \varphi+i^{2} \frac{\varphi^{2}}{2!}+i^{3} \frac{\varphi^{3}}{3!}+i^{4} \frac{\varphi^{4}}{4!}+i^{5} \frac{\varphi^{5}}{5!}+\ldots\right) \\
& =\left(1+i \varphi-\frac{\varphi^{2}}{2!}-i \frac{\varphi^{3}}{3!}+\frac{\varphi^{4}}{4!}+i \frac{\varphi^{5}}{5!}--++\ldots\right) \\
& =\left(1+\frac{\varphi^{2}}{2!}+\frac{\varphi^{4}}{4!}-\frac{\varphi^{6}}{6!} \pm \ldots\right)+i\left(\varphi-\frac{\varphi^{3}}{3!}+\frac{\varphi^{5}}{5!}-\frac{\varphi^{7}}{7!} \pm \ldots\right)
\end{aligned}
$$

Hence, $\operatorname{Re}\left(e^{i \varphi}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \varphi^{2 n}}{(2 n)!}$, and $\operatorname{Im}\left(e^{i \varphi}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \varphi^{2 n+1}}{(2 n+1)!}$.
If we replace $i \varphi$ by $-i \varphi$ in the formula $e^{i \varphi}=\sum_{n=0}^{\infty} \frac{(i \varphi)^{n}}{n!}$, we see that $\overline{e^{i \varphi}}=e^{-i \varphi}$. Thus, $\left|e^{i \varphi}\right|=\sqrt{e^{i \varphi} \cdot \overline{e^{i \varphi}}}=\sqrt{e^{i \varphi} \cdot e^{-i \varphi}}=\sqrt{e^{i \varphi-i \varphi}}=\sqrt{e^{0}}=\sqrt{1}=1$, which implies that for any φ we get $e^{i \varphi} \in S_{1}$. In other words, for any φ, the complex number $e^{i \varphi}$ lies on the unit circle.

Further one can show that for any $\varphi, \arg \left(e^{i \varphi}\right)=\varphi$, which implies $e^{i \varphi}=(\cos (\varphi)+$ $i \sin (\varphi))$. In other words, $\cos (\varphi)=\operatorname{Re}\left(e^{i \varphi}\right)$ and $\sin (\varphi)=\operatorname{Im}\left(e^{i \varphi}\right)$, and therefore, as a consequence we get

$$
\begin{aligned}
& \cos (\varphi)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \varphi^{2 n}}{(2 n)!} \\
& \sin (\varphi)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \varphi^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Therefore, each $z \in \mathbb{C}$ can be written in the form $z=r e^{i \varphi}$, where $r=|z|$ and $\varphi=\arg (z)$.

Transformations:

- $(a+i b) \rightsquigarrow r e^{i \varphi}$:
$r=\sqrt{a^{2}+b^{2}}$, and φ is such that $\cos (\varphi)=\frac{a}{r}$ and $\sin (\varphi)=\frac{b}{r}$.
- $r e^{i \varphi} \rightsquigarrow(a+i b)$:
$a=r \cdot \cos (\varphi)$ and $b=r \cdot \sin (\varphi)$.

Multiplication and division:

Let z_{1} and z_{2} be two complex numbers and let $r=\left|z_{1}\right|, \varphi=\arg \left(z_{1}\right), s=\left|z_{2}\right|$, $\psi=\arg \left(z_{2}\right)$. Thus, $z_{1}=r \cdot e^{i \varphi}$ and $z_{2}=s \cdot e^{i \psi}$.

Multiplication: Let z_{1} and z_{2} as above.

$$
z_{1} \cdot z_{2}=r \cdot e^{i \varphi} \cdot s \cdot e^{i \psi}=(r \cdot s) \cdot\left(e^{i \varphi} \cdot e^{i \psi}\right)=(r \cdot s) \cdot e^{i \varphi+i \psi}=(r \cdot s) \cdot e^{i(\varphi+\psi)} .
$$

Therefore, $\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$ and $\arg \left(z_{1} \cdot z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$.
Division: Let z_{1} and z_{2} as above and assume $z_{2} \neq 0$.

$$
\frac{z_{1}}{z_{2}}=\frac{r \cdot e^{i \varphi}}{s \cdot e^{i \psi}}=\frac{r}{s} \cdot \frac{e^{i \varphi}}{e^{i \psi}}=\frac{r}{s} \cdot\left(e^{i \varphi} \cdot e^{-i \psi}\right)=\frac{r}{s} \cdot e^{i \varphi-i \psi}=\frac{r}{s} \cdot e^{i(\varphi-\psi)} .
$$

Therefore, $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$ and $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$.

The equation $z^{n}=w$:

Let $w \in \mathbb{C}$ be a complex number and let $n \in \mathbb{N}$ be a positive natural number. Let $s=|w|$ and $\psi=\arg (w)$, so, $w=s \cdot e^{\psi}$. Assume $z^{n}=w$, what we can say about z ? First, let us write z in the form $z=r \cdot e^{i \varphi}$, where $r=|z|$ and $\varphi=\arg (z)$. Now, what we get for z^{n} ? Using the facts given above we get $z^{n}=\left(r \cdot e^{i \varphi}\right)^{n}=r^{n} \cdot\left(e^{i \varphi}\right)^{n}=r^{n} \cdot e^{i(n \varphi)}$. Thus, if $z^{n}=w$, then $r^{n} \cdot e^{i(n \varphi)}=s \cdot e^{\psi}$, which implies $r^{n}=s$ and $n \varphi=\psi$. The first equation gives us

$$
r=\sqrt[n]{s}
$$

At a first glance, the second equation gives us $\varphi=\frac{\psi}{n}$, but because the angle $\psi=$ $\psi+k \cdot 2 \pi$ (for any $k \in \mathbb{N}$), we get in fact $\varphi=\frac{\psi+k \cdot 2 \pi}{n}=\frac{\psi}{n}+\frac{k \cdot 2 \pi}{n}$ (where $k \in \mathbb{N}$). Now, for $k \in \mathbb{N}$, let us define

$$
\varphi_{k}:=\frac{\psi}{n}+\frac{k \cdot 2 \pi}{n} .
$$

It is easy to see that for the angles φ_{k} we get $\varphi_{n}=\varphi_{0}, \varphi_{n+1}=\varphi_{1}, \varphi_{n+2}=\varphi_{2}$, and so on. Thus, even though we get infinitely many φ_{k} 's, just n of these angles are distinct. Now, for $0 \leq k<n$, let

$$
z_{k}:=r \cdot e^{i \varphi_{k}} .
$$

Since $r^{n}=s$ and (for all $k \in \mathbb{N}$) the angle $n \varphi_{k}$ is the same as the angle ψ, for all $k \in \mathbb{N}$ we get $\left(z_{k}\right)^{n}=s \cdot e^{i \psi}=w$, and finally, since just n of the angles φ_{k} are distinct, the complex numbers $z_{0}, z_{1}, \ldots, z_{n-1}$ are the only solutions of the equation $z^{n}=w$. Since $\left|z_{0}\right|=\left|z_{1}\right|=\ldots=\left|z_{n-1}\right|=r$, all the n solutions are on a circle with radius r. Further, since $\arg \left(z_{k+1}\right)-\arg \left(z_{k}\right)=\frac{2 \pi}{n}$, the n solutions are equally distributed on the circle, and therefore, the n solutions form a regular n-gon.

Example: Let us find all solutions of $z^{4}=-4$. In our notation, $-4=w=s \cdot e^{i \psi}$ and therefore $s=4$ and $\psi=\pi$. Now, the 4 solutions are $z_{k}=r \cdot e^{i \varphi_{k}}$, where $0 \leq k<4$, $r=\sqrt[4]{s}=\sqrt[4]{4}=\sqrt{2}$ and $\varphi_{k}=\frac{\psi}{4}+\frac{k \cdot 2 \pi}{4}=\frac{\pi}{4}+\frac{k \cdot \pi}{2}$. Thus,

$$
\begin{array}{ll}
z_{0}=\sqrt{2} \cdot e^{i \frac{\pi}{4}} & =(1+i), \\
z_{1}=\sqrt{2} \cdot e^{i \frac{\pi}{4}+\frac{\pi}{2}}=\sqrt{2} \cdot e^{i \frac{3 \pi}{4}}=(-1+i), \\
z_{2}=\sqrt{2} \cdot e^{i \frac{\pi}{4}+\frac{2 \pi}{2}}=\sqrt{2} \cdot e^{i \frac{i \pi}{4}}=(-1-i), \\
z_{3}=\sqrt{2} \cdot e^{i \frac{\pi}{4}+\frac{3 \pi}{2}}=\sqrt{2} \cdot e^{i \frac{\pi}{4}}=(1-i) .
\end{array}
$$

Notice that the 4 solutions form a square on the circle with radius $\sqrt{2}$.
Now, try to find all solutions of the equation $z^{8}=16$ and write them in the form $(a+i b)$. (Your solutions should form an octagon, did you get it?)

