Lineare Algebra I

WS 00/01

Übungsblatt 7: Lineare Unabhängigkeit und spezielle Unterräume des Folgenraums $\mathbb{R}^{\mathbb{N}}$

- 31. Seien x, y und z drei linear unabhängige Vektoren.
 - (a) Sind dann x + y, y + z und z + x auch linear unabhängig?
 - (b) Sind dann x + y z, x y + z und -x + y + z auch linear unabhängig?
- 32. (a) Finde zwei Basen in \mathbb{R}^4 , so dass die einzigen gemeinsamen Vektoren die Vektoren (0,0,1,1) und (1,1,0,0) sind.
 - (b) Finde zwei disjunkte Basen in \mathbb{R}^4 , so dass die erste Basis die Vektoren (1,0,0,0) und (1,1,0,0), und die zweite Basis die Vektoren (1,1,1,0) und (1,1,1,1) enthält.
- 33. (a) Für welche $\xi \in \mathbb{C}$ sind die Vektoren $(1 \xi, 1)$ und $(1, 1 \bar{\xi})$ linear abhängig in \mathbb{C}^2 ? Beschreibe die Lösungsmenge geometrisch. Bemerkung: Für $\xi = (x + iy) \in \mathbb{C}$ sei $\bar{\xi} := (x iy)$.
 - (b) Sind, für $\xi \in \mathbb{R}$, die Vektoren $(1 \xi, 1)$ und $(1, 1 \xi)$ immer linear unabhängig in \mathbb{R}^2 ?

Im Folgenden definieren wir ein paar Unterräume des Vektorraums aller unendlichen reellen Folgen. Diesen reellen Vektorraum bezeichnen wir mit $\mathbb{R}^{\mathbb{N}}$. Ist $x \in \mathbb{R}^{\mathbb{N}}$, so bezeichnet x_i (für $i \in \mathbb{N}$) die *i*-te Koordinate des Vektors x, und für $\lambda \in \mathbb{R}$ und $x \in \mathbb{R}^{\mathbb{N}}$ ist $\lambda x := (\lambda x_0, \lambda x_1, \dots, \lambda x_i, \dots)$.

- 34. Sei $c_0 := \{x \in \mathbb{R}^{\mathbb{N}} : \lim_{i \to \infty} x_i = 0\}$, d.h. c_0 ist die Menge aller reellen Folgen, welche gegen 0 konvergieren.
 - Weiter sei $\ell_2 := \{x \in \mathbb{R}^{\mathbb{N}} : \sum_{i \in \mathbb{N}} x_i^2 < \infty\}$, d.h. ℓ_2 ist die Menge aller reellen Folgen, für welche die Summe der Quadrate der Koordinaten beschränkt ist.
 - (a) Zeige, dass c_0 ein echter Unterraum von ℓ_{∞} ist, wobei ℓ_{∞} den Raum der beschränkten reellen Folgen bezeichnet.
 - (b) Zeige, dass ℓ_2 ein echter Unterraum von c_0 ist.
- 35. Sei $\ell_1 := \{x \in \mathbb{R}^{\mathbb{N}} : \sum_{i \in \mathbb{N}} |x_i| < \infty\}$, d.h. ℓ_1 ist die Menge aller reellen Folgen, für welche die Summe der Absolutbeträge der Koordinaten beschränkt ist.

Weiter sei $c_{00} := \{x \in \mathbb{R}^{\mathbb{N}} : \exists j \in \mathbb{N} \forall i > j (x_i = 0)\}$, d.h. c_{00} ist die Menge aller reellen Folgen, welche nur endlich viele von Null verschiedene Einträge haben.

- (a) Zeige, dass ℓ_1 ein echter Unterraum von ℓ_2 ist.
- (b) Zeige, dass c_{00} ein echter Unterraum von ℓ_1 ist.
- (c) Finde eine Basis des reellen Vektorraums c_{00} und zeige, dass diese Basis keine Basis des Raums ℓ_1 ist und somit-weil $\ell_1 \subseteq \ell_2$ -auch keine Basis der Räume $\ell_2 \subseteq c_0 \subseteq \ell_\infty \subseteq \mathbb{R}^{\mathbb{N}}$.
- (F) Sei $c_{00}^+ := \{ x \in c_{00} : x_0 = \sum_{i \in \mathbb{N}^*} x_i \}$ und $\ell_1^- := \{ x \in \ell_1 : x_0 = -\sum_{i \in \mathbb{N}^*} x_i \}$.
 - (a) Zeige, dass c_{00}^+ bzw. ℓ_1^- ein echter Unterraum von c_{00} bzw. ℓ_1 ist.
 - (b) Bestimme den Vektorraum $c_{00}^+ \cap \ell_1^-$.