Lineare Algebra I

WS 00/01

Übungsblatt 9: Lineare Abbildungen und Matrizen

41. Sei $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ eine Abbildung für die gilt:

$$\Phi((1, 0, 1)) := (-8, 34, 17)
\Phi((1, -1, 0)) := (8, -34, 17)
\Phi((-1, 0, 0)) := (-8, -34, -17)
\Phi((1, -1, 1)) := (-8, -34, -17)$$

Begründe warum Φ keine lineare Abbildung sein kann.

42. Seien $v_1 = (1, 0, 0)$, $v_2 = (1, 1, 0)$ und $v_3 = (1, 1, 1)$, dann ist $\mathcal{B} = \{v_1, v_2, v_3\}$ eine Basis von \mathbb{R}^3 . Seien φ und ψ zwei lineare Abbildungen von \mathbb{R}^3 nach \mathbb{R}^3 für die gilt:

$$\varphi(v_1) := (-8, 34, 17)$$

 $\varphi(v_2) := (8, -34, 17)$
 $\varphi(v_3) := (-8, -34, -17)$

bzw.

$$\psi(v_1) := (-8, -34, 17)
\psi(v_2) := (8, 34, 17)
\psi(v_3) := (-8, 34, -17)$$

wobei die Bildvektoren in der Standardbasis von \mathbb{R}^3 geschrieben sind. Ferner sei $x=2v_1-3v_2+v_3$.

- (a) Bestimme die Matrix von φ bezüglich der Standardbasis von \mathbb{R}^3 .
- (b) Bestimme $\psi(v_2)$ bezüglich der Basis \mathcal{B} von \mathbb{R}^3 .
- (b) Bestimme $4\psi(x)$ bezüglich der Standardbasis von \mathbb{R}^3 .
- (c) Bestimme $(3\varphi + \psi)(2x)$ bezüglich der Standardbasis von \mathbb{R}^3 .
- 43. Sei $\varphi:\mathbb{R}^5\to\mathbb{R}^3$ in den Standardbasen von \mathbb{R}^5 und \mathbb{R}^3 wie folgt definiert:

$$\varphi((x_1, x_2, x_3, x_4, x_5)) := (x_1, x_3, x_5)$$

- (a) Zeige, dass φ eine lineare Abbildung ist.
- (b) Bestimme die Matrix von φ bezüglich der Standardbasen von \mathbb{R}^5 und \mathbb{R}^3 .

(c) Bestimme die Matrix von φ bezüglich der Standardbasis von \mathbb{R}^3 und der Basis \mathcal{B}_5 von \mathbb{R}^5 , definiert wie folgt:

$$\mathcal{B}_5 = \left\{ (1, 0, -1, 0, 1), (1, 2, -1, 0, 1), (1, 0, -1, 2, 1), \\ (-1, 2, 1, 0, 1), (1, 0, 1, 2, -1) \right\}$$

44. Sei die lineare Abbildung $\varphi:\mathbb{R}^3\to\mathbb{R}^3$ bezüglich der Standardbasis von \mathbb{R}^3 durch folgende Matrix A gegeben:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

Sei weiter
$$x^t = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 und $x = (1, 2, 3)$.

Berechne: (a) Ax^t (b) xA (c) xAx^t (d) xA^2x^t

45. Seien $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ und $\psi: \mathbb{R}^3 \to \mathbb{R}^4$ zwei lineare Abbildungen. Bezüglich den Standardbasen von \mathbb{R}^3 bzw. \mathbb{R}^4 entsprechen φ bzw. ψ den Matrizen A bzw. B, wobei

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

und

$$B = \begin{pmatrix} -1 & 2 & 3\\ 0 & -2 & 3\\ 1 & 0 & -3\\ 0 & 0 & 3 \end{pmatrix}$$

Berechne die folgenden Matrizen:

(a)
$$BA$$
 (b) BA^2 (c) BA^{-1}