MODULES 110PMA003 & 110PMA107 Department of Pure Mathematics

Week 11, 2001

The pdf-file you may download from http://www.math.berkeley.edu/~halbeis/4students/zero.html

- 46. (a) Evaluate lim (x)/x by using the rule of Bernoulli-de l'Hôpital.
 (b) Evaluate lim √x.
 Hint: √x = x¹/x = (e^{ln(x)})¹/x = e^{ln(x)}/x.
 47. (a) Evaluate lim (x→0)/x by using the rule of Bernoulli-de l'Hôpital.
 - (b) Using part (a), show that for small values of x we have $\ln(1+x) \approx x$. (c) For natural numbers n, evaluate $\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n$ and give the exact value of $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$. *Hint*: Notice that $\ln\left(\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n\right) = n \lim_{n \to +\infty} \ln\left(1 + \frac{x}{n}\right)$.

$$\int x \, \cos(3x) \, dx \, .$$

(b) Calculate the area under the curve $y = x \cos(3x)$ between x = 0 and $x = \pi$.

49. Use integration by parts to calculate

$$\int_{-\infty}^0 e^x \, \sin(x) \, dx \, .$$

50. Determine $\int_0^{\frac{\pi}{4}} \tan(x) dx$. Hint: Remember that $\tan(x) = \frac{\sin(x)}{\cos(x)}$

*David Bates Building, Room 1014.

Office hours (Room 1007): Monday 1 pm-2 pm, Wednesday 2 pm-3 pm