Modules 110PMA003 \& 110PMA107

Department of Pure Mathematics
Week 2, 2001

The pdf-file you may download from http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 11th of October 2001.
5. Use the fact that $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=2$ to evaluate the following. (Give the exact values, or in other words, don't use a calculator.)
(a) $\sum_{n=0}^{\infty} \frac{7}{9 \cdot 2^{n}}$
(b) $\sum_{n=1111}^{\infty} \frac{1}{2^{n}}$
(c) $\sum_{n=0}^{1110} \frac{1}{2^{n}}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{2}^{n}}$
6. (a) Write $z=\frac{(7-i)}{(4+i 3)}$ in the form $(a+i b)$, where $a, b \in \mathbb{R}$.
(b) For $z=(-12+i 5)$ determine $|z|, \bar{z},-z,-\bar{z}$ and $\overline{-z}$, and show these numbers in an Argand diagram.
7. On an Argand diagram show the set of complex numbers for which

$$
|z| \leq 1 \text { and } \operatorname{Im}(z) \geq 0
$$

8. Let $E(z):=\sum_{n=0}^{6} \frac{z^{n}}{n!}$, thus, the function $E(z)$ is an approximation for e^{z}. Now, compute (using a calculator) the following:
(a) $E\left(i \frac{\pi}{2}\right), \quad\left|E\left(i \frac{\pi}{2}\right)\right|$
(b) $\sqrt{2} \cdot E\left(i \frac{\pi}{4}\right),\left|\sqrt{2} \cdot E\left(i \frac{\pi}{4}\right)\right|$
(c) $E\left(-i \frac{\pi}{4}\right),\left|E\left(-i \frac{\pi}{4}\right)\right|$
9. Show the following:
(a) $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3}=\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{3}=1^{3}=1$.
(b) $(\sqrt{3}+i \sqrt{3})^{4}=(\sqrt{3}-i \sqrt{3})^{4}=(-\sqrt{3}+i \sqrt{3})^{4}=(-\sqrt{3}-i \sqrt{3})^{4}=-36$.

Thus, $z^{3}=1$ has at least 3 solutions and $z^{4}=-36$ has at least 4 solutions.

[^0]
[^0]: *David Bates Building, Room 1014.
 Office hours: Monday 1.00 p.m. -2.00 p.m., Wednesday 2.00 p.m. -3.00 p.m.

