${\rm Dr}~{\rm Halbeisen^*}$

MODULES 110PMA003 & 110PMA107 Department of Pure Mathematics

Week 3, 2001

The pdf-file you may download from http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 18th of October 2001.

- 10. Write the following complex numbers in the form $r \cdot e^{i\varphi}$. (a) (1-i) (b) $(-\sqrt{3}-i\sqrt{3})$ (c) $(-\sqrt{3}-i\sqrt{3})^3$ (d) $((1-i)\cdot(-\sqrt{3}-i\sqrt{3}))^3$
- 11. Write the following complex numbers in the form (a + ib).

(a)
$$\sqrt{2} \cdot e^{i\frac{\pi}{8}}$$
 (b) $\left(\sqrt{2} \cdot e^{i\frac{\pi}{8}}\right)^4$ (c) $3 \cdot e^{i\frac{7\pi}{6}}$ (d) $\left(\left(3 \cdot e^{i\frac{7\pi}{6}}\right) \cdot \left(\sqrt{2} \cdot e^{i\frac{\pi}{8}}\right)\right)^4$

(a) Find all solutions of the equation z⁵ = 1. (b) Find all solutions of the equation z³ = -27. (c) Plot the solutions of part (a) and (b) on an Argand diagram.

Hint: The 5 solutions of part (a) form a regular five-angle and the 3 solutions of part (b) form a regular triangle. Did you get it?

13. Write $\sin(\alpha - \beta)$ and $\cos(\alpha - \beta)$ in terms of $\sin(\alpha), \sin(\beta), \cos(\alpha)$ and $\cos(\beta)$. *Hint:* Use that $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$ and remember that for each φ we have $\cos(-\varphi) = \cos(\varphi)$ and $\sin(-\varphi) = -\sin(\varphi)$.

^{*}David Bates Building, Room 1014. Office hours (Room 1007): Monday 1 pm–2 pm, Wednesday 2 pm–3 pm