Dr Halbeisen*

Modules 110PMA003 \& 110PMA107

 Department of Pure Mathematics

 Department of Pure Mathematics}

Week 3, 2001

The pdf-file you may download from
http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 18th of October 2001.
10. Write the following complex numbers in the form $r \cdot e^{i \varphi}$.
(a) $(1-i)$
(b) $(-\sqrt{3}-i \sqrt{3})$
(c) $(-\sqrt{3}-i \sqrt{3})^{3}$
(d) $((1-i) \cdot(-\sqrt{3}-i \sqrt{3}))^{3}$
11. Write the following complex numbers in the form $(a+i b)$.
(a) $\sqrt{2} \cdot e^{i \frac{\pi}{8}}$
(b) $\left(\sqrt{2} \cdot e^{i \frac{\pi}{8}}\right)^{4}$
(c) $3 \cdot e^{i \frac{7 \pi}{6}}$
(d) $\left(\left(3 \cdot e^{i \frac{7 \pi}{6}}\right) \cdot\left(\sqrt{2} \cdot e^{i \frac{\pi}{8}}\right)\right)^{4}$
12. (a) Find all solutions of the equation $z^{5}=1$.
(b) Find all solutions of the equation $z^{3}=-27$.
(c) Plot the solutions of part (a) and (b) on an Argand diagram.

Hint: The 5 solutions of part (a) form a regular five-angle and the 3 solutions of part (b) form a regular triangle. Did you get it?
13. Write $\sin (\alpha-\beta)$ and $\cos (\alpha-\beta)$ in terms of $\sin (\alpha), \sin (\beta), \cos (\alpha)$ and $\cos (\beta)$. Hint: Use that $e^{i \varphi}=\cos (\varphi)+i \sin (\varphi)$ and remember that for each φ we have $\cos (-\varphi)=\cos (\varphi)$ and $\sin (-\varphi)=-\sin (\varphi)$.

[^0]Office hours (Room 1007): Monday $1 \mathrm{pm}-2 \mathrm{pm}$, Wednesday $2 \mathrm{pm}-3 \mathrm{pm}$

[^0]: *David Bates Building, Room 1014.

