MODULES 110PMA003 & 110PMA107 Department of Pure Mathematics

Week 9, 2001

The pdf-file you may download from http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 29 November 2001.

- 38. For h = 0.01 and $x_0 = 1$, $x_0 = 2$, $x_0 = 3$, $x_0 = 4$, compute $\frac{\ln(x_0 + h) \ln(x_0)}{h}$. What might be the precise values of $\ln'(1)$, $\ln'(2)$, $\ln'(3)$ and $\ln'(4)$?
- 39. (a) Show that the point (1,5) lies on the curve $y = x^2 + 2x + 2$.
 - (b) Find the equation of the tangent to this curve at the point (1, 5).
 - (c) Find the points where the tangent meets the x-axis and the y-axis.
- 40. Use Pascal's triangle to expand the following: (a) $(a + b)^3$ (b) $(x + h)^6$ (c) $(2x + 2)^5$
- 41. Let $f(x) = \sin(x) + \cos(x)$.
 - (a) Sketch the graph of the function f(x) between $x = -\frac{3\pi}{2}$ and $x = \frac{3\pi}{2}$.
 - (b) Determine for which x between $-\frac{3\pi}{2}$ and $\frac{3\pi}{2}$ the function f(x) is maximal or minimal.
 - (c) Find the derivative f'(x) of the function f(x).
 - (d) Sketch the graph of function f'(x) between $x = -\frac{3\pi}{2}$ and $x = \frac{3\pi}{2}$.
 - (e) Determine for which x between $-\frac{3\pi}{2}$ and $\frac{3\pi}{2}$ the function f'(x) is equal to 0.

^{*}David Bates Building, Room 1014.

Office hours (Room 1007): Monday $1\,\mathrm{pm}{-}2\,\mathrm{pm},$ Wednesday $2\,\mathrm{pm}{-}3\,\mathrm{pm}$