Modules 110PMA003 \& 110PMA107
 Department of Pure Mathematics

Week 9, 2001

The pdf-file you may download from
http://www.math.berkeley.edu/~halbeis/4students/zero.html

Please hand in your solutions (stapled together with your full name on the first page) at the lecture on Thursday, 29 November 2001.

38. For $h=0.01$ and $x_{0}=1, x_{0}=2, x_{0}=3, x_{0}=4$, compute $\frac{\ln \left(x_{0}+h\right)-\ln \left(x_{0}\right)}{h}$. What might be the precise values of $\ln ^{\prime}(1), \ln ^{\prime}(2), \ln ^{\prime}(3)$ and $\ln ^{\prime}(4)$?
39. (a) Show that the point $(1,5)$ lies on the curve $y=x^{2}+2 x+2$.
(b) Find the equation of the tangent to this curve at the point $(1,5)$.
(c) Find the points where the tangent meets the x-axis and the y-axis.
40. Use Pascal's triangle to expand the following:
(a) $(a+b)^{3}$
(b) $(x+h)^{6}$
(c) $(2 x+2)^{5}$
41. Let $f(x)=\sin (x)+\cos (x)$.
(a) Sketch the graph of the function $f(x)$ between $x=-\frac{3 \pi}{2}$ and $x=\frac{3 \pi}{2}$.
(b) Determine for which x between $-\frac{3 \pi}{2}$ and $\frac{3 \pi}{2}$ the function $f(x)$ is maximal or minimal.
(c) Find the derivative $f^{\prime}(x)$ of the function $f(x)$.
(d) Sketch the graph of function $f^{\prime}(x)$ between $x=-\frac{3 \pi}{2}$ and $x=\frac{3 \pi}{2}$.
(e) Determine for which x between $-\frac{3 \pi}{2}$ and $\frac{3 \pi}{2}$ the function $f^{\prime}(x)$ is equal to 0.
