Elliptische Kurven & Kryptologie Serie 4

Abgabe: 4. April 2k+8

Tangenten, Wendepunkte und Singularitäten

Im Folgenden sei f(x,y) ein, über den reellen Zahlen, irreduzibles Polynom vom Grad 3 mit rationalen Koeffizienten. Ferner sei C_f : f(x,y)=0 die assoziierte cubische Kurve (welche keine Gerade enthält) und C_F die entsprechende Kurve in der projektiven Ebene.

- 1. Sei G eine Gerade in der projektiven Ebene.
 - (a) Zeige, dass G die Kurve C_F in mindestens einem Punkt, höchstens in drei Punkten, schneidet.
 - (b) Zeige, dass C_f mindestens einen Punkt, höchstens aber drei Punkte, im Unendlichen hat.
 - (c) Sei die Gerade G eine Tangente an die Kurve C_F im Punkt P_0 . Zeige: Entweder schneidet die Gerade G die Kurve C_F nur in P_0 , dann heisst P_0 Wendepunkt der Kurve C_F , oder G schneidet C_F in genau einem weiteren Punkt.
- 2. Sei P_0 ein Punkt der Kurve C_F . P_0 heisst **singulärer Punkt** der Kurve C_F falls $grad(F)(P_0) = (0,0,0)$.
 - (a) Zeige: (x_0, y_0) ist ein singulärer Punkt von C_f , genau dann wenn $[x_0, y_0, 1]$ ein singulärer Punkt von C_F ist. Hinweis: Der Gradient zeigt immer in die Richtung der grössten Zunahme.
 - (b) Ist P_0 ein singulärer Punkt von C_F , dann existiert eine lineare Abbildung aus SO(3), so dass der Punkt [0,0,1] ein singulärer Punkt der transformierten Kurve $C_{\tilde{\nu}}$ ist.
- 3. Sei P_0 ein singulärer Punkt der Kurve C_F . Aus Aufgabe 2.(b) folgt, dass ohne Einschränkung der Allgemeinheit $P_0 = [0, 0, 1]$ angenommen werden darf.
 - (a) Zeige: Ist G eine Gerade durch P_0 , dann schneidet G die Kurve C_F in höchstens einem weiteren Punkt P_1 .
 - (b) Die Kurve C_F hat keine weiteren singulären Punkte; oder allgemeiner, eine cubische Kurve C_F hat höchstens einen singulären Punkt.
 - (c) Es gibt höchstens zwei Geraden durch P_0 welche C_F in keinem weiteren Punkt schneiden.
- 4. Zeige, dass unter einer projektiven Transformation sowohl Tangenten wie auch singuläre Punkte und Wendepunkte erhalten bleiben.
- 5. Sei P_0 ein rationaler, singulärer Punkt der Kurve C_F und sei G eine rationale Gerade durch P_0 .
 - (a) Schneidet G die Kurve C_F in einem weiteren Punkt P_1 , dann ist P_1 rational.
 - (b) Wie lassen sich die rationalen Punkte auf C_f bestimmen? Genauer: Definiere eine injektive, stetige Abbildung $C_F(\mathbb{Q}) \setminus \{P_0\} \to \mathbb{P}^1(\mathbb{Q})$.