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The outline of the talk

A historical introduction.

Sierpiński’s insights into sets of cardinality ℵ1.

Some consequences of the Continuum Hypothesis

and their impact on future research.
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A historical introduction

In 1918, as World War I came to an end, Poland regained its
independence after the period of 123 years of partitions
conducted by the Habsburg monarchy, the Kingdom of
Prussia, and the Russian Empire.

Question: “How Poland (...) could achieve, within a relatively
short period 1919–1939, a good international position in such
fields of mathematics as functional analysis, topology, set
theory, functions of a real variable, logic and foundations of
mathematics (...)”? (W. Żelazko, “A short history of Polish
mathematics”).
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The Polish School of Mathematics

“The Polish school of mathematics” in a broader sense refers to
all mathematical activities on the newly reintegrated territory
of Poland between the two world wars, i.e., in the period of
1918-1939, carried out in Warsaw, Lvov (now Lviv in Ukraine),
Cracow, Wilno (now Vilnius in Lithuania) and Poznań.

In a more restricted sense it usually refers to the activities of
two main research communities: the Lvov school lead by
Stefan Banach and the Warsaw school lead by Wacław
Sierpiński.
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The Warsaw School of Mathematics

The three “founding fathers”:

Wacław Sierpiński (1882–1969),

Zygmunt Janiszewski (1888–1920),

Stefan Mazurkiewicz (1888–1945).

Piotr Zakrzewski



Wacław Sierpiński (1882–1969)

studied at the Imperial (Russian) University of Warsaw,
received his doctorate at the Jagiellonian University in Cracow,
worked (1908-1914) at the University of Lvov,
spent the war in Moscow working with Nikolai Luzin,
returned to Warsaw in 1918 and became a professor at the newly
reactivated University of Warsaw,
worked in the area of set theory, point set topology and number
theory,
published over 700 papers. He has 6345 mathematical descendants.
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Zygmunt Janiszewski (1888–1920)

studied in Zurich (the University of Zurich), Munich and Göttingen,
received his doctorate in Paris (1911) under the supervision of Henri
Lebesgue,
for some time taught at the University of Lvov, working with
Sierpiński,
in 1918 was offered a professorship at the University of Warsaw,
worked in topology, especially in the theory of continua,
died untimely as a victim of the Spanish influenza pandemic.
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Stefan Mazurkiewicz (1888–1945)

studied in Cracow, Munich, Göttingen and Lvov,
received his doctorate in Lvov (1913) under the supervision of
Sierpiński,
became a professor at the reborn University of Warsaw,
worked in topology, especially the theory of continua, dimension
theory and descriptive set theory,
published more than 140 papers.
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The origins of the Warsaw School of Mathematics

Janiszewski wrote an article entitled “On the needs of
mathematics in Poland” (1917) with a program aimed at
“gaining an independent position of Polish mathematics”
by:

1 concentrating the efforts of most of the active
mathematicians in the country in one discipline,

2 founding a journal publishing papers devoted only to
the chosen area of mathematics and written in
internationally recognized languages.

Janiszewski, Mazurkiewicz and Sierpiński founded
Fundamenta Mathematicae (1920) – the first specialized
journal devoted only to one area of mathematics, namely
set theory and its applications.
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Let us give a voice to Sierpiński himself (“The Warsaw School of
Mathematics and the present state of mathematics in Poland”, The
Polish Review 4 no. 1-2, (1959), 51–63):

“In 1913 Stefan Mazurkiewicz came to Lvov to prepare for his
doctorate under my direction. (...) In this same year I offered an
assistantship at the Mathematical Seminar of Lvov University to
Zygmunt Janiszewski, a doctor of the University of Paris, whose
work was in the field of topology. In 1919, the three of us met as
the first professors of mathematics in the re-born Polish University
at Warsaw. There we decided to found a periodical dedicated to
the theory of sets, topology, the theory of functions of a real
variable and mathematical logic, which would publish studies in
French, English, German and Italian. It was thus that Fundamenta
Mathematicae (...) was born. ”
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And then Sierpiński continues (ibidem):

“When in 1919 Stefan Mazurkiewicz, Zygmunt Janiszewski and I
were appointed professors of mathematics at the University of
Warsaw, each of us, in adition to teaching other branches of
mathematics, offered courses or seminars on the theory of sets,
topology and the theory of functions of a real variable. Among the
students of those days many were very capable, and some later
became noted mathematicians. Among these were Kuratowski,
Saks, Tarski, Knaster, Zygmund, Lindenbaum,
Szpilrajn-Marczewski, Borsuk, Zarankiewicz, Eilenberg, Poprużenko,
Aronszajn, Mostowski, Charzynski and others. Some became
professors or docents of our University and together we formed the
Warsaw School of Mathematics .”
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Concerning set theory of the reals the work of the following
mathematicians from the above list was of particular importance:

Sierpiński: AC and cardinal arithmetic, CH and its
consequences, infinite combinatorics (almost disjoint sets,
partition calculus), types of linear orders, measure and
category, special sets of reals, descriptive set theory,

Mazurkiewicz: the “Two Points Theorem”, descriptive set
theory,

Kazimierz Kuratowski: the “Kuratowski-Zorn Lemma”, special
sets of reals, the general measure problem, descriptive set
theory,

Alfred Tarski: AC and cardinal arithmetic, cardinal
exponentiation, infinite combinatorics, finite
equidecomposability into congruent parts (the Banach-Tarski
paradox).
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A crash course in basic set theory

Sets A and B are equinumerous or have the same cardinality
(|A| = |B|) if there is a one to one function from A onto B .
The cardinality of A is less or equal to the cardinality of B
(|A| ≤ |B|) if there is a one to one function from A into B .
For any sets A and B either |A| ≤ |B| or |B| ≤ |A| .
The cardinalities of infinite sets are expressed with the help of
cardinal numbers : ℵ0,ℵ1, . . ..
We write |A| = ℵ0 if |A| = |N|, where N = {0, 1, 2, . . . . . .}.
Then |A| ≤ |B| for every infinite B , i.e., ℵ0 is the smallest
infinite cardinal number.
We write |A| = ℵ1 if |A| ≤ |B| for every uncountable B , i.e.,
ℵ1 is the smallest uncountable cardinal number.
If T is infinite and |Ax | ≤ ℵ0 for each x ∈ T , then
|
⋃

x∈T Ax | ≤ |T |.
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The Continuum Hypothesis

Question (Cantor, 1878): is every infinite set of reals either
equinumerous with N or equinumerous with R?

The Continuum Hypothesis (CH) : YES, i.e., |R| = ℵ1.

(Gödel, 1938): CH is consistent with the usual axioms (ZFC)
of Set Theory. In ZFC one cannot prove that CH is false – we
can add it to ZFC as a new axiom without increasing the risk
of inconsistency.
(Cohen, 1963): ¬CH is consistent with ZFC. In ZFC one
cannot prove that CH is true – we can add ¬CH to ZFC as a
new axiom.
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How to imagine a set of cardinality ℵ1?

It is usually done with the help of countable ordinal numbers but
Sierpiński’s ideas can be used to circumvent the use of them.

A family L of sets is a chain , if every sets A and B from L are
comparable in the sense of inclusion: either A ⊆ B or B ⊆ A.

Let C1 be maximal among all chains of countable subsets of R, i.e.:

all sets that form C1 are countable subsets of R,
C1 is a chain,
C1 is maximal, i.e., C1 cannot be properly extended to a larger
chain of countable subsets of R.

The existence of C1 follows from the Hausdorff maximality
principle, an earlier version of the Kuratowski-Zorn’s lemma.

Let Ω1 ⊆ R be the union of all sets that form C1.

Then Ω1 is uncountable; otherwise pick x ∈ R \ Ω1 and properly
extend C1 by adding Ω1 ∪ {x}.

Piotr Zakrzewski



Theorem (Sierpiński)

Let C be a chain of countable subsets of R and let X ⊆ R be the
union of all sets that form C. If X is uncountable, then |X | = ℵ1.
In particular, |Ω1| = ℵ1.

Proof.
Let B be an arbitrary uncountable set. If |X | ≤ |B|, then we are
done.
If |B| ≤ |X |, then fix T ⊆ X with |B| = |T |; in particular, T is
uncountable.
For each x ∈ X choose Ax ∈ C with x ∈ Ax .

The key observation: X =
⋃

x∈T Ax (∗).

For suppose that y ∈ X \
⋃

x∈T Ax .

Then Ay 6⊆ Ax for any x ∈ T (since y ∈ Ay \ Ax), hence Ax ⊆ Ay .
It follows that T ⊆ Ay – a contradiction (as T is uncountable).

By (∗), |X | ≤ |T | but |T | = |B| and we are done again.
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We actually proved more:

Theorem (Sierpiński)

For any set X , the following are equivalent:

|X | = ℵ1,
X is uncountable and is the union of a chain of countable sets.

Proof.
If |X | = ℵ1, then |X | = |Ω1|, so X is the union of a chain of
countable sets.

If C is any chain of countable sets and its union X is uncountable,
then we may repeat the previous argument to get |X | = ℵ1.
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Sierpiński in a monograph “Hypothèse du continu” (published in
1934) presented numerous consequences of CH among which he
distinguished 11 statements, labelled P1 to P11, which are actually
equivalent to CH.

Statement P6 is what we have just considered:

Theorem (Sierpiński)

The following are equivalent:
the Continuum Hypothesis,
P6: R is the union of a chain of countable sets.

In the rest of the talk we shall use this characterization in proofs of
two consequences of CH (which are usually presented with the help
of countable ordinals).
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Theorem (Sierpiński)

CH is equivalent to statement P1: the plane R2 is the disjoint
union of sets A i B such that for any x , y ∈ R, sets
{y ∈ R : (x , y) ∈ A} and {x ∈ R : (x , y) ∈ B} are countable.

Proof of the necessity.

First assume CH and, by P6, fix a chain {Ax : x ∈ R} of countable
subsets of R with x ∈ Ax for each x ∈ R.
Let

A = {(x , y) ∈ R2 : y ∈ Ax}, B = R2 \ A.

Clearly, R2 = A ∪ B , A ∩ B = ∅ and for each x ∈ R we have
{y ∈ R : (x , y) ∈ A} = Ax is countable.
On the other hand for each y ∈ R we have

{x ∈ R : (x , y) ∈ B} = {x ∈ R : y /∈ Ax} ⊆ Ay ,

for if y /∈ Ax , then Ay 6⊆ Ax , hence Ax ⊆ Ay , so x ∈ Ay .
Consequently, {x ∈ R : (x , y) ∈ B} is also countable.
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Proof of the sufficiency.

Now assume that R2 = A ∪ B , where A ∩ B = ∅ and for any x and
y the sections Ax = {y ∈ R : (x , y) ∈ A} and
By = {x ∈ R : (x , y) ∈ B} are countable.

Fix T ⊆ R with |T | = ℵ1 and let S =
⋃

y∈T By .

As |By | ≤ ℵ0 for all y ∈ T , we have |S | ≤ |T |.

But S = R. Otherwise, fix x ∈ R \ S .

Now, if y ∈ T , then x /∈ By , i.e., (x , y) /∈ B , so y ∈ Ax , which
shows that T ⊆ Ax – a contradiction as Ax is countable.

Thus |R| ≤ |T | = ℵ1, i.e., CH holds true.
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Question (Banach): Does there exist a probability countably
additive measure on [0, 1] which is zero on singletons and is defined
for every X ⊆ [0, 1] ?

Theorem (Banach, Kuratowski, 1929)

CH implies that no such measure exists.

Let P be the set of all functions f : N−→N.

For f , g ∈ P let us say that g eventually dominates f (notation:
f �∗ g ) if ∃m ∀n ≥ m f (n) ≤ g(n).

Note that, by a diagonalization argument, if A ⊆ P is countable,
then there is g ∈ P with f �∗ g for any f ∈ A (notation: A �∗ g ).
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Proof (Banach, Kuratowski).

By CH, |P| = ℵ1. By Sierpiński’s theorem, there is a chain
{Af : f ∈ P} of countable subsets of P such that f ∈ Af for every
f ∈ P . For each f ∈ P choose gf ∈ P with Af �∗ gf .
Observe that for any uncountable T ⊆ P there is no g ∈ P with
{gf : f ∈ T} �∗ g (otherwise,

⋃
f ∈T Af �∗ g which is impossible

as
⋃

f ∈T Af = P).
By re-indexing, we have {gx : x ∈ [0, 1]} ⊆ P such that
(∗) for no uncountable T there is g with gx �∗ g for each x ∈ T .
For n, k ∈ N let Tn,k = {x ∈ [0, 1] : gx(n) = k}.
Suppose that m : P([0, 1])−→ [0, 1] is a probability σ-additive
measure with m(T ) = 0 for any countable T ⊆ [0, 1].
For each n choose kn such that m(Tn,0 ∪ . . . ∪ Tn,kn) ≥ 1− 1

2n+2 ,
which means that gx(n) ≤ kn for “many” (in the sense of m) x ’s.
Consequently, letting T =

⋂
n
⋃

k≤kn
Tn,k , we have m(T ) > 0 (so

T must be uncountable) but gx(n) ≤ kn for each x ∈ T and every
n, contradicting (∗) (as gx �∗ g , where g(n) = kn for each n).
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Proof (Kenneth Kunen).

By CH and Sierpiński’s theorem, establishing its equivalence with
statement P1, there is a set A ⊆ [0, 1]2 with all vertical sections
Ax = {y ∈ [0, 1] : (x , y) ∈ A} countable and all horizontal sections
Ay = {x ∈ [0, 1] : (x , y) ∈ A} co-countable.

It is easy to show that A, being the union of a countable collection
of graphs of functions from [0, 1] to [0, 1], belongs to the σ-algebra
of subsets of [0, 1]2, generated by abstract rectangles of the form
C × D for C , D ⊆ [0, 1].

Suppose that m : P([0, 1])−→ [0, 1] is a probability σ-additive
measure with m(T ) = 0 for any countable T ⊆ [0, 1].

Then A is measurable with respect to the product measure m ⊗m.

But m(Ax) = 0 and m(Ay ) = 1 for every x , y ∈ [0, 1] which
contradicts the Fubini theorem for m ⊗m.
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The theorem of Banach and Kuratowski was a
remarkable result which caused great interest and
became the starting point for further research in
various directions.
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The work of Stanisław Ulam (1933), one of the most famous
students of Kuratowski, on the abstract measure problem: is
there an infinite set X and a probability countably additive
measure m on X which is zero on singletons and is defined for
every A ⊆ X?

Ulam proved that if X and m are as above then:
if m has no atoms, then there is an extension of the Lebesgue
measure on [0, 1] to a σ-additive measure defined on P([0, 1])
and there is a weakly inaccessible cardinal κ ≤ |R| (in
particular: no such measure exists under CH),

if m has an atom, then there is a measurable (in particular:
strongly inaccessible) cardinal κ ≤ |X |, i.e., such an
uncountable cardinal κ that there is a κ-complete free
ultrafilter over κ.

So it turned out that the positive answer to the abstract
measure problem cannot be given in ZFC but Ulam’s work was
a very important contribution to the origins of the study of
large cardinals - one of the main branches of set theory.
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More impact on future research

The work on the question of whether given any countable
collection of subsets of [0, 1] we can include all of them in the
domain of a σ-additive extension of the Lebesgue measure
(Timothy Carlson (1984): the answer “yes” is relatively
consistent with ZFC).

The work on a combinatorial property of the matrix
〈Tn,k : n, k ∈ N〉, formulated by Banach and Kuratowski,
which implies that the sets {Tn,k : n, k ∈ N} cannot all be
measured by a single probability σ-additive measure vanishing
on singletons (Tomek Bartoszyński and Lorenz Halbeizen
(2003): the existence of a BK-Matrix is independent of
ZFC+¬CH; in particular, it is not equivalent to CH).

Connections with the research on special subsets of the reals
(in particular, universal measure zero sets [Marczewski] and
K -Lusin sets of Bartoszyński and Halbeisen).
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A final remark

The Sierpiński’s representation of a set of cardinality ℵ1 with the
help of a chain of countable subsets of R with uncountable union
somewhat resembles
the Dedekind’s construction of the reals: the set of Dedekind
cuts can also be identified with a chain of countable sets, namely
the chain of all non-empty proper initial segments of Q.
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Thank you for your attention!
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