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Abstract. We show that in the model obtained by iteratively pseudo-intersecting

a Ramsey ultrafilter via a length-ω2 countable support iteration of restricted Math-

ias forcing over a ground model satisfying CH, there is a unique Q-point up to

isomorphism. In particular, it is consistent that there is only one Q-point while

there are 2c-many near-coherence classes of ultrafilters.
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1 Introduction

Throughout this paper, read ultrafilter as non-principal ultrafilter on ω. For x ⊆ ω, we
denote by [x]ω the set of infinite subsets of x and by fin(x) the set of finite subsets of x.

Recall that an ultrafilter E is a Q-point if and only if for every interval partition
{[ki, ki+1) : i ∈ ω} of ω, there exists some x ∈ E such that ∀i ∈ ω : |x ∩ [ki, ki+1)| ≤ 1.
Furthermore, an ultrafilter U is a Ramsey ultrafilter if and only if the Maiden has no
winning strategy in the ultrafilter game for U , played between the Maiden and Death:

Definition 1.1. Let U be an ultrafilter. The ultrafilter game for U proceeds as follows:

The Maiden opens the game and plays some y0 ∈ U . Death responds by playing some
n0 ∈ y0. In the (k+1)-th move, the Maiden having played y0 ⊇ y1 ⊇ ... ⊇ yk, and Death

1Research partially supported by the Israel Science Foundation grant no. 2320/23. This is paper 1265
on the author’s publication list.
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having played n0 < n1 < ... < nk, the Maiden plays some yk+1 ∈ [yk]
ω ∩ U , and Death

responds by playing some nk+1 ∈ yk+1, nk+1 > nk.

Death wins if and only if {ni : i ∈ ω} ∈ U .

It is well-known that every Ramsey ultrafilter is a Q-point. Canjar [5] showed that the
existence of 2c-many Ramsey ultrafilters follows from the assumption cov(M) = c. The
weaker assumption cov(M) = d implies the existence of 2c Q-points, as was shown
by Millán [6]. It is well-known that in the Mathias model – the model obtained by
a length-ω2 countable support iteration of unrestricted Mathias forcing over a ground
model satisfying CH – there are no Q-points (see [1, Proposition 26.23]). In fact, the
Mathias model contains no rapid ultrafilters, where an ultrafilter E is rapid iff for every
f ∈ ωω there exists some x ∈ E such that ∀n ∈ ω : |x ∩ f(n)| ≤ n (note that every
Q-point is rapid). It follows that both the Mathias model and the model considered in
this paper satisfy cov(M) = ω1 < d = c = ω2.

In contrast to the Mathias model, our model contains 2c-many rapid ultrafilters: It
follows from an observation of Millán [6, page 222] that the existence of a single rapid
ultrafilter E implies the existence of 2c of them, by considering the products U ⊗E for
different ultrafilters U .2

While the consistency of the non-existence of Q-points is a well-established fact with
a variety of witnesses apart from the Mathias model3, the construction of models con-
taining only ‘few’ Q-points seems to have received less attention. However, such models
do arise naturally as models containing only few near-coherence classes of ultrafilters4:
Indeed, Mildenberger [10] has constructed models with exactly two and exactly three
near-coherence classes, and it is easy to see that these contain exactly one and exactly
two Q-points, respectively: In her model with exactly two near-coherence classes, one
class contains a Ramsey ultrafilter, while the other class contains an ultrafilter that is
ω1-generated. Hence, this latter class cannot contain a Q-point, since her models satisfy
d = c = ω2 and such a Q-point would thus have to be <d-generated, which is impossi-
ble. Analogously, in Mildenberger’s model with exactly three near-coherence classes, two
classes are represented by Ramsey ultrafilters, while the third contains an ω1-generated
ultrafilter – giving exactly two Q-points in total.

The construction of models with exactly n near-coherence classes of ultrafilters for var-
ious finite n ≥ 4 would similarly yield the consistency of exactly m Q-points for some
m < n.5

2U ⊗E is an ultrafilter on ω × ω defined by U ⊗E = {x ⊆ ω × ω : {n ∈ ω : (x)n ∈ E} ∈ U}, where
(x)n = {m ∈ ω : ⟨n,m⟩ ∈ x}.

3such as the Laver and Miller models (see [7] and [11], respectively).
4Two ultrafilters U1 and U2 are nearly-coherent iff there is some finite-to-one f ∈ ωω such that

f(U1) = f(U2), where f(Ui) := {X ⊆ ω : f−1[X] ∈ Ui}. Note that two Q-points are nearly-coherent iff
they are isomorphic.

5The inequality is strict since such a model must satisfy u < d, a result due to Banakh and Blass [9].
Hence, one of the n near-coherence classes contains a <d-generated ultrafilter and thus no Q-point.
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The model considered in this paper is of a different nature, however: It contains only
one Q-point while its number of near-coherence classes is 2c, i.e., the model’s lack of
Q-points is not the consequence of a lack of near-coherence classes. This follows from
the fact that dominating reals are added at each of the ω2-many stages of the iteration,
which gives b = d = c = ω2 in the final extension. Since b ≤ u (see Solomon [8]), we
have u = d = ω2 in our model, and hence there are 2c-many near-coherence classes of
ultrafilters by Banakh and Blass [9].

Definition 1.2. Let U be a Ramsey ultrafilter. Mathias forcing restricted to U , written
MU , consists of conditions ⟨s, x⟩ ∈ fin(ω)× U with max s < minx, ordered by

⟨s, x⟩ ≤MU ⟨t, y⟩ : ⇐⇒ s ⊆ t ∧ x ⊇ y ∧ t \ s ⊆ x.

Note that we use the convention that stronger forcing conditions are larger. The forcing
notion MU clearly satisfies the c.c.c. and is therefore proper. We will need the following
additional facts.

Fact 1.3 (e.g., see [1, Theorem 26.3]). Let U be a Ramsey ultrafilter. The forcing notion
MU has the pure decision property, i.e., for any sentence φ in the forcing language and
any MU -condition ⟨s, x⟩, there exists y ∈ [x]ω ∩ U such that either ⟨s, y⟩ ⊩MU φ or
⟨s, y⟩ ⊩MU ¬φ.

Definition 1.4. Recall that a forcing notion P has the Laver property iff for every
P-name g˜ for an element of ωω such that there exists f ∈ ωω ∩V with

P ⊩ ∀n ∈ ω : g˜(n) ≤ f(n),

we have that P forces that there exists c : ω → fin(ω) in V with

∀n ∈ ω : |c(n)| ≤ 2n and g˜(n) ∈ c(n).

Fact 1.5 (e.g., see [1, Corollary 26.8]). Let U be a Ramsey ultrafilter. The forcing notion
MU has the Laver property.

Fact 1.6 (e.g., see [2, Ch. VI, 2.10D]). The Laver property is preserved under countable
support iterations of proper forcing notions.

3



2 Result

Main Theorem. It is consistent that there is a unique Q-point while there are 2c-many
near-coherence classes of ultrafilters.

Proof. Assume that the ground model V satisfies CH. By induction, we define:

(i) A countable support iteration Pω2 := ⟨Pξ, , Q˜ ξ : ξ ∈ ω2⟩ of c.c.c. forcing notions,

(ii) A sequence ⟨U˜ξ : ξ ∈ ω2⟩, such that

∀ξ ∈ ω2 : Pξ ⊩ “U˜ξ is a Ramsey ultrafilter extending
⋃
ι∈ξ

U˜ ι”

and Q˜ ξ is a Pξ-name for Mathias forcing restricted to U˜ξ,

Assume that we are in step ξ ∈ ω2. Let Gξ be Pξ-generic over V and work in V[Gξ].
Note that since Pξ is a countable support iteration of proper forcing notions that are
forced to be of size ≤ ω1, we have V[Gξ] |= CH (e.g., see [3, Theorem 2.12]). For each
ι ∈ ξ, let ηι be the Mathias real added at stage ι.

If ξ = ξ′ + 1, ηξ′ pseudo-intersects U˜ξ′ [Gξ] and we may construct a Ramsey ultrafilter
on ηξ′ using CH (and extend it to ω to obtain Uξ). Similarly, if ξ is a limit ordinal and
cf(ξ) = ω, we can build Uξ on a pseudo-intersection of the tower ⟨ηι : ι ∈ ξ⟩. Finally,
if cf(ξ) = ω1, then

⋃
ι∈ξ U˜ ι[Gξ] is already a Ramsey ultrafilter, since no new reals are

added at stage ξ. For the same reason we also have that Uω2 :=
⋃

ξ∈ω2
U˜ξ[G] is a Ramsey

ultrafilter in V[G], where G is Pω2-generic over V.

Fact 2.1 (e.g., see [3, Theorem 2.10]). Pω2 is proper and satisfies the ω2-c.c..

We need to show that Uω2 is the only Q-point in V[G]. To see this, assume by contra-
diction that V[G] |= “E is a Q-point and not isomorphic to Uω2”.

Lemma 2.2. There exists δ ∈ ω2 such that E ∩ V[Gδ] ∈ V[Gδ] and V[Gδ] |= “E ∩
V[Gδ] is a Q-point and not isomorphic to Uδ”.

Proof. Fix ξ ∈ ω2 and consider names e˜ξ, i˜ξ, s˜ξ, b˜ξ and f˜ξ such that Pω2 forces that

(i) “e˜ξ is an enumeration (in ω1) of E˜ ∩ V[
˙
Gξ]”. For each α ∈ ω1 and n ∈ ω let

Eξ,α,n ⊆ Pω2 be a maximal antichain deciding “n ∈ e˜ξ(α)”.
(ii) “i˜ξ is an enumeration (in ω1) of the set of interval partitions of ω in V[

˙
Gξ]”. Note

that we may assume that i˜ξ is a Pξ-name.

(iii) “For all α ∈ ω1, s˜ξ(α) is an element of E˜ that intersects each interval in the interval
partition i˜ξ(α) in at most one point”. Let Sξ,α,n ⊆ Pω2 be a maximal antichain
deciding “n ∈ s˜ξ(α)”.
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(iv) “b˜ξ is an enumeration (in ω1) of all permutations of ω in V[
˙
Gξ]”. We may again

assume that b˜ξ is a Pξ-name.

(v) “For all α ∈ ω1, f˜ξ(α) is a pair op(x˜α, y˜α) such that x˜α is in E˜ , y˜α is in U˜ω2 and

b˜ξ(α)[x˜α] is disjoint from y˜α”. Let Xξ,α,n ⊆ Pω2 be a maximal antichain deciding

“n ∈ x˜α”, and define Yξ,α,n analogously.

By the ω2-c.c. of Pω2 , there exists for each ξ ∈ ω2 some γξ ∈ ω2 greater than ξ such that
all the above antichains consist of Pγξ-conditions. Recursively define λ(0) = 0, λ(ξ+1) =
γλ(ξ) and for limit ordinals ξ : λ(ξ) =

⋃
ι∈ξ λ(ι), for ξ ≤ ω1. Set δ := λ(ω1) and consider

the extension V[Gδ]. Since cf(δ) = ω1, we have that E ∩ V[Gδ] =
⋃

ι∈ω1
E ∩ V[Gλ(ι)],

and since each E ∩V[Gλ(ι)] is an element of V[Gδ] by (i), E ∩V[Gδ] is an element of
V[Gδ] (and an ultrafilter). Furthermore, any interval partition of ω in V[Gδ] already
appears in some V[Gλ(ι)], ι ∈ ω1, where it equals i˜λ(ι)[Gλ(ι)](α) for some α ∈ ω1. Since
s˜λ(ι)[Gδ](α) ∈ E∩V[Gδ], we obtain that E∩V[Gδ] is a Q-point. Finally and analogously,
any permutation of ω in V[Gδ] already appears in V[Gλ(ι)] for some ι ∈ ω1 and hence
there are witnesses x˜α[Gδ] ∈ E ∩V[Gδ] and y˜α[Gδ] ∈ Uω2 ∩V[Gδ] = Uδ witnessing that

E ∩V[Gδ] and Uδ are not isomorphic. ⊣

We now designate V[Gδ] as the new ground model and rename the Q-point E ∩V[Gδ]
to E and the Ramsey ultrafilter Uδ to U . Note that by the Factor-Lemma (e.g., see [4,
Theorem 4.6]), the quotient Pω2/Gδ is again isomorphic to a countable support iteration
of restricted Mathias forcings. In particular, by Facts 1.5 and 1.6, Pω2/Gδ is isomorphic
to the two-step iteration MU ∗R˜ , where MU ⊩ “R˜ has the Laver property”.

It remains to show the following.

Proposition 2.3. Let E be a Q-point and U a Ramsey ultrafilter such that E and U
are not isomorphic. Let MU be Mathias forcing restricted to U and let R˜ be a MU -name
such that MU ⊩ “R˜ has the Laver property”. Then MU ∗ R˜ ⊩ “E cannot be extended to
a Q-point”.

Proof. It suffices to show that if ⟨p, q˜⟩ ∈ MU ∗ R˜ and a MU ∗ R˜ -name a˜ for a strictly

increasing element of ωω are such that

⟨p, q˜⟩ ⊩MU∗R˜ ∀n ∈ ω : a˜(n) ∈ (
˙
η(n− 1),

˙
η(n)],

then there exists some v ∈ E and some ⟨p̄, q̄˜⟩ greater than ⟨p, q˜⟩ such that

⟨p̄, q̄˜⟩ ⊩MU∗R˜ |range(a˜) ∩ v| < ω.

Recall that
˙
η is the canonical MU -name for the Mathias real (assume MU ⊩

˙
η(−1) =

−∞).
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Note that a˜ is forced by MU to be dominated by
˙
η. Hence, by the Laver property of R˜ ,there exists a MU -name c˜ for a function from ω to fin(ω) and some ⟨p′, q˜′⟩ ≥MU∗R˜ ⟨p, q˜⟩such that

⟨p′, q˜′⟩ ⊩MU∗R˜ ∀n ∈ ω : a˜(n) ∈ c˜(n) and |c˜(n)| ≤ 2n.

We may assume without loss of generality that p′ ⊩MU ∀n ∈ ω : c˜(n) ⊆ (
˙
η(n− 1),

˙
η(n)].

Let C˜ be a MU -name for an element of [ω]ω such that p′ ⊩MU C˜ =
⋃
range(c˜). Hence,we have

⟨p′, q˜′⟩ ⊩MU∗R˜ ∀n ∈ ω : a˜(n) ∈ C˜ ∩ (
˙
η(n− 1),

˙
η(n)] and |C˜ ∩ (

˙
η(n− 1),

˙
η(n)]| ≤ 2n.

Lemma 2.4. Write p′ = ⟨s, x0⟩. There exists x1 ∈ [x0]
ω ∩ U such that the MU -condition

⟨s, x1⟩ ≥MU ⟨s, x0⟩ has the following property:

For every t ∈ fin(x1), there exists Ct ∈ fin(ω) such that

⟨s ∪ t, x1 \ (max t)+⟩ ⊩MU C˜ ∩ (max t)+ = Ct.

Proof. We define a strategy for the Maiden in the ultrafilter game for U , which will not
be a winning strategy since U is a Ramsey ultrafilter.

Since MU has pure decision, there exists C∅ ⊆ (max s)+ and y0 ∈ [x0]
ω ∩ U such that

⟨s, y0⟩ ⊩MU C˜ ∩ (max s)+ = C∅. The Maiden starts by playing y0.

Assume y0 ⊇ y1 ⊇ ... ⊇ yk and n0 < n1 < ... < nk have been played, where ∀i ≤ k : yi ∈
U and ni ∈ yi. Again by pure decision, for each t ⊆ {n0, n1, ..., nk} with max t = nk,
there exists zt ∈ [yk \ n+

k ]
ω ∩ U and Ct ⊆ n+

k such that ⟨s ∪ t, zt⟩ ⊩MU C˜ ∩ (nk)
+ = Ct.

The Maiden plays

yk+1 :=
⋂

t⊆{ni:i≤k}
max t=nk

zt.

Since Death wins, we have that x1 := {ni : i ∈ ω} ∈ U . It is easy to check that this x1

satisfies the lemma. ⊣

The following lemma strengthens the previous one.

Lemma 2.5. Assume ⟨s, x1⟩ is as in the conclusion of the previous lemma. There exists
x2 ∈ [x1]

ω ∩ U such that ⟨s, x2⟩ has the following property:

For every t ∈ fin(x2), every m ∈ x2 \ max t and all n, n′ ∈ x2 \ m+, it holds that
Ct∪{n} ∩m+ = Ct∪{n′} ∩m+.

Proof. We again prove this by playing the ultrafilter game for U . Assume y0 := x1 ⊇
y1 ⊇ ... ⊇ yk and n0 < n1 < ... < nk have been played. For every t ⊆ {n0, n1, ..., nk} and
every d ⊆ n+

k consider the set

Pt,d := {n ∈ yk \ n+
k : Ct∪{n} ∩ n+

k = d}.
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Note that for every t ⊆ {n0, n1, ..., nk}, the set {Pt,d : d ⊆ n+
k } is a partition of yk \ n+

k

into finitely many pieces. Hence, there exists one dt ⊆ n+
k such that Pt,dt ∈ U .

The Maiden plays

yk+1 :=
⋂

t⊆{ni:i≤k}

Pt,dt .

Death will win and hence x2 := {ni : i ∈ ω} ∈ U . It is again not hard to check that x2

satisfies the lemma. ⊣

The following fact will be needed later.

Fact 2.6. Without loss of generality, we may assume that for all n ∈ {max s} ∪ x2, if
n is the j’th element of s ∪ x2 in increasing order, then n > 2j+1.

Proof. Note that the conclusion of Lemmas 2.4 and 2.5 also holds for each ⟨s′, x′⟩ ≥MU

⟨s, x2⟩. Hence, we simply trim x2 such that the enumeration of s ∪ x2 dominates 2j+1

above |s| and replace s with s ∪ {minx2} and x2 with x2 \ {minx2}. ⊣

Next, let N be a countable elementary submodel of some large enough Hχ such that
{U ,MU , C˜ , ⟨s, x2⟩} ∈ N . By induction, construct a sequence N0 ⊆ N1 ⊆ ... of finite
subsets of N such that

(i) {U ,MU , C˜ , ⟨s, x2⟩, s, x2} ⊆ N0,

(ii)
⋃

i∈ω Ni = N ,

(iii) ∀i ∈ ω : ki := Ni ∩ ω ∈ ω.

(iv) ∀i ∈ ω : ∀t ∈ fin(ω) : t ∈ Ni ⇐⇒ t ⊆ Ni,

(v) If ⟨m, l,D⟩ ∈ (ω × ω × fin(ω)) ∩Ni, then m, l,D ∈ Ni (and hence D ⊆ Ni by the
previous condition).

(vi) ∀i ∈ ω : If φ(x, a0, ..., al) is a formula of length less than 2025 with a0, ..., al ∈ Ni

andN |= ∃xφ(x, a0, ..., al), then there exists b ∈ Ni+1 such thatN |= φ(b, a0, ..., al).

Lemma 2.7. ⟨s, x2⟩ forces that

∀i ∈ ω \ {0, 1} : C˜ \ (max s)+ ∩ [ki−1, ki) ̸= ∅ =⇒


range(

˙
η) ∩ [ki−2, ki−1) ̸= ∅, or

range(
˙
η) ∩ [ki−1, ki) ̸= ∅, or

range(
˙
η) ∩ [ki, ki+1) ̸= ∅.
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Proof. Assume ⟨s ∪ t, x′⟩ ≥MU ⟨s, x2⟩, a ∈ ω \ (max s)+ and i ∈ ω \ {0, 1} are such that

⟨s ∪ t, x′⟩ ⊩MU a ∈ C˜ \ (max s)+ ∩ [ki−1, ki).

We show that ⟨s ∪ t, x′⟩ forces one of the three possible conclusions in the statement of
the lemma.

By possibly extending t, we may assume that t contains at least one element that is
greater than a. Let l0 := max(t ∩ a) and l∗ := min(t \ a). Furthermore, let m∗ :=
max(x2 ∩ l∗). Hence, l0 and l∗ are consecutive elements of t and l0 ≤ m∗ < l∗ and
l0 < a ≤ l∗. We distinguish between two cases:

Case I. Assume l0 ≤ m∗ ≤ a ≤ l∗.

If l∗ ∈ [ki−1, ki), we are done, since this means that ⟨s∪t, x′⟩ ⊩MU l∗ ∈ range(
˙
η)∩[ki−1, ki).

Hence, assume l∗ /∈ [ki−1, ki), which means that l∗ /∈ Ni, since l
∗ is certainly not in Ni−1

(if it were, a would be as well by (iii)). Note that l∗ witnesses that

N |= ∃l : l = min(x2 \ a).

Hence, by (v), we have that l∗ ∈ Ni+1 and thus l∗ ∈ [ki, ki+1).

Case II. Assume l0 < a < m∗ < l∗.

Let t′ := t ∩ a, i.e., l0 := max t′, and let i∗ ∈ ω \ {0} be such that l0 ∈ [ki∗−1, ki∗), i.e.,
l0 first appears in Ni∗ . If i

∗ = i, we are again done, hence assume that a /∈ Ni∗ . We will
show that i∗ = i− 1.

Let j ∈ ω be such that l∗ is the j’th elements of s ∪ t in increasing order. By Lemmas
2.4 and 2.5, there is Ct′∪{l∗} ⊆ (l∗)+ such that

⟨s ∪ t′ ∪ {l∗}, x2 \ (l∗)+⟩ ⊩MU C˜ ∩ (l∗)+ = Ct′∪{l∗}.

Set D∗ := Ct′∪{l∗} ∩ (l0,m
∗). Since

⟨s ∪ t′ ∪ {l∗}, x2 \ (l∗)+⟩ ≤MU ⟨s ∪ t, x′⟩,

and since l0 < a < m∗ by assumption, we must have a ∈ D∗. Furthermore, note that
D∗ ⊆ Ct′∪{l∗} ∩ (l0, l

∗] and thus |D∗| =: γ ≤ 2j.

Now, m∗, l∗ and D∗ witness that

N |= ∃⟨m, l,D⟩ :


m, l ∈ x2 \ l0+,m < l, and

D ⊆ (l0,m), and

|D| = γ, and

⟨s ∪ t′ ∪ {l}, x2 \ l+⟩ ⊩MU C˜ ∩ (l0,m) = D.

8



Since l0 is the (j − 1)’th element of s ∪ t′, we have l0 > 2j by Fact 2.6.6 Hence, since
l0 ∈ Ni∗ , it follows that γ ∈ Ni∗ . Thus, all the parameters in the above formula lie in
Ni∗ , which implies that there exists ⟨m†, l†, D†⟩ ∈ Ni∗+1 satisfying the formula.

Claim. l† ≥ a

Note that the proof of this claim will finish the proof of the Lemma, since l† ∈ Ni∗+1 by
(v) and thus a ∈ Ni∗+1 \Ni∗ .

Proof. Assume by contradiction that l† < a, i.e.,

l0 < m† < l† < a < m∗ < l∗.

By Lemma 2.5, we have that

Ct′∪{l†} ∩ (m†) = Ct′∪{l∗} ∩ (m†).

Since ⟨s∪t′∪{l†}, x2\(l†)+⟩ ⊩MU C˜∩(l0,m†) = D†, it follows that Ct′∪{l∗}∩(m†) = D† and
hence D† = D∗∩ (l0,m

†). However, both D† and D∗ have size γ and thus D∗ ⊆ (l0,m
†),

which is a contradiction to the fact that a ∈ D∗ and a > m†. ■ ⊣

We now only need one final lemma to finish the proof of the proposition and thus of the
main theorem.

Lemma 2.8. Let I := {[ki, ki+1) : i ∈ ω} be any interval partition of ω and E and U
non-isomorphic Q-points. Then there exist v ∈ E and u ∈ U such that

∀i ∈ ω \ {0} : v ∩ [ki, ki+1) ̸= ∅ =⇒


u ∩ [ki−1, ki) = ∅, and

u ∩ [ki, ki+1) = ∅, and

u ∩ [ki+1, ki+2) = ∅.

Proof. Say that a Q-point element selects from an interval partition if it intersects each
interval in exactly one point. Let v0 ∈ E and u0 ∈ U be such that they select from I.
Let f be an order-preserving bijection from v0 to u0, extended to a permutation of ω.
Thus, for each i ∈ ω, f sends the element selected by v0 in [ki, ki+1) to the element
selected by u0 in [ki, ki+1). Since E and U are non-isomorphic, there exist v1 ∈ [v0]

ω ∩E
and u1 ∈ [u0]

ω ∩ U such that u1 ∩ f [v1] = ∅. Hence, for all i ∈ ω \ {0}:

v1 ∩ [ki, ki+1) ̸= ∅ =⇒ u1 ∩ [ki, ki+1) = ∅.

Both E and U contain the set

yε :=
⋃
i∈ω

i≡ε (mod 3)

[ki, ki+1),

6Note that the additional requirement in Fact 2.6 that max s is already larger than 2|s| is needed
here, since l0 could be max s.
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each for exactly one ε = ε(E), ε(U) ∈ 3. Let v2 := v1∩yε(E) ∈ E and u2 := u1∩yε(U) ∈ U .
If ε(E) = ε(U) then v2 and u2 satisfy the lemma, hence assume without loss of generality
that ε(E) = 0 and ε(U) = 1.

Let v̄0 ∈ E and ū0 ∈ U be elements that select from the interval partition

{[ki, ki+2) : i ∈ ω, i ≡ 0 (mod 3)} ∪ {[ki, ki+1) : i ∈ ω, i ≡ 2 (mod 3)}.

Again, by considering a permutation of ω that maps the element selected by v̄0 in any
interval to the element selected by ū0 in the same interval, we find v̄1 ∈ [v̄0]

ω ∩ E and
ū1 ∈ [ū0]

ω ∩ U such that v̄1 and ū1 never select from the same interval. Now, clearly,
v1 ∩ v̄1 ∈ E and u1 ∩ ū1 ∈ U work. ⊣

We can now finish the proof of the proposition and hence of the main theorem: Let
v ∈ E, u ∈ U be given by the previous lemma for the interval partition {[ki, ki+1) :
i ∈ ω} ∪ {[0, k0)} constructed in the proof of Lemma 2.7. Let G ∗ H be any MU ∗ R˜ -generic filter containing ⟨⟨s, x2⟩, q˜′⟩. By Lemma 2.7, we have that in V[G∗H], whenever

range(a˜[G ∗ H]) \ (max s)+ intersects one of the intervals [ki, ki+1), then the Mathias
real η intersects [ki, ki+1) or one of the adjacent intervals [ki−1, ki) or [ki+1, ki+2). Since
range(η) is almost contained in u, the same is true for u in place of η above some
n ≥ (max s)+. Hence, range(a˜[G ∗H]) \ n is disjoint from v. ⊣

⊣
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Barcelona, 2003–2004, pages 257–273, 2006, Springer

[10] Heike Mildenberger, Exactly two and exactly three near-coherence classes,
Journal of Mathematical Logic, 24, 01, 2024, World Scientific

[11] Andreas Blass and Saharon Shelah,Near coherence of filters. III. A simplified
consistency proof., Notre Dame Journal of Formal Logic, 30, 4, pages 530–538,
1989, Duke University Press

11


