CORRECTIONS AND IMPROVEMENTS

23 July 2025

Chapter 27

page 580, line -15f and by a similar argument as in the proof of COROLLARY 26.8, one can show that $\mathbb{L}_{\mathscr{U}}$ has

the Laver property. However, for ultrafilters $\mathscr{U}\subseteq [\omega]^\omega$, the forcing notion $\mathbb{L}_\mathscr{U}$ generally

does not have the Laver property.

Index

page 631, line 21 $\mathbb{L}_{\mathcal{U}}$ has the Laver property, 580