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Abstract

An elliptic configuration is a configuration with all its points on a cubic curve,
or more precisely, all points are in the torsion group of an elliptic curve. We
investigate the existence of elliptic (3r4, 4r3) configurations for r ≥ 5. In partic-
ular, we construct elliptic ((p − 1)3) configurations for every prime p > 7 and
show that there are (3r4, 4r3) configurations whenever 3r = p−1 for some prime
p > 7. Furthermore, we show that for every k ≥ 2 there is an elliptic (9k4, 12k3)
configuration with a rotational symmetry of order 3, where we introduce a new
normal form for D3-symmetric elliptic curves.

1 Terminology

A (pλ, lπ)configuration consists of p points and l lines in the real affine plane such
that each point belongs to λ lines and each line goes through π points. If p = l and
consequently λ = π, we just write (pλ) instead of (pλ, lπ). A configuration is called
an elliptic configuration if there is a cubic curve which passes through all points of
the configuration (see also the discussion of elliptic configurations in Grünbaum [19,
p. 247 ff.]). Examples of elliptic (124, 163) configurations can be found in Grünbaum
[19, p. 249], Coxeter [16, p. 440], and Feld [17] (where one can find also an example of
an elliptic (367, 843) configuration, and for an elliptic (246, 483) configuration see [21].
In [25] Metelka identified 8 elliptic (124, 163) configurations.

For a finite group G, a configuration is called G-symmetric if G is a subgroup of the
symmetry group of the configuration. There exists an extensive literature on configu-
rations with various types of symmetry (rotational, dihedral, point, chiral, floral): see,
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e.g., [1–14]. Finally, an elliptic G-symmetric configuration is a configuration which is
both elliptic and G-symmetric.

Since a line intersects a cubic curve in at most 3 different points, the maximum
value for π of an elliptic (pλ, lπ) configuration is π = 3, and therefore, natural candi-
dates for elliptic configurations are (3r3) configurations and (3r4, 4r3) configurations
for r ≥ 1 (for (124, 163) configurations see, for example, Gropp [18] or Metelka [26]).
On page 293 of Grünbaum [19], Open Problem 4 asks to decide for which r ≥ 5 elliptic
(3r4, 4r3) configurations exist.

Of particular interest are elliptic configurations with C3 or D3 symmetry. Here, D3

is the dihedral group of the regular triangle, and C3 its subgroup of of elements of odd
order. For G = D3 or G = C3 the number of lines of a G-symmetric configuration
must be a multiple of 3. Hence, since 3 | 4r implies 3 | r, the possible elliptic D3 or
C3-symmetric (3r4, 4r3) configurations are (9k4, 12k3) configurations for k ≥ 1.

After introducing a normal form of cubic curves which are D3-symmetric, we give
a construction of elliptic D3-symmetric (9k4, 12k3) configurations for every k ≥ 2.
Finally, we show the existence of elliptic (3r4, 4r3) configurations for some r ≥ 5. The
constructions of elliptic configurations are motivated by Schroeter’s ruler construction
of cubic curves (see [21]).

2 A D3-symmetric normal form for cubic curves

In this section, we will introduce a normal form of cubic curves which are D3-symmetric
and show that every non-singular cubic curve can be transformed into this form by a
projective transformation. This normal form of cubic curves will be used later in order
to construct elliptic D3-symmetric configurations.

It is well-known that every non-singular cubic curve in the real projective plane can
be transformed into Weierstrass Normal Form

y2 = x3 + ax2 + bx.

Without loss of generality, we may require that the x-coordinate of an inflection point
is 1. In this case we get (see [20, Fact 2.3])

b 6= 1 and a =
b2 − 6b− 3

4
. (1)

Now, by computing the polar conic at the point (0, 1, 0) in the projective extension of
the plane as well as the intersection points of the tangents at the inflections points, we
find the projective transformation

1 0 −2b

0
√
3(b−1)
2

0

1 0 b− 3


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which transforms the affine curve y2 = x3 +ax2 + bx (with a, b as in (1)) into the curve

ΓD3 : x3 − 3xy2 − 3(b− 3)(x2 + y2) + 4b2(b− 9) = 0.

To see that the latter curve is D3-symmetric, notice first that the curve is symmetric
with respect to the x-axis. To see that the curve is also symmetric with respect
to rotations about the origin with angle 2π

3
, notice that if (x0, y0) is a point on the

curve ΓD3 , then also (
cos(2π

3
) sin(2π

3
)

− sin(2π
3

) cos(2π
3

)

)(
x0

y0

)
is a point on ΓD3 . Figure 1 shows two D3-symmetric curves ΓD3 .

Conic sections have a natural reflection symmetry along their axes. It is quite natural
to look at cubic curves in a D3-symmetric form. In this regard, we now have:

Proposition 1. Every regular cubic curve can be brought, by a projective transforma-
tion, into the D3-symmetric normal form

ΓD3 : x3 − 3xy2 − 3(b− 3)(x2 + y2) + 4b2(b− 9) = 0

with b ∈ R \ {1}.
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Figure 1: Elliptic D3-symmetric curves for b = 13 (left), and b = 8 (right).

Remarks. Since the three points at infinity of an elliptic D3-symmetric curve are the
three inflection points of the curve, the projective transformation which transforms a
curve in Weierstrass Normal Form into our D3-symmetric normal form is in general
not rational (e.g., in the case when the parameter b is rational).

Concerning the arithmetic on elliptic D3-symmetric curves it turns out that the
formulae to add or to double points are somewhat more involved than the corresponding
formulae for curves in Weierstrass Normal Form.
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3 Elliptic D3-symmetric (9k4, 12k3) configurations

In order to construct an elliptic D3-symmetric (9k4, 12k3) configuration for some k ≥ 2,
we take an arbitrary D3-symmetric elliptic curve Γ0 with neutral element O = (0, 1, 0)
and choose a point Q on Γ0 of order 9k + 3. This can be achieved by considering a
p-periodic parametrization of the curve by the Weierstrass ℘-function and taking the
point Q as the image of the parameter value pq

9k+3
for some q with gcd(q, 9k + 3) = 1.

See [27, Chapter VI, §3] for details. As a matter of fact, we would like to mention
that the points which are constructed in this way are in general irrational. Mazur’s
classification theorem (see [23], [24]) limits the possibility for elliptic configurations
with rational points: See Figure 8 for an example of a configuration which cannot have
only rational points.

Notice that k ≥ 2 is necessary, since k = 1 corresponds to the Hesse configuration
(94, 123) which can be realized in the complex projective plane as the set of inflection
points of an elliptic curve, but which has no realization with straight lines in the
Euclidean plane because of the Sylvester-Gallai theorem. In fact our construction,
which we present below, works only for k ≥ 2.

The group Gk on Γ0, generated by the point Q, is isomorphic to the group Z/(9k +
3)Z. For 1 ≤ i ≤ 9k + 3, let

Pi := i ∗Q := Q+Q+ . . .+Q︸ ︷︷ ︸
i terms

,

where we denote the group operation on Γ0 by +. We define the following three sets
of points:

S0 := {P1, . . . , P3k}, S1 := {P3k+2, . . . , P6k+1}, S2 := {P6k+3, . . . , P9k+2}

Then each Sj (for j ∈ {0, 1, 2}) contains 3k pairwise distinct points, and since the
sets Sj are pairwise disjoint, the set S := S0 ∪ S1 ∪ S2 contains 9k pairwise distinct
points on the curve Γ0. Notice that since the points P3k+1, P6k+2 of order three, and
P9k+3 are the only points of Γ0 at infinity and none of them belongs to S, all points
of S belong to the real affine plane. The goal is now to construct a D3-symmetric,
(9k4, 12k3) configuration on the set of points S. Before we start with the construction,
let us introduce some notation.

• We identify the group Gk with the group Z/(9k + 3)Z, and for 1 ≤ u ≤ 9k + 3,
we identify the point Pu with u ∈ Gk (i.e., with an element in Z/(9k + 3)Z).
Similarly, we identify S with a subset of Gk.

• If three distinct points Pu, Pv, Pw are collinear (i.e., lie on a line), then the line
is denoted by [u, v, w]. Notice that by the group law of an elliptic curve, we
have that three distinct points Pu, Pv, Pw are collinear if and only if u+ v +w ≡
0 (mod 9k+ 3). In other words, each line through three different points is of the
form [u, v, w] for some pairwise distinct u, v, w ∈ Gk.
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• If [u, v, w] is a line, then −[u, v, w] := [−u,−v,−w] is the inverse line of [u, v, w].
Notice that if [u, v, w] is a line in S (i.e., u, v, w ∈ S), then −[u, v, w] is a line in
S with −[u, v, w] 6= [u, v, w], namely the line mirrored at the x-axis.

• For u ∈ Gk, we define ρ(u) := u + (3k + 1). Notice that if, for example, u ∈ S0,
then ρ(u) ∈ S1 and ρ2(u) := (ρ ◦ ρ)(u) ∈ S2.

• If [u, v, w] is a line, then ρ[u, v, w] := [ρ(u), ρ(v), ρ(w)] is the corresponding rotated
line. Notice that if [u, v, w] is a line in S, then ρ[u, v, w] and ρ2[u, v, w] are
lines in S, where [u, v, w], ρ[u, v, w], and ρ2[u, v, w] are pairwise distinct (but not
necessarily disjoint) lines.

The following fact is an immediate consequence of the preceding definitions.

Fact 2. Any (9k4, 12k3) configuration on the point set S which contains with any line
[u, v, w] also the lines ρ[u, v, w] and ρ2[u, v, w], is an elliptic C3-symmetric (9k4, 12k3)
configuration, where C3 is the cyclic group of order 3. If the configuration contains
in addition with any line [u, v, w] also the line −[u, v, w], then it is an elliptic D3-
symmetric configuration.

So, by Fact 2, to construct an elliptic D3-symmetric (9k4, 12k3) configuration it
suffices to find 2k lines [ui, vi, wi] such that for 1 ≤ i ≤ 2k, the lines ±[ui, vi, wi],
±ρ[ui, vi, wi], and ±ρ2[ui, vi, wi] are pairwise distinct. Before we start constructing
such lines, we show how we construct lines in S from “proto-lines” in S0:

For any u, v, w ∈ S, let

u0 := u (mod 3k + 1), v0 := v (mod 3k + 1), w0 := w (mod 3k + 1) .

Then u0, v0, w0 ∈ S0 and if [u, v, w] is a line, then u0 + v0 + w0 ≡ 0 (mod 3k + 1). If,
on the other hand, u, v, w ∈ S0 are such that u + v + w ≡ 0 (mod 3k + 1), then the
triple (u, v, w) is called a proto-line in S0. Notice that we do not require that the three
points u, v, w of a proto-line (u, v, w) are pairwise distinct.

The following lemma will be crucial in the construction of (9k4, 12k3) configurations.

Reduction Lemma 3. If u, v, w ∈ S0 are such that (u, v, w) is a proto-line, then
there are ū, v̄, w̄ ∈ S such that u = ū′, v = v̄′, w = w̄′ and [ū, v̄, w̄] is a line.

Proof. Let u, v, w ∈ S0 be such that (u, v, w) is a proto-line. Notice that since u +
v + w ≡ 0 (mod 3k + 1) and 3 - 3k + 1, at most two of the three points u, v, w can
be equal. Without loss of generality assume u 6= v. Then, for ū := u, v̄ := v, and
w̄ := w + (6k + 2), [ū, v̄, w̄] is a line. q.e.d.

In order to construct an elliptic C3-symmetric (9k4, 12k3) configuration, by Reduction
Lemma 3 and by rotating the lines with ρ and ρ2, respectively, it suffices to find a set
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L of 4k proto-lines in S0 such that each point of S0 belongs to exactly 4 proto-lines in
L. In order to construct an elliptic D3-symmetric (9k4, 12k3) configuration, we have to
make sure in addition that for each proto-line (u, v, w) ∈ L, also (−u,−v,−w) ∈ L.

Theorem 4. For every integer k ≥ 2 there exists an elliptic D3-symmetric (9k4, 12k3)
configuration.

The proof of this theorem will be carried out in the following sections by explicit
constructions of the corresponding configurations. In particular, we will construct
elliptic (9k4, 12k3) configurations for k ≡ 3 (mod 4), for k ≡ 1 (mod 4), and for k even,
respectively.

3.1 D3-symmetric (9k4, 12k3) configurations for k≡3(mod 4)

Let k ≥ 3 be a positive integer with k ≡ 3 (mod 4), and let nk := 3k + 1. The
first step in the construction of a (9k4, 12k3) configuration is the construction of 4k
proto-lines. For this, we start with a triple (a0, b0, c0) with a0 + b0 + c0 ≡ 0 (mod nk),
where a0, b0, c0 are not necessarily non-zero. Then, we build successively the nk triples
(ai+1, bi+1, ci+1) := (ai − 2, bi + 1, ci + 1) in Z/nkZ. Among these triples, there will be
two triples which are not proto-lines because one of the numbers is 0. We then replace
these two triples by two proto-lines and construct additional k− 1 proto-lines in order
to obtain 4k proto-lines.

We construct the 4k proto-lines as follows: Firstly, let

m1 :=
k + 1

2
, m2 := nk −m1 ,

and let

t1 :=


m1

2
if m1 ≡ 2 (mod 4),

nk+m1

2
otherwise,

t2 := nk − t1.

Since k ≡ 3 (mod 4), we have that k + 1 ≡ 0 (mod 4) and therefore, nk, m1 and m2

are even. Moreover, since m1 ≡ 0 or 2 (mod 4), and since nk ≡ 2 (mod 4), we have
either m1 ≡ 2 (mod 4) or nk +m1 ≡ 2 (mod 4), which implies that t1 and t2 are both
odd, in fact t1, t2 ≡ 1 (mod 4).

Let S∗0 := S0∪{0} and define the following sequence of triples 〈(ai, bi, ci) : 0 ≤ i < nk〉
in S∗0 × S∗0 × S∗0 : Let

(a0, b0, c0) := (t1, 0, t2)

and for 0 ≤ i < nk let

(ai, bi, ci) := (t1 − 2i, i, t2 + i) (mod nk) .

Then, the sequence has the following properties:
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(a) For all 0 ≤ i < nk, ai + bi + ci ≡ 0 (mod nk) and ai is odd. For the latter, recall
that t1 is odd and that nk is even.

(b) (at1 , bt1 , ct1) = (t2, t1, 0) (mod nk), e.g., at1 = t1 − 2t1 = −t1 ≡ t2 (mod nk).

(c) For all 0 ≤ i < j < nk we have {ai, bi, ci} 6= {aj, bj, cj}.

(d) For all 0 ≤ i < nk we have

−(ai, bi, ci) = −(t1 − 2i, i, t2 + i) = (t2 + 2i, −i, t1 − i) = (at1−i, ct1−i, bt1−i).

Property (a) shows that every triple in the sequence is a proto-line in S∗0 . Property (c)
shows that the sequence contains exactly nk pairwise different proto-lines; let L∗ be
the set of these nk proto-lines. Property (d) shows that a proto-line (u, v, w) is in L∗

if and only if the proto-line −(u, v, w) is in L∗.

Every even number 0 ≤ ` < nk appears in exactly 2 proto-lines in L∗, and every
odd number 0 < ` < nk appears in exactly 4 proto-lines in L∗. Now, we remove
the two proto-lines (t1, 0, t2) and (t2, t1, 0) from L∗, and introduce the two proto-lines
(m1, t2, t2) and (m2, t1, t1) to L∗; the resulting set of proto-lines is denoted L0. Notice
that (m2, t1, t1) = −(m1, t2, t2), that the two proto-lines (m1, t2, t2) and (m2, t1, t1) are
not in L∗, and that every proto-line in L0 is a proto-line in S0. In L0, every odd number
0 < ` < nk appears in exactly 4 proto-lines in L0, and every even number 0 < ` < nk,
except m1 and m2, appears in exactly 2 proto-lines in L0, whereas m1 and m2 appear
in exactly 3 proto-lines in L0.

Example 1. For k = 3 (i.e., nk = 10), we start with the triple (1, 0, 9) and get
successively the triples (9, 1, 0), (7, 2, 1), (5, 3, 2), (3, 4, 3), (1, 5, 4), (9, 6, 5), (7, 7, 6),
(5, 8, 7), (3, 9, 8). We now replace the two triples (1, 0, 9) and (9, 1, 0) by the two proto-
lines (2, 9, 9) and (8, 1, 1). This way, each odd number appears in a proto-line exactly
4 times, and each even number, except 2 and 8, appears in a proto-line exactly twice,
whereas 2 and 8 appear 3 times. The additional k − 1 = 2 proto-lines will then be
(2, 4, 4) and (8, 6, 6).

In order to complete the construction of a (9k4, 12k3) configuration, we consider the
set Tk consisting of the nk

2
− 1 even numbers 2, 4, . . . nk − 2. It remains to find k − 1

proto-lines in S0 with points in Tk, where every number in Tk except m1 and m2 appears
in exactly 2 proto-lines, whereas m1 and m2 appear in exactly 1 proto-line. Together
with the nk = 3k+ 1 proto-lines of L0, this gives us 4k proto-lines, and after extending
them to lines of S by Reduction Lemma 3 and by rotating them with ρ and ρ2, we
finally obtain 12k lines. For the remaining k− 1 proto-lines with points in Tk, by trial
and error we have found the following pattern, which is obtained in the following way:
First, we write the points of Tk in two rows, where the first row contains the numbers
nk− 2 to nk−2

2
+ 1 in reverse order, and the second row contains the numbers 2 to nk−2

2

in the natural order. Below the numbers of these two rows, we write • and ◦ for the
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three points of the proto-lines, where • denotes a number from the second row, and ◦
denotes a number from the first row. Finally, •• means the same number is listed twice.
The following figure gives an example of three proto-lines for k = 7 (i.e., nk = 22),
according to the construction described above:

20 18 16 14 12

2 4 6 8 10

• • ◦
◦ ◦ •
•• ◦

The first proto-line is (2, 6, 14), the second is (20, 16, 8) = −(2, 6, 14), and the third
is (4, 4, 14). Notice that −(u, v, w) is obtained from (u, v, w) by exchanging • and ◦.
Now, instead of writing both proto-lines (u, v, w) and −(u, v, w), we just write the one
which uses the greater number of •’s — having in mind that each proto-line (u, v, w)
represents also the proto-line −(u, v, w). This way, we just have to find k−1

2
proto-lines.

The following figure illustrates the 11 proto-lines for k = 23 (i.e., nk = 70), given in
two parts:

68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

• ••
• ••

• ••
• ••

• ••
• ••

• • ◦
• • ◦

• • ◦
•• ◦

• • ◦

First, notice that the proto-lines given in the diagram contain only even numbers and
are therefore different from the proto-lines in L0. Furthermore, we see that each point,
except the points 12 and 58, appears in exactly 2 proto-lines, whereas the points 12
and 58 appear in exactly 1 proto-line. Notice that for k = 23, m1 = k+1

2
= 12 and

m2 = nk −m1 = 58.

Now, we give a more formal construction of the remaining k−1
2

proto-lines: Let
ñk := nk

2
. The k+1

4
proto-lines in the first part are(

2 + 4i, (ñk − 1)− 2i, (ñk − 1)− 2i
)

where 0 ≤ i ≤ k−3
4

.
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In particular, for i = 0 we obtain (2, ñk − 1, ñk − 1), and for i = k−3
4

we obtain
(k − 1, k + 1, k + 1) (notice that 2 + 4 · k−3

4
= k − 1 and (3k+1

2
− 1)− 2 · k−3

4
= k + 1).

Furthermore, the k−3
4

proto-lines in the second part are(
2 + 2i, (k − 3)− 4i, −(k − 1) + 2i

)
where 0 ≤ i ≤ k−7

4
.

In particular, for i = 0 we obtain (2, k − 3,−(k − 1)), and for i = k−7
4

we obtain
(k−3

2
, 4,−k+5

2
). Notice that 2+2· k−7

4
= k−3

2
, (k−3)−4· k−7

4
= 4, and −(k−1)+2· k−7

4
=

−k+5
2

. Now, since k−3
2

+ 2 = m1 and −(k+5
2
− 2) = m2, we see that the only numbers

which appear in exactly one proto-line are m1 and m2.

Example 2. We illustrate the construction described above for the parameter k = 3.
This leads to an elliptic D3-symmetric (274, 363) configuration. The underlying group
is Z30 on Γ0. We obtain:

• k = 3, nk = 10, m1 = 2, m2 = 8, t1 = 1, t2 = 9.

• The proto-lines in L∗ given in Example 1 are

(1, 0, 9), (9, 1, 0), (7, 2, 1), (5, 3, 2), (3, 4, 3), (1, 5, 4), (9, 6, 5), (7, 7, 6), 5, 8, 7), (3, 9, 8).

• Remove (1, 0, 9) and (9, 1, 0), and introduce (2, 9, 9) and (8, 1, 1). This gives us
the 10 proto-lines of L0.

• The diagram, which yields the additional k−1
2

= 1 line consists just of a single
line:

8 6

2 4

• ••

This gives us the lines (2, 4, 4) and (8, 6, 6).

• Together with the 10 proto-lines in L0, we have now 12 proto-lines which we
extend to proper lines in S and rotate them.

Observe that depending on how we extend the proto-lines to proper lines, and de-
pending on the choice of the generator of Z30, we obtain different resulting configura-
tions. One version is shown in Figure 2.

3.2 D3-symmetric (9k4, 12k3) configurations for k≡1(mod 4)

Let k ≥ 3 be a positive integer with k ≡ 1 (mod 4). Furthermore, let nk := 3k+ 1 and
let m := nk

2
. Notice that since nk ≡ 0 (mod 4), m is even.
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Figure 2: An elliptic D3-symmetric (274, 363) configuration.

As above, let S∗0 := S0 ∪ {0} and define the following sequence of triples 〈(ai, bi, ci) :
0 ≤ i < nk〉 in S∗0 × S∗0 × S∗0 : Let

(a0, b0, c0) := (0, nk − 1, 1) and (a1, b1, c1) := (2, nk − 1, nk − 1),

and for all 0 ≤ i < nk − 2 let

(ai+2, bi+2, ci+2) := (ai + 4, bi − 2, ci − 2) (mod nk) .

Then, the sequence has the following properties:

(a) For all 0 ≤ i < nk, ai + bi + ci ≡ 0 (mod nk), ai is even, and bi and ci are both
odd.

(b) (am, bm, cm) = (0,m− 1,m+ 1).

(c) For all 0 ≤ i < j < nk, {ai, bi, ci} 6= {aj, bj, cj}.
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(d) For all s ∈ Z/nkZ we have −(as, bs, cs) = (a−s, b−s, c−s).

Property (a) shows that every triple in the sequence is a proto-line in S∗0 . Property (c)
shows that the sequence contains exactly nk pairwise different proto-lines; let L∗ be
the set of these nk proto-lines. Property (d) shows that a proto-line (u, v, w) is in L∗

if and only if the proto-line −(u, v, w) is in L∗.

Every even number 0 ≤ ` < nk appears in exactly 2 proto-lines in L∗, and every
odd number 0 < ` < nk appears in exactly 4 proto-lines in L∗. Now, we remove the
two proto-lines (0, nk − 1, 1) and (0,m − 1,m + 1) from L∗, and introduce the two
proto-lines (m,nk− 1,m+ 1) and (m, 1,m− 1) to L∗; the resulting set of proto-lines is
denoted L0. Notice that (m,nk − 1,m+ 1) = −(m, 1,m− 1), that the two proto-lines
(m,nk − 1,m+ 1) and (m, 1,m− 1) are not in L∗, and that every proto-line in L0 is a
proto-line in S0. In L0, every odd number 0 < ` < nk appears in exactly 4 proto-lines
in L0, and every even number 0 ≤ ` < nk, except m, appears in exactly 2 proto-lines
in L0, whereas m appears in exactly 4 proto-lines in L0.

In order to complete the construction of a (9k4, 12k3) configuration, we consider the
set Tk consisting of the nk

2
− 1 even numbers 2, 4, . . . nk − 2. It remains to find k − 1

proto-lines in S0 with points in Tk, where every number in Tk except m appears in
exactly 2 proto-lines, whereas m does not appear in any proto-line.

For the construction of the remaining k−1 proto-lines with points in Tk, by trial and
error we have found again a pattern, which is obtained in the following way: As above,
we write just the proto-line with the greater number of •’s — having in mind that each
proto-line (u, v, w) represents also the proto-line −(u, v, w). This way, we just have to
find k−1

2
proto-lines. The following figure illustrates the 12 proto-lines for k = 25 (i.e.,

nk = 76), given in two parts:

74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
38

• ••
• ••

• ••
• ••

• ••
• ••

• • ◦
• • ◦

• • ◦
• • ◦

• • ◦
• • ◦

First, notice that the proto-lines given in the diagram are different from the proto-
lines constructed above. Furthermore, we see that each point, except the point 38,
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appears in exactly 2 proto-lines, whereas the point 38 does not appear in a proto-line.
Notice that for k = 25, m = 38.

Now, we give a more formal construction of the remaining k−1
2

proto-lines: The
k−1
4

proto-lines in the first part are(
4 + 4i, (m− 2)− 2i, (m− 2)− 2i

)
where 0 ≤ i ≤ k−5

4
.

In particular, for i = 0 we obtain (4,m − 2,m − 2), and for i = k−5
4

we obtain
(k − 1, k + 1, k + 1) (recall that m = 3k+1

2
). Furthermore, the k−1

4
proto-lines in the

second part are(
2 + 2i, (k − 3)− 4i,−(k − 1) + 2i)

)
where 0 ≤ i ≤ k−5

4
.

In particular, for i = 0 we obtain (2, k − 3,−(k − 1)), and for i = k−5
4

we obtain
(k−1

2
, 2,−k+3

2
). Notice that the only number which does not appear in a proto-line is

m, as required.

Example 3. We illustrate this construction for the parameter k = 5. This leads to an
elliptic D3-symmetric (454, 603) configuration. The construction gives the following:

• k = 5, nk = 16, m = 8.

• The proto-lines in L∗ are:

(0, 15, 1), (2, 15, 15), (4, 13, 15), (6, 13, 13), (8, 11, 13), (10, 11, 11), (12, 9, 11),

(14, 9, 9), (0, 7, 9), (2, 7, 7), (4, 5, 7), (6, 5, 5), (8, 3, 5), (10, 3, 3), (12, 1, 3), (14, 1, 1)

• Remove (0, 15, 1) and (0, 7, 9) (i.e., the two triples which contain 0), and introduce
(8, 15, 9) and (8, 1, 7). This gives us the 16 proto-lines of L0.

• The diagram, which gives us additional k−1
2

= 2 lines consists of just two lines,
one line in each part:

14 12 10

2 4 6
8

• ••
•• ◦

This gives us the k − 1 = 4 lines (4, 6, 6), (12, 10, 10), (2, 2, 12), (14, 14, 4).

• Together with the 16 proto-lines in L0, we have now 20 proto-lines which we
extend to proper lines in S and rotate them.

Again, depending on how we extend the proto-lines to proper lines, and depending
on the choice of the generator of Z48, we obtain different resulting configurations. One
version is shown in Figure 3.
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Figure 3: An elliptic D3-symmetric (454, 603) configuration. For this figure we
have chosen the generator 1 in Z48.

3.3 D3-symmetric (9k4, 12k3) configurations for k even

Let k ≥ 2 be an even integer and let nk := 3k + 1. Notice that nk is odd.

As above, Let S∗0 := S0 ∪{0} and define the following sequence of triples 〈(ai, bi, ci) :
i ∈ Z〉 in S∗0 × S∗0 × S∗0 : Let (a0, b0, c0) := (0, 0, 0) and for all i ∈ Z let

(ai+1, bi+1, ci+1) := (ai − 2, bi + 1, ci + 1) .

Then, the sequence has the following properties:

(a) For all i ∈ Z, ai + bi + ci ≡ 0 (mod nk), and bi = ci.
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(b) For t := 3k
2

we have (at, bt, ct) = (1, t, t).

(c) For all i ∈ Z, (ai+nk
, bi+nk

, ci+nk
) = (ai, bi, ci), and for all all 0 < s < nk,

{ai+s, bi+s, ci+s} 6= {ai, bi, ci}.

(d) In Z/nkZ, for t := 3k
2

and for all s ∈ Z we have

−(at+s, bs, cs) = (at−s+1, bt−s+1, ct−s+1).

Property (a) shows that every triple in the sequence is a proto-line in S∗0 . Property (c)
shows that the sequence contains exactly nk pairwise different proto-lines, including
the proto-line (0, 0, 0). Now, we remove the proto-line (0, 0, 0) and let L0 be the set of
the remaining 3k proto-lines. Property (d) shows that a proto-line (u, v, w) is in L0 if
and only if the proto-line −(u, v, w) is in L0. Furthermore, notice that every number
0 < ` < nk appears in exactly 3 proto-lines in L0.

For the construction of the remaining k proto-lines in S0, we will again visualize the
argument. As above, we write just the proto-line with the greater number of •’s —
having in mind that each proto-line (u, v, w) represents also the proto-line −(u, v, w).
This way, we just have to find k

2
proto-lines. In order to clearly show the structure of

the construction in the general proof, we omit the least point of a proto-line and write
the number of the least point as an index to the the other two points of the proto-line.
For example, for k = 4 (i.e., nk = 13) and the proto-line (1, 3, 9) we will write:

12 11 10 9 8 7

1 2 3 4 5 6

•1 ◦1
instead of

12 11 10 9 8 7

1 2 3 4 5 6

• • ◦

This way, we can write different proto-lines in the same row without ambiguity. Later,
we will omit the columns with points that appear as indices, which makes the tables
less wide. For example, for k = 8 (i.e., nk = 25) the following diagram represents the
three proto-lines (1, 7, 17), (2, 9, 14), and (4, 6, 15):

24 23 22 21 20 19 18 17 16 15 14 13

1 2 3 4 5 6 7 8 9 10 11 12

•4 •1 ◦1 •2 ◦4 ◦2

We first consider the cases when k = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and then we con-
sider the cases when k ≥ 22, where we will consider the four cases k ≡ 0, 2, 4, 6 (mod 8)
separately.

The following diagrams show the k
2

proto-lines for k = 2, 4, . . . , 18, 20 (where we do
not write the points which appear as indices):
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5 4

2 3

•1 ◦1
k = 2

10 9 8 7

3 4 5 6

•1 ◦1 •2 •2
k = 4

15 14 13 12 11 10

4 5 6 7 8 9

•1 ◦1 •2 •3 ◦2 •3
k = 6

20 19 18 17 16 15 14 13

5 6 7 8 9 10 11 12

•4 •2 ◦2 ◦4
•3 ◦3 •1 ◦1

k = 8

25 24 23 22 21 20 19 18 17 16

6 7 8 9 10 11 12 13 14 15

•4 ◦4 •2 ◦2
•1 ◦1 •5 •3 ◦5 ◦3

k = 10

30 29 28 27 26 25 24 23 22 21 20 19

7 8 9 10 11 12 13 14 15 16 17 18

•6 •4 •2 ◦2 ◦4 ◦6
•3 •1 ◦1 ◦3 •5 •5

k = 12

35 34 33 32 31 30 29 28 27 26 25 24 23 22

8 9 10 11 12 13 14 15 16 17 18 19 20 21

•6 •4 •2 ◦2 ◦4 ◦6
•7 •5 •1 ◦1 ◦7 •3 ◦5 •3

k = 14

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

•8 •6 •4 •2 ◦2 ◦4 ◦6 ◦8
•7 •3 •5 ◦7 ◦3 •1 ◦1 ◦5

k = 16
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45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

•8 •6 •4 •2 ◦2 ◦4 ◦6 ◦8
•9 •3 •7 •5 ◦3 ◦9 •1 ◦1 ◦5 ◦7

k = 18

50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

•10 •8 •6 •4 •2 ◦2 ◦4 ◦6 ◦8 ◦10
•9 •5 •3 •7 ◦9 ◦3 ◦5 •1 ◦1 •7

k = 20

Notice that in the diagrams above, in the case when k ≡ 4, 6 (mod 8), there is always
a single proto-line which contains just points from the second row. In fact, this will
always be the case. Another feature of the diagrams above is that all the numbers
1, . . . , k

2
appear as indices — also this will always be the case.

As mentioned above, for k ≥ 20 we will consider the four cases k ≡ 0, 2, 4, 6 (mod 8)
separately. However, the structure of the proto-lines consisting only of even numbers
is always the same. This structure is illustrated by the following diagram. In the
diagram, u denotes the largest even number which is less than or equal to k

2
(i.e., u is

either k
2

or k
2
− 1), M := k+u+2

2
, and N := k

2
+ 1:

. . . N N + 1 . . . M − 2 M − 1 M M + 1 M + 2 . . . N + u− 1 N + u . . .

•2 ◦2
•4 ◦4

. . . . . .

•u−2 ◦u−2

•u ◦u

We will call these u
2

proto-lines the even block. Notice that the structure of the even
block already appears for k = 14, 16, 18.

In order to complete the proof of Theorem 4, we have to construct the remaining
k
2
− u

2
proto-lines which consist only of odd numbers, the so-called odd block. The

following four diagrams show the structure of these odd blocks for k ≥ 22.

The structure of the odd block for k ≥ 24 and k ≡ 0 (mod 8)

Let now k ≡ 0 (mod 8) with k ≥ 24. Then u = k
2
, M = 3k

4
+ 1, N = k

2
+ 1, and

N + u = k + 1. Furthermore, let v := k
2
− 1 and w := k

4
− 1; then M + v = 5k

4
. Notice
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that v and w are both odd. The following diagram illustrates the construction of the
odd block:

. . . M . . . k + 2 k + 3 k + 4 . . . 9k+8
8

9k+16
8

. . . 5k−4
4

5k
4

5k+4
4

5k+8
4

. . .

•v •w ◦v ◦w
•v−2

•v−4

•w+2

•w−2

•3 ◦3

. . . 11k−8
8

11k
8

11k+8
8

11k+16
8

. . . 3k−2
2

3k
2

◦v−2

◦v−4

◦w+2

•1 ◦1
◦w−2

Notice that the odd block fits well with the even block: For example, the number M ,
which was missing in the even block, appears in the proto-line (v,M,−(M + v) (recall
that M + v = 5k

4
). Furthermore, the number N + u + 1 = k + 2, which is the least

number which is bigger than the maximum of the numbers in the even block, appears
in the proto-line (w, k+ 2,−(5k

4
+ 1)). The other numbers of the odd block are covered

by the proto-lines with least number v − 2, v − 4, . . . , w + 2, w − 2, . . . , 3, 1, where the
proto-line (1, 11k

8
,−11k+8

8
) covers the gap between the proto-lines (w+ 2, 9k+8

8
,−11k+16

8
)

and (w − 2, 9k+16
8

,−11k−8
8

).

The structure of the odd block for k ≥ 26 and k ≡ 2 (mod 8)

For k ≡ 2 (mod 8) with k ≥ 26 let u = k
2
− 1, M = 3k+2

4
, N = k

2
+ 1, and N + u = k.

Furthermore, let v := k
2

and w := k−6
4

; then M + v = 5k+2
4

. The following diagram
illustrates the construction of the odd block:

. . . M . . . k+1 k+2 k+3 . . . 9k+6
8

9k+14
8 . . . 5k−6

4
5k−2
4

•v •w •v−2 •v−4 •w+2 •w−2 •3 ◦w

5k+2
4

5k+6
4 . . . 11k−14

8
11k−6

8
11k+2

8
11k+10

8 . . . 3k−2
2

3k
2

◦v ◦3 ◦w−2 •1 ◦1 ◦w+2 ◦v−4 ◦v−2

The structure of the odd block for k ≥ 20 and k ≡ 4 (mod 8)

For k ≡ 4 (mod 8) with k ≥ 20 let u = k
2
, M = 3k+4

4
, N = k

2
+ 1, and N + u = k + 1.

Furthermore, let v := k
2
− 1 and w := k+8

4
; then M + v = 5k

4
. The following diagram

17



illustrates the construction of the odd block:

. . . M . . . k + 2 k + 3 . . . 9k−12
8

9k−4
8 . . . 5k−8

4
5k−4
4

•v •v−2 •v−4 •w+2 •w−2 •3 •w

5k
4

5k+4
4 . . . 11k−4

8
11k+4

8
11k+12

8
11k+20

8 . . . 3k−4
2

3k−2
2

3k
2

◦v ◦3 ◦w−2 •1 ◦1 ◦w+2 ◦v−4 ◦v−2 •w

The structure of the odd block for k ≥ 22 and k ≡ 6 (mod 8)

For k ≡ 6 (mod 8) with k ≥ 22 let u = k
2
− 1, M = 3k+2

4
, N = k

2
+ 1, and N + u = k.

Furthermore, let v := k
2

and w := k−6
4

; then M + v = 5k+2
4

. The following diagram
illustrates the construction of the odd block:

. . . M . . . k + 1 k + 2 . . . 9k−6
8

9k+2
8

9k+10
8

9k+18
8 . . . 5k−2

4
5k+2
4

•v •v−2 •v−4 •w+2 •1 ◦1 •w−2 •3 ◦v

5k+6
4

5k+10
4 . . . 11k−2

8
11k+6

8 . . . 3k−4
2

3k−2
2

3k
2

•w ◦3 ◦w−2 ◦w+2 ◦v−4 ◦v−2 •w

Let us now consider the case k = 2 which yields an elliptic D3-symmetric (184, 243)
configuration. Figure 4 shows one realization of the resulting configurations.

4 On elliptic (3r4, 4r3) configurations

In order to obtain an elliptic D3-symmetric (9k4, 12k3) configuration, it was sufficient
to construct 4k proto-lines in the 3k-element set S0. Thus, if all the proto-lines we
constructed were proper lines, then we would have an elliptic (3k4, 4k3) configuration —
but this is in general not the case.

However, there is a simple algorithm which gives us elliptic (3r4, 4r3) configurations
for infinitely many values of r. The algorithm is given in the proof of the following

Proposition 5. For every prime p > 7, there is an elliptic ((p − 1)3) configuration
and for every prime p > 7 with 3r = p− 1 (for some r), there is an elliptic (3r4, 4r3)
configuration.

Proof. Let p > 7 be a prime, let Γ0 be an elliptic curve, and let P be a point on Γ0 of
order p − 1. Furthermore, let Fp be the Galois field of order p. Similar as above, we
will construct the elliptic configurations in Fp \ {0}.

First recall that for any prime p, the multiplicative group Fp is cyclic, i.e., there
exists a generator g ∈ Fp such that ord(g) = p − 1. Before we start the construction,
let us prove the following claim.
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Figure 4: An elliptic D3-symmetric (184, 243) configuration.

Claim. If p > 7 is a prime, then the multiplicative group of Fp has a generator g such
that g 6≡ −2, p−1

2
(mod p).

Proof of Claim. If Fp has a generator g such that g 6≡ −2, p−1
2

(mod p), then we are

done. Now, assume that g = p−1
2

is a generator. Then, for any n with 1 < n < p − 1
and (n, p − 1) = 1, gn is also a generator. So, if we find two distinct n,m with
1 < n,m < p − 1 and (n, p − 1) = 1 = (m, p − 1), then g, gn, and gm are pairwise
distinct generators and we have found a generator which satisfies the conditions in the
Claim. It remains to show that for every prime p > 7 there are distinct n,m with
1 < n,m < p− 1 such that (n, p− 1) = 1 = (m, p− 1), which is is obviously the case.

Let now p > 7 be a prime and let g be a generator of the multiplicative group of Fp
with g 6≡ −2, p−1

2
(mod p) and let

L0 :=
{ (
gn, gn+1,−(gn + gn+1)

)
: 0 ≤ n < p− 1

}
.

Then L0 is a set of p− 1 lines in Fp \ {0}. To see this, notice that by the properties of
g, for all n we have gn 6= gn+1 and that −(gn + gn+1) ∈ {gn, gn+1} would imply that
g ≡ p−1

2
(mod p) or g ≡ −2 (mod p).
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Now, with the p − 1 lines in Fp \ {0} and the point P on Γ0 of order p − 1, we can
easily construct a ((p− 1)3) configuration with all its points on Γ0.

Let us now assume that in addition to p > 7 we have that p− 1 = 3r for some r ≥ 4,
and let again g be a generator of the multiplicative group of Fp with g 6≡ −2, p−1

2
(mod p).

Let x := gr and let y := 1 + x+ x2. Then, since x3 = 1, we have xy = y, which implies
that x ≡ 0 (mod p) or 1+x+x2 ≡ 0 (mod p). Since the former is impossible (recall that
g is a generator of the multiplicative group of Fp), we have that 1+x+x2 ≡ 0 (mod p),
and since 1, x, x2 are pairwise distinct, this implies that (1, x, x2) is a line in Fp. Con-
sequently,

L1 :=
{
a ·
(
1, x, x2)

)
: a ∈ Fp \ {0}

}
is an r-element set of lines in Fp which is disjoint from L0. To see this, notice that no
element of L0 is of the form a ·(1, x, x2)) for some a ∈ Fp\{0} and for all a, b ∈ Fp\{0},
if {a, ax, ax2} ∩ {b, bx, bx2} 6= ∅ then {a, ax, ax2} = {b, bx, bx2}. Thus, L0 ∪ L1 is a
4r-element set of lines in Fp \ {0} and together with the point P on Γ0 of order p− 1,
we can easily construct a (3r4, 4r3) configuration with all its points on Γ0. q.e.d.

Example 4. We illustrate the construction of the previous proof for the cases r = 6,
i.e., we deal with the prime p = 3r+ 1 = 19, where we have chosen the generator g = 3
in the multiplicative group of F19. The set L0 contains the lines

(1, 3, 15), (3, 9, 7), (9, 8, 2), (8, 5, 6), (5, 15, 18), (15, 7, 16),

(7, 2, 10), (2, 6, 11), (6, 18, 14), (18, 16, 4), (16, 10, 12), (10, 11, 17),

(11, 14, 13), (14, 4, 1), (4, 12, 3), (12, 17, 9), (17, 13, 8), (13, 1, 5).

The set L1 adds the lines

(1, 7, 11), (2, 3, 14), (4, 6, 9), (5, 16, 17), (8, 12, 18), (10, 13, 15).

The resulting elliptic D1-symmetric (184, 243) configuration is shown in Figure 5 (com-
pare to Figure 4).

We also add the case r = 10, i.e., for the prime p = 3r + 1 = 31. Observe that since
30 = 3r is not a multiple of 9, the (304, 403) configuration cannot be realized by the
methods from Section 3. We omit the list of points and refer directly to Figure 6.
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Figure 5: The solid and the dashed lines form an elliptic D1-symmetric (184, 243)
configuration derived from Z/19Z. The solid lines in the set L0 alone are an elliptic
D1-symmetric (183) configuration.

5 Elliptic configurations resulting from groups

of the form Z/2Z× Z/rZ

We conclude this paper by presenting some (3r4, 4r3) configurations which are derived
from groups of the form Z/2Z×Z/kZ by similar methods. Here, the points are again
constructed by using the Weierstrass ℘-function (see, e.g., [16, p 440]). In Figure 7 we
realize the group Z/2Z×Z/8Z on an elliptic curve consisting of two components. There
are 15 real points and the point O at infinity (0, 1, 0). Using all real points the result
is an elliptic D1-symmetric (154, 203) configuration. Notice that such a configuration
cannot be constructed by the methods presented in Section 3 and Section 4.
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Figure 6: The solid and the dashed lines form an elliptic D1-symmetric (304, 403)
configuration derived from Z/31Z, the solid lines alone are an elliptic D1-
symmetric (303) configuration.

Figure 8 shows an elliptic D3-symmetric (184, 243) configuration derived from the
group Z/2Z×Z/12Z. The group on the elliptic curve has 21 real points and 3 points
at infinity. Using only 18 of the real points it is possible to realize a (184, 243) configu-
ration sitting on two components of the elliptic curve. Recall that we had a (184, 243)
configuration on a one component curve in Figure 4 and another one in Figure 5. It
is clear that the three (184, 243) configurations in Figure 8, Figure 4 and Figure 5 are
not projectively isomorphic, since the respective cubic curves are not projectively iso-
morphic. However, the configurations could still be combinatorially isomorphic. But
the Menger graphs (see [15, p. 28]) of the three configurations turn out to be non-
isomorphic: The ranks of the corresponding adjacency matrices are different. In gen-
eral the question may be more delicate to settle as one might have to look at the Levi
graph (see [22, p. 5]) of the configurations since the Menger graphs of non-isomorphic
configurations may be isomorphic (see [16], [19, Section 1.4] and the open questions in
Section 6)
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(0, 1)(0, 2)

(0, 4)

(0, 7)(0, 6)

(0, 3)

(0, 5)

(1, 0) (1, 4)

(1, 6)
(1, 7)

(1, 1)
(1, 2)

(1, 3)

(1, 5)

Figure 7: Elliptic D1-symmetric (154, 203) configuration derived from Z/2Z ×
Z/8Z

(1, 6)

(0, 1)

(0, 2)

(0, 3)

(0, 5)

(0, 6)

(0, 7)

(0, 9)

(0, 10)

(0, 11)

(1, 0)

(1, 10)

(1, 2)

Figure 8: Elliptic D3-symmetric (184, 243) configuration derived from Z/2Z ×
Z/12Z
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(0, 1)

(0, 2)

(0, 3)
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(1, 6)

(1, 7)

Figure 9: Elliptic D1-symmetric (214, 283) configuration derived from Z/2Z ×
Z/11Z

For Figure 9 we started with the group Z/2Z × Z/11Z with 21 real points and
one point at inifinity. Here, an elliptic D1-symmetric (214, 283) configuration results.
Such a configuration cannot be constructed by the methods presented in Section 3 and
Section 4.

Our last example starts with the group Z/2Z×Z/13Z with 25 real points on the curve
and one point at infinity. Omitting the real point corresponding to the group element
(1, 0) of order 2, we have 24 real points which carry an elliptic D1-symmetric (244, 323)
configuration, as shown in Figure 10. Such a configuration cannot be constructed by
the methods presented in Section 3 and Section 4.
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(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 8)

(0, 7)

(0, 6)

(0, 9)

(0, 10)

(0, 11)

(0, 12)

(1, 0)

(1, 8)

(1, 5)

Figure 10: Elliptic D1-symmetric (244, 323) configuration derived from Z/2Z ×
Z/13Z

6 Open problems

As always, with every solved problem, new questions arise. For example:

1. For certain values of r, several of the presented methods can be used to produce
a (3r4, 4r3) configuration. Even within the methods there is some freedom (e.g.,
the choice of the generator of the respective group, or in the construction of
the proto-lines). Question: Which of these configurations are combinatorially or
projectively isomorphic?

2. Is it possible to generalize the methods we used for the construction of configura-
tions starting from groups of the form Z/kZ to groups of the form Z/2Z×Z/kZ
to find other (3r4, 4r3) configurations?

3. Can the configurations that we constructed also be geometrically realized without
the points lying on cubic curves? Are there realizations with other symmetry
types?
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and their numerous comments that helped to improve this article.
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[19] Branko Grünbaum. Configurations of points and lines, volume 103 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2009.

[20] Lorenz Halbeisen and Norbert Hungerbühler. An elementary approach to Hessian
curves with torsion group Z/6Z. Int. Electron. J. Pure Appl. Math., 13:1–30, 2019.

[21] Lorenz Halbeisen and Norbert Hungerbühler. Constructing cubic curves with
involutions. Beitr. Algebra Geom. (to appear). arxiv.org/abs/2106.08154

[22] Friedrich Wilhelm Levi. Finite Geometrical Systems. University of Calcutta,
Calcutta, 1942.

[23] Barry Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études
Sci. Publ. Math., 47:33–186, 1977.

[24] Barry Mazur. Rational isogenies of prime degree. Invent. Math., 44:129–162,
1978.
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