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Abstract

We construct elliptic (3rs, sr3) configurations for all integers r ≥ s ≥ 1. This
solves an open problem of Branko Grünbaum. The configurations which we build
have mirror symmetry and even D3 symmetry if r is a multiple of 3. Moreover,
the configurations are dynamic in the sense that the points can be moved along
the elliptic curve in such a way that all line incidences are preserved.

1 Introduction

1.1 Elliptic configurations

The study of configurations has a long and rich history. We refer to Grünbaum [3] as
a main reference, and the bibliography in [4] for an overview of newer developments.
To fix the notation, let p, l, π, λ ∈ N. Then a (pλ, lπ) configuration is a set of p points
and l lines in the projective plane such that each point is incident to λ lines and each
line is incident to π points. If p = l and consequently λ = π, we just write (pλ) instead
of (pλ, lπ).

Of particular interest are elliptic configurations, i.e., configurations whose points lie on
an elliptic curve or, more specifically, in the torsion group of an elliptic curve. A long
standing open problem is the question of Grünbaum [3, Section 4.8, Open problem 4]:
For which integers r are there elliptic (3r4, 4r3) configurations? Notice that for r = 3,
the Hesse configuration (94, 123) can be realized in the complex projective plane as the
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set of inflection points of an elliptic curve, but it has no realization with straight lines
in the Euclidean or projective plane because of the Sylvester-Gallai theorem. On the
other hand, examples of elliptic (124, 163) configurations can be found in Grünbaum [3,
p. 249], Coxeter [1, p. 440], and Feld [2] (where one can find also an example of an
elliptic (367, 843) configuration. For an elliptic (246, 483) configuration see [7]. In [8],
Metelka identified 8 elliptic (124, 163) configurations.

Recently, some progress was reported in [4], where elliptic ((p − 1)3) configurations
are constructed for every prime p > 7. Moreover there are (3r4, 4r3) configurations
whenever 3r = p − 1 for some prime p > 7, and for every k ≥ 2 there is an elliptic
(9k4, 12k3) configuration with D3 symmetry (the symmetry group of an equilateral
triangle).

In the present article we generalize the ideas in [4] and show that elliptic (3r4, 4r3)
configurations exist for all r ≥ 4 and that one can even construct elliptic (3rs, sr3)
configurations for any s ∈ N and r ≥ s. We offer constructions with D1 symmetry
(mirror symmetry), and, if r is a multiple of 3, D3 symmetry. A particularly pleasing
property is that the configurations are dynamic in the sense that one can move the
points of the configurations along the elliptic curve in such a way, that all line incidences
and rotational symmetries are preserved. Thus, Grünbaum’s question is completely
answered.

1.2 Elliptic curves

Recall that an elliptic curve in Weierstrass normal form

Γg2,g3 : y2 = 4x3 − g2x− g3

in C2 can be parametrized by the Weierstrass function ℘(z) := ℘(z, g2, g3) via

γ : C→ C̄2, z 7→
(
℘(z), ℘′(z)

)
.

For real g2, g3, the Weierstrass function has a real period ω1 and an imaginary period
ω2. Then, depending on the parameters g2, g3, the curve Γg2,g3 in R2 consists of one or
two connected components. We will call the unbounded component odd branch, and
the bounded component even branch. The odd branch is parametrized by

γodd : (0, ω1)→ R2, t 7→
(
℘(t), ℘′(t)

)
,

and the even branch, if it exists, by

γeven[0, ω1)→ R2, t 7→
(
℘(t+ ω2/2), ℘′(t+ ω2/2)

)
(see Coxeter [1, p. 441]). The projective version of the curve Γg2,g3 carries the group op-
eration ⊕ of an elliptic curve with the neutral element O = (0, 1, 0) which corresponds
to γ(0). The group operation is compatible with the parametrization:

γ(z1)⊕ γ(z2) = γ(z1 + z2) (1)
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(see [9, Chapter VI, §3] for details).

Every regular cubic curve can be brought, by a projective transformation, into the D3

symmetric normal form

ΓD3 : x3 − 3xy2 − 3(b− 3)(x2 + y2) + 4b2(b− 9) = 0

with b ∈ R \ {1} (see [4]). Depending on the parameter b, the curve ΓD3 consists only
of the odd branch or of both, the odd and the even branch (see Figure 1). One of the
three symmetry axes is the x-axis, and the rotational C3 symmetry is with respect to
the origin.

The configurations which we want to build will be constructed with the help of the
arithmetic structure of Γg2,g3 and ΓD3 , respectively. Let Q := γ

(
qω1

n

)
for some integer

parameter q with (q, n) = 1. By (1), Q has order n and generates a group Gn which is
isomorphic to Z/nZ. To fix the notation, let

Pu := u ∗Q = Q⊕ . . .⊕Q︸ ︷︷ ︸
u times

= γ
(uqω1

n

)
,

and we can identify the point Pu on the curve with u ∈ Z/nZ. If we take, in addition,
the points P ′u := γ

(
uqω1

n
+ ω2

2

)
, we obtain a group isomorphic to Z/2Z × Z/nZ: The

points Pu correspond to {0}×Z/nZ, and the points P ′u to {1}×Z/nZ. In particular,
we have

P ′u1 ⊕ P
′
u2

= γ
(qu1ω1

n
+
ω2

2

)
⊕ γ
(qu2ω1

n
+
ω2

2

)
=

= γ
(q(u1 + u2)ω1

n
+ ω2

)
= γ

(q(u1 + u2)ω1

n

)
= Pu1+u2 .

1.3 Notation

We identify points Pu on the odd branch of the curve directly with the corresponding
value (0, u) in {0} × Z/nZ, and similarly, we identify (1, u) with points P ′u on the
even branch. We will also call the former odd points and the latter even points. When
speaking of any point u (without specifying the branch), we mean a point on any
component of the curve or the corresponding element in Z/2Z×Z/nZ. Finally, instead
of writing ⊕ we just write + from now on.

If the points u, v, w are collinear, then the corresponding line is denoted by [u, v, w].
Three distinct points u, v, w on the elliptic curve are collinear if and only if their sum
(interpreted as sum on the elliptic curve or in Z/2Z×Z/nZ) is zero, and we just write
u+ v + w = 0.

Our configurations will only consist of lines that contain 3 points and hence are of the
form [(0, u), (0, v), (0, w)] or [(0, u), (1, v), (1, w)] (where the order of points could be
changed). We call the former 0-lines and the latter 1-lines.
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1.4 Operations on lines

We introduce three operations on lines: A conjugation, a rotation, and a translation.

If [u, v, w] is a line, then −[u, v, w] := [−u,−v,−w] is the conjugate line of [u, v, w].
In the context of a configuration on a ΓD3 curve, the line and the conjugate line are
mirror symmetric with respect to the x-axis. Hence, an elliptic configuration on a ΓD3

curve is mirror symmetric with respect to the x-axis, if each of its conjugate lines is an
element of the configuration.

Let k ∈ Z. For any point u in Z/2Z× Z/nZ we define

ρk(u) := u+ (0, k).

If [u, v, w] is a line with points in Z/2Z × Z/3kZ for some positive integer k, we can
define the rotated line

ρk([u, v, w]) := [ρk(u), ρk(v), ρk(w)].

Note that this indeed yields a line, since ρk(u) +ρk(v) +ρk(w) = u+v+w+ (0, 3k). In
the context of a configuration on a ΓD3 curve, this rotation corresponds to a rotation
with angle 2π/3 about the origin. So, an elliptic configuration on a ΓD3 curve has
rotational C3 symmetry with respect to the origin, if each of its rotated lines is an
element of the configuration.

If St = γodd(t) is a point on the odd branch of an elliptic curve and ε is an arbitrary
real number, then the translated point Sεt is defined by Sεt := γodd(t − 2ε). Similarly,
if S ′t = γeven(t) is a point on the even branch, the translated point is defined by
S ′t
ε := γeven(t + ε). If the three points St1 , S

′
t2
, S ′t3 form a 1-line, then the translated

1-line is given by the points Sεt1 , S
′ε
t2
, S ′εt3 . Indeed these three points are on a line, since

Sεt1 ⊕ S
′ε
t2
⊕ S ′εt3 = γ(t1 − 2ε)⊕ γ

(
t2 + ε+

ω2

2

)
⊕ γ
(
t3 + ε+

ω2

2

)
=

= γ(t1 + t2 + t3 + ω2) = St1 ⊕ S ′t2 ⊕ S
′
t3

= 0.

2 Simple elliptic (3rs, sr3) configurations

Definition 1. Let r and s be positive integers. A simple elliptic (3rs, sr3) configuration
has r points on the odd branch and 2r points on the even branch.

The reason for the name “simple” is that a simple configuration only consists of 1-lines:
Indeed, if there are l0 0-lines and l1 1-lines, then the number of odd points is 3l0 + l1
while the number of even points is 2l1. So, for a simple configuration we have

2l1 = 2(3l0 + l1)⇒ l0 = 0.

We will also see that simple configurations are given by quite simple constructions.
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Definition 2. An elliptic configuration is called dynamic, if one can move the points
along the curve in such a way, that all line incidences are preserved.

In particular, an elliptic configuration is dynamic if every point of the curve is a point
of a configuration of the same type.

Lemma 3. An elliptic configuration which only consists of 1-lines is dynamic.

Proof. We can apply for an arbitrary real ε the corresponding translation as defined
in Section 1.4 simultaneously to all points of the configuration. Then, every 1-line is
translated to the 1-line through the translated points. q.e.d.

Below, we will prove the following result.

Theorem 4. For all r ≥ s ≥ 1 there exists a simple (3rs, sr3) configuration with D3

symmetry if r ≡ 0 (mod 3) and D1 symmetry otherwise. These configurations are
dynamic. The dynamic versions of D3 symmetric configurations have rotational C3

symmetry.

We first consider the case when s = 4.

2.1 Construction of simple (3r4, 4r3) configurations

We start by constructing elliptic (3r4, 4r3) configurations for r ≥ 4. If 3 | r, then these
configurations will have D3 symmetry.

Let r ≥ 4. The following points are understood to be in Z/2Z × Z/2rZ. The set of
configuration points is P := P0 ∪ P1, where

P0 :=
{

(0, 1), (0, 3), (0, 5), . . . , (0, 2r − 1)
}
,

P1 :=
{

(1, 0), (1, 1), (1, 2), . . . , (1, 2r − 1)
}
.

P contains r+ 2r = 3r points as needed. As mentioned previously, we only use 1-lines.
Define L1 to be the set of the following lines:

[a0, b0, c0] := [(0,−1), (1, 0), (1, 1)]

[ai+1, bi+1, ci+1] := [ai − (0, 2), bi + (0, 1), ci + (0, 1)] for i ∈ {0, . . . , 2r − 2}

and let L2 contain the lines

[d0, e0, f0] := [(0,−3), (1, 0), (1, 3)]

[di+1, ei+1, fi+1] := [di − (0, 2), ei + (0, 1), fi + (0, 1)] for i ∈ {0, . . . , 2r − 2}.
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Observe that

[ai, bi, ci] = [(0,−1− 2i), (1, i), (1, 1 + i)],

[di, ei, fi] = [(0,−3− 2i), (1, i), (1, 3 + i)],

where all numbers are to be read modulo 2r. We claim that L1∪L2 yields appropriate
lines for a (3r4, 4r3) configuration. This can be seen by considering the following points:

• The elements of L1 ∪ L2 define 1-lines in P : All ai and di are odd points and lie
in P . All bi, ci, ei, fi are even points and lie in P . Furthermore, ai + bi + ci = 0 =
di + ei + fi and no two points of a line are equal.

• All lines are different: If ai = aj for i 6= j, then the sets {bi, ci} and {bj, cj} are
different. So, all lines in L1 are different. Similarly, all lines in L2 are different.
Moreover, the lines in L1 are different from those in L2 since the differences of
the even points on a line are (0, 1) and (0, 3) respectively. Note that for r = 3
we would obtain two equal lines since then [d0, e0, f0] = [(0,−3), (1, 0), (1, 3)] =
[d3, f3, e3].

• Each point in P0 occurs twice in the set of the ai and twice in the set of the di.
And the lines of both L1 and L2 contain each point in P1 twice.

Concerning the symmetry of the configuration, observe the following: For i ∈ Z, we
have that

−[ai, bi, ci] = [(0, 2i+ 1), (1,−i), (1,−i− 1)] = [a−i−1, c−i−1, b−i−1]

taking all indices modulo 2r. Therefore the lines in L1 form a D1 symmetry. Similarly,
this can be seen to be true for the lines in L2, where −[di, ei, fi] ≡ [d−i−3, f−i−3, e−i−3]
for all i ∈ Z.

Furthermore, we even obtain a D3 symmetry for these configurations if r is a multiple
of 3. To see this, let n := 2r

3
and notice that since n ≡ −2n (mod 2r) we have

ρn[ai, bi, ci] = [(0, n− 2i− 1), (1, i+ n), (1, i+ n+ 1)] = [ai+n, bi+n, ci+n],

ρn[di, ei, fi] = [(0, n− 2i− 3), (1, i+ n), (1, i+ n+ 3)] = [di+n, ei+n, fi+n].

Since the configuration is simple, it follows from Lemma 3 that it is dynamic. Also
observe that if three points on ΓD3 are vertices of an equilateral triangle centered at the
origin, then the translated points have also this property. So, when we translate a D3

symmetric elliptic configuration on a ΓD3 curve, there results an elliptic configuration
with rotational C3 symmetry.

This completes the proof of Theorem 4 for s = 4. Figure 1 shows the smallest simple D3

symmetric configuration according to this construction, while Figure 2 is a translated
version of it. Figure 3 shows a simple D1 symmetric (334, 443) configuration.
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(0, 1)

(0, 7)

(0, 5)

(1, 1)

(0, 6)

(0, 11)

(0, 9)

(0, 10)

(0, 3)

(1, 5)

(1, 4)

(1, 3) (1, 2)

(1, 6)

(1, 7)

(1, 8)

(1, 9) (1, 10)

(1, 11)

(1, 0)

(0, 2)

Figure 1: Simple D3-symmetric (184, 243) configuration, with parameter q = 1.

2.2 Simple (3rs, sr3) configurations for arbitrary r ≥ s ≥ 1

Now, we generalize the construction of the previous section to (3rs, sr3) configurations
where r ≥ s ≥ 1. For the proof we have to distinguish two cases which we consider
separately in the following subsections. The first subsection covers the case r ≥ s ≥ 1
with r odd or r = s even, the second subsections treats the case r > s ≥ 1 with r even.

2.2.1 r odd or r = s even

Let r ≥ s ≥ 1 with r odd or r = s even. We use the same set of points P := P0 ∪ P1

as in Section 2.1. For 1 ≤ j ≤ d s−1
2
e =: s let Lj be the set consisting of the following

lines:

[aj0, b
j
0, c

j
0] := [(0, 1− 2j), (1, 0), (1, 2j − 1)],

[aji+1, b
j
i+1, c

j
i+1] := [aji − (0, 2), bji + (0, 1), cji + (0, 1)] for i ∈ {0, . . . , 2r − 2},
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Figure 2: A translated version of the simple D3-symmetric (184, 243) configuration
in Figure 1.
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(0, 5)

(0, 4)

(1, 4)

(1, 8)(1, 12)

(1, 16)

(1, 20)

(1, 2)

(1, 6)

(1, 10) (1, 14)

(1, 18)

(1, 0)

(0, 10)

(0, 1)

(0, 20)

(0, 14)

(0, 12)

(0, 17)

(0, 8)
(0, 21)

(0, 15)

(0, 2)

(0, 7)

(0, 11)

(0, 18)

Figure 3: Simple D1-symmetric (334, 443) configuration, with parameter q = 5.
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and L∗ consist of

[d0, e0, f0] := [(0,−r), (1, 0), (1, r)]

[di+1, ei+1, fi+1] := [di − (0, 2), ei + (0, 1), fi + (0, 1)] for i ∈ {0, . . . , r − 2}.

Observe that

[aji , b
j
i , c

j
i ] = [(0, 1− 2j − 2i), (1, i), (1, 2j + i− 1)],

[di, ei, fi] = [(0,−r − 2i), (1, i), (1, r + i)].

When s is even, we claim that L :=
s⋃
j=1

Lj yields appropriate lines for a (3rs, sr3)

configuration, and if s is odd, then L := L∗ ∪
s⋃
j=1

Lj does. To see this, we check the

following:

• The elements of L define 1-lines in P : All aji and di are odd and lie in P and so
do the even points bji , c

j
i , e

j
i and f ji . Furthermore, aji + bji + cji = 0 = di + ei + fi

for all i, j, and no two points of a line are equal.

• All lines are different: For different j, the difference between bji and cji is different,
and different from the difference between ei and fi. For fixed j all sets {bji , c

j
i}

are different. The same can be checked for the sets {ei, fi}.

• If s is odd, each point in P0 occurs s − 1 times in the set of the aji and once in
the set of the di. The lines of all Lj and L∗ together contain each point in P1

exactly s times. Similarly, when s is even, each point in P is contained in s lines.

To see the D1 symmetry, observe that

− [aji , b
j
i , c

j
i ] = [(0, 2i + 2j − 1), (1,−i), (1, 1 − i − 2j)] = [aj1−2j−i, c

j
1−2j−i, b

j
1−2j−i]

where indices are taken modulo 2r. Hence the lines in Lj are D1 symmetric. Similarly,
we have −[di, ei, fi] = [dr−i, fr−i, er−i].

To see that D3 symmetry occurs when r is a multiple of 3, let n := 2r
3

and notice that

ρn[aji , b
j
i , c

j
i ] = [(0, 1− 2j − 2i+ n), (1, i+ n), (1, i+ n+ 2j − 1)] = [aji+n, b

j
i+n, c

j
i+n]

and

ρn[di, ei, fi] = [(0,−r − 2i− 2n), (1, i+ n), (1, i+ n+ r)] = [di+n, ei+n, fi+n].

Finally, since also in the present construction only 1-lines are used, the (3rs, sr3) con-
figurations are dynamic.
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2.2.2 r even and r > s ≥ 1

Let r > s ≥ 1 with r even and define

P0 := {(0, 0), (0, 2), . . . , (0, 2r − 2)} and P1 := {(1, 0), (1, 1), . . . , (1, 2r − 1)}

and P = P0 ∪ P1. For 1 ≤ j ≤ d s−1
2
e =: s̄ let Lj be the set of the following lines:

[aj0, b
j
0, c

j
0] := [(0,−2j), (1, 0), (1, 2j)],

[aji+1, b
j
i+1, c

j
i+1] := [aji − (0, 2), bji + (0, 1), cji + (0, 1)] for i ∈ {0, . . . , 2r − 2},

and L∗ consist of the lines

[d0, e0, f0] := [(0,−r), (1, 0), (1, r)],

[di+1, ei+1, fi+1] := [di − (0, 2), ei + (0, 1), fi + (0, 1)] for i ∈ {0, . . . , r − 2}.

Observe that

[aji , b
j
i , c

j
i ] = [(0,−2j − 2i), (1, i), (1, 2j + i)]

[di, ei, fi] = [(0,−r − 2i), (1, i), (1, r + i)].

It can be checked very similarly as in previous section that L :=
s̄⋃
j=1

Lj if s is even,

and L := L∗ ∪
s̄⋃
j=1

Lj if s is odd, yield appropriate lines for a (3rs, rs3)-configuration.

Again we obtain D1 symmetry for all such configurations and D3 symmetry for r ≡ 0
(mod 3).

Note that here we use the point (0, 0) at infinity in the D1 symmetric case, and the
points (0, 0), (0, 2r

3
) and (0, 4r

3
) at infinity in the D3 symmetric case. Since the config-

uration is dynamic, we can still obtain a D3 symmetric configuration with all points
finite if we choose ε = 3ω1

4r
for the translation. Figure 4 shows such a situation for

r = 12, s = 5 and parameter q = 5.

3 Closing remarks and open problems

For a fixed curve ΓD3 and fixed numbers r ≥ s ≥ 1 there is still some freedom in
our construction of a (3rs, sr3) configuration: We can choose the parameter ε ∈ R
(see Section 1.4) and the parameter q ∈ N (see Section 1.2). However the resulting
configurations are combinatorially isomorphic: There is a bijection of the points which
preserves the line incidences. But choosing a different ε leads in general to configura-
tions which are geometrically non-isomorphic: there is no projective map which maps
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Figure 4: A D3 symmetric (365, 603) configuration, with parameter q = 5.
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one configuration to the other. Indeed, the configuration in Figure 4 with ε = 3ω1

4r

cannot be geometrically isomorphic to the corresponding configuration with ε = 0,
since the latter occupies the three inflection points of the curve (at infinity), while the
former does not. Also the choice of different values for the parameter q leads in general
to geometrically non-isomorphic configurations, since a projective map preserves the
order of the points on both branches of the curve, while different values of q lead in
general to a different order of the points (compare Figure 1 and Figure 3).

We conclude with two open problems.

• Does every (3rs, sr3) configuration of the combinatorial type constructed in Sec-
tion 2 have its points necessarily on a cubic curve?

• Which curves other than cubic curves carry dynamic configurations?

Observe that the miraculous chains of Poncelet polygons introduced in [5] and [6] are
examples of dynamic configurations carried by conics. So far, only a (93) configura-
tion consisting of three Poncelet triangles, and a (243) configuration consisting of six
Poncelet quadrilaterals are known.
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