Three Conics determine a Cubic

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
lorenz.halbeisen@math.ethz.ch
Norbert Hungerbühler
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
norbert.hungerbuehler@math.ethz.ch
Vera Stalder
8000 Zürich, Switzerland
vera.stalder@gmx.ch

key-words: pencils, conics, polars, polar conics of cubics
2010 Mathematics Subject Classification: 51A05 51A20

Abstract

Given a cubic K. Then for each point P there is a conic C_{P} associated to P. The conic C_{P} is called the polar conic of K with respect to the pole P. We investigate the situation when three conics C_{1}, C_{2}, and C_{3} are polar conics of K with respect to some poles P_{1}, P_{2}, and P_{3}, respectively. In particular we show that any three conics C_{1}, C_{2}, C_{3} in general position determine a unique cubic K and three points P_{1}, P_{2}, P_{3}, such that C_{1}, C_{2}, C_{3} are polar conics of K with respect to the three poles P_{1}, P_{2}, P_{3}. This can be seen as a higher degree variant of von Staudt's theorem.

1 Introduction

This work proceeds the paper [2], in which it is shown that two given conics C_{0} and C_{1} can always be considered as polar conics of some cubic K with respect to some poles P_{0} and P_{1}. However, even though P_{1} is determined by P_{0}, neither the cubic nor the point P_{0} is determined by the two conics C_{0} and C_{1}. This changes if we start with three conics C_{1}, C_{2}, C_{3} in general position. In this situation, the cubic K as well as the poles P_{1}, P_{2}, P_{3} are uniquely determined. This can be seen as a higher degree variant of von Staudt's theorem, which says that given three lines ℓ_{1}, ℓ_{2}, ℓ_{3} and three points P_{1}, P_{2}, P_{3} in perspective position determine a unique conic C such that the points P_{i} are the poles of the lines ℓ_{i} with respect to C (see [5, p. 135, §241]).
The setting in which we work is the same as in [2], but for the sake of completeness we recall our notation and terminology.

We will work in the real projective plane $\mathbb{R P}^{2}=\mathbb{R}^{3} \backslash\{0\} / \sim$, where $X \sim Y \in$ $\mathbb{R}^{3} \backslash\{0\}$ are equivalent, if $X=\lambda Y$ for some $\lambda \in \mathbb{R}$. Points $X=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in$ $\mathbb{R}^{3} \backslash\{0\}$ will be denoted by capital letters, the components with the corresponding small letter, and the equivalence class by $[X]$. However, since we mostly work with representatives, we often omit the square brackets in the notation.
Let f be a non-constant homogeneous polynomial in the variables x_{1}, x_{2}, x_{3} of degree n. Then f defines a projective algebraic curve

$$
C_{f}:=\left\{[X] \in \mathbb{R P}^{2}: f(X)=0\right\}
$$

of degree n. For a point $P \in \mathbb{R P}^{2}$,

$$
P f(X):=\langle P, \nabla f(X)\rangle
$$

is also a homogeneous polynomial in the variables x_{1}, x_{2}, x_{3}. If the homogeneous polynomial f is of degree n, then $C_{P f}$ is an algebraic curve of degree $n-1$. The curve $C_{P f}$ is called the polar curve of C_{f} with respect to the pole P; sometimes we call it the polar curve of P with respect to C_{f}. In particular, when C_{f} is a cubic curve (i.e., f is a homogeneous polynomial of degree 3), then $C_{P f}$ is a conic, which we call the polar conic of C_{f} with respect to the pole P, and when C_{f} is a conic, then $C_{P f}$ is a line, which we call the polar line of C_{f} with respect to the pole P (see, for example, Wieleitner [6]). Note that $C_{P f}$ is defined and can be a regular curve even if C_{f} is singular or reducible. For some historical background, for the geometric interpretation of poles and polar lines, for the iterated construction of polar curves, as well as for the analytical method used today, see Monge [4, §3], Bobillier [1], and Joachimsthal [3, p. 373], or [2].

2 Algebraic Curves and Multilinear Forms

Let C_{f} be a conic given by the non-constant homogeneous polynomial

$$
f\left(x_{1}, x_{2}, x_{3}\right):=\sum_{1 \leq i \leq j \leq 3} c_{i j} x_{i} x_{j} .
$$

Then, the symmetric matrix

$$
T:=\left(\begin{array}{ccc}
c_{11} & c_{12} / 2 & c_{13} / 2 \\
c_{12} / 2 & c_{22} & c_{23} / 2 \\
c_{13} / 2 & c_{23} / 2 & c_{33}
\end{array}\right)
$$

has the property that a point X belongs to C_{f} (i.e., $f(X)=0$), if and only if $\langle X, T(X)\rangle=0$. Thus, the conic C_{f} is represented by the matrix T. Since the expression $\langle X, T(Y)\rangle$ defines a bilinear form $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R},(X, Y) \mapsto\langle X, T(Y)\rangle$,
we can consider the matrix T also as a purely covariant tensor of rank 2 (i.e., a tensor whose rank of covariance is 2 and whose rank of contravariance is 0). More precisely, if we consider the matrix T as a (0,2)-tensor, where for $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ we define

$$
T(X, Y):=\sum_{1 \leq i, j \leq 3} a_{i j} x_{i} y_{j},
$$

then the expression $\langle X, T(X)\rangle=0$ is equivalent to $T(X, X)=0$. In order to obtain the coefficients of the $(0,2)$-tensor $T=\left(a_{i j}\right)_{1 \leq i, j \leq 3}$ from a conic C_{f} defined by a non-constant homogeneous polynomial f, we just set

$$
a_{i j}:=\frac{1}{2!} \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \quad \text { for all } 1 \leq i, j \leq 3
$$

The next result shows that this relation between a conic C_{f} and the corresponding $(0,2)$-tensor $T_{f}=\left(a_{i j}\right)_{1 \leq i, j \leq 3}$ can be generalised to algebraic curves of arbitrary degree.

Lemma 2.1. Let Γ_{f} be an algebraic curve of degree d given by the non-constant homogeneous polynomial

$$
f\left(x_{1}, x_{2}, x_{3}\right):=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d} \leq 3} c_{i_{1} \ldots i_{d}} \cdot x_{i_{1}} \cdot \ldots \cdot x_{i_{d}}
$$

and let $T_{f}=\left(a_{i_{1} \ldots i_{d}}\right)_{1 \leq i_{1}, \ldots, i_{d} \leq 3}$, where

$$
a_{i_{1} \ldots i_{d}}:=\frac{1}{d!} \cdot \frac{\partial^{d} f}{\partial x_{i_{1}} \ldots \partial x_{i_{d}}} \quad \text { for all } 1 \leq i_{1}, \ldots, i_{d} \leq 3
$$

Then T_{f} is a symmetric $(0, d)$-tensor and a point X is on the curve Γ_{f} if and only if

$$
T_{f}(\underbrace{X, \ldots, X}_{d \text {-times }})=0 .
$$

Proof. Since for every rearrangement π of the sequence $\left\langle i_{1}, \ldots, i_{d}\right\rangle$ we have

$$
\frac{\partial^{d} f}{\partial x_{i_{1}} \ldots \partial x_{i_{d}}}=\frac{\partial^{d} f}{\partial x_{\pi\left(i_{1}\right)} \ldots \partial x_{\pi\left(i_{d}\right)}} \quad \text { and therefore } \quad a_{i_{1} \ldots i_{d}}=a_{\pi\left(i_{1}\right) \ldots \pi\left(i_{d}\right)},
$$

we get that the tensor T_{f} is symmetric. Furthermore, assume that the monomial $c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}$ appears in f. Then $n_{1}+n_{2}+n_{3}=d$ and

$$
\frac{1}{d!} \cdot \frac{\partial^{d}\left(c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}\right)}{\partial x_{1}^{n_{1}} \partial x_{2}^{n_{2}} \partial x_{3}^{n_{3}}}=\frac{n_{1}!\cdot n_{2}!\cdot n_{3}!}{d!} \cdot c_{n_{1} n_{2} n_{3}} .
$$

Now, it is easy to see that the number of coefficients $a_{i_{1} \ldots i_{d}}$ such that for $1 \leq i \leq 3$ the number i appears n_{i}-times in the sequence $\left\langle i_{1}, \ldots, i_{d}\right\rangle$ is given by the trinomial coefficient

$$
\binom{d}{n_{1}, n_{2}, n_{3}}=\frac{d!}{n_{1}!\cdot n_{2}!\cdot n_{3}!} .
$$

This shows that for any point X we have $T_{f}(X, \ldots, X)=0$ if and only if $f(X)=0$, or in other words, X is on the curve Γ.
q.e.d.

Let us turn our attention now to polar curves. For this, we consider first polar curves of conics C_{f} with corresponding (0,2)-tensor $T_{f}=\left(a_{i j}\right)_{1 \leq i, j \leq 3}$. Above we have seen that for a given point $P \in \mathbb{R P}^{2}$, a point X is on the polar curve $C_{P f(X)}$ of C_{f} with respect to the pole P if and only if

$$
P f(X):=\langle P, \nabla f(X)\rangle=0 .
$$

Now, for $P, X \in \mathbb{R P}^{2}$, a short calculation shows that $\operatorname{Pf}(X)=2 \cdot T_{f}(P, X)$, and hence, we get

$$
P f(X)=0 \Longleftrightarrow T_{f}(P, X)=0 .
$$

Since T_{f} is symmetric, we have $T_{f}(P, X)=T_{f}(X, P)$, which shows that if X is a point on the polar curve of C_{f} with respect to the pole P, then P is a point on the polar curve of C_{f} with respect to the pole X. The next result shows that also this result can be generalised to algebraic curves of arbitrary degree.

Lemma 2.2. Let Γ_{f} be an algebraic curve of degree d given by the non-constant homogeneous polynomial f, let T_{f} be the corresponding symmetric ($0, d$)-tensor, and let $P \in \mathbb{R P}^{2}$ be a point. Then

$$
P f(X)=0 \Longleftrightarrow T_{f}(P, \underbrace{X, \ldots, X}_{(d-1) \text {-times }})=0 .
$$

In particular, a point $X \in \mathbb{R P}^{2}$ is on the polar curve of Γ_{f} with respect to the pole P if and only if $T_{f}(P, X, \ldots, X)=0$.

Proof. Notice first that for $P=\left(p_{1}, p_{2}, p_{3}\right)$ and $X=\left(x_{1}, x_{2}, x_{3}\right)$ we have:

$$
\begin{aligned}
T_{f}(P, X, \ldots, X) & =\sum_{j=1}^{3} p_{j} \cdot\left(\sum_{1 \leq i_{2}, \ldots, i_{d} \leq 3} a_{j i_{2} \ldots i_{d}} \cdot x_{i_{2}} \cdot \ldots \cdot x_{i_{d}}\right) \\
& =\sum_{j=1}^{3} \sum_{1 \leq i_{2}, \ldots, i_{d} \leq 3} a_{j i_{2} \ldots i_{d}} \cdot p_{j} \cdot x_{i_{2}} \cdot \ldots \cdot x_{i_{d}}
\end{aligned}
$$

Now, assume again that the monomial $c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}$ appears in f. Then, for each $1 \leq j \leq 3$ we have

$$
\frac{\partial\left(c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdot x_{3}^{n_{3}}\right)}{\partial x_{j}}=n_{j} \cdot c_{n_{1} n_{2} n_{3}} \cdot x_{1}^{n_{1}^{\prime}} \cdot x_{2}^{n_{2}^{\prime}} \cdot x_{3}^{n_{3}^{\prime}},
$$

where $n_{j}^{\prime}=n_{j}-1$ and $n_{i}^{\prime}=n_{i}$ for $i \neq j$. Without loss of generality we assume that $j=1$ and $n_{1} \geq 1$. Now, it is easy to see that the number of coefficients $a_{1 i_{2} \ldots i_{d}}$ such that for $1 \leq i \leq 3$, the number i appears n_{i}-times in the sequence $\left\langle 1, \ldots, i_{d}\right\rangle$ is given by the trinomial coefficient

$$
\binom{d-1}{n_{1}-1, n_{2}, n_{3}}=\frac{(d-1)!}{\left(n_{1}-1\right)!\cdot n_{2}!\cdot n_{3}!}=\frac{n_{1}}{d} \cdot \frac{d!}{n_{1}!\cdot n_{2}!\cdot n_{3}!} .
$$

This shows that for any points $P, X \in \mathbb{R P}^{2}$ we have

$$
d \cdot T_{f}(P, X, \ldots, X)=\langle P, \nabla f(X)\rangle,
$$

in particular, we get

$$
P f(X)=0 \Longleftrightarrow T_{f}(P, X, \ldots, X)=0 .
$$

q.e.d.

It is obvious how the iterated construction of polar curves is carried out: If, for example, $P, Q, R \in \mathbb{R P}^{2}$ are given and Γ_{f} is an algebraic curve of degree $d \geq 3$, then the polar curve of the polar curve of the polar curve of Γ_{f} with respect to the points P, Q, R, respectively, is given by the zeros of the $(0, d-3)$-tensor $T_{f}(P, Q, R, X, \ldots, X)$. Notice that since T_{f} is symmetric, the order of P, Q, R is irrelevant. As a consequence, we obtain the following

Fact 2.3. Let K be a cubic curve, let $P_{1}, P_{2}, P_{3} \in \mathbb{R P}^{2}$, and for $1 \leq j \leq 3$ let T_{j} be the (0,2)-tensor of the polar conic of K with respect to the point P_{j}. Then for $1 \leq j_{1}, j_{2} \leq 3$ we have

$$
T_{j_{1}}\left(P_{j_{2}}, X\right)=0 \Longleftrightarrow T_{j_{2}}\left(P_{j_{1}}, X\right)=0
$$

in particular, if we consider the tensors T_{j} as 3×3-matrices, we obtain that

$$
\left[P_{j_{1}}\right]=\left[\left(T_{j_{2}}^{-1} \cdot T_{j_{1}}\right) P_{j_{2}}\right] .
$$

In the next section we show that three conics in general position determine a unique cubic. More precisely, given three different conics C_{1}, C_{2}, C_{3} which satisfy two conditions, we show how to construct the unique cubic K such that for three points $P_{1}, P_{2}, P_{3} \in \mathbb{R P}^{2}$ determined by the three conics, the conic C_{j} (for $1 \leq j \leq 3$) is the polar conic of K with respect to the pole P_{j}. The construction we provide in the next section proves the following result:

Theorem 2.4. Let C_{1}, C_{2}, C_{3} be three conics and let T_{1}, T_{2}, T_{3} be the corresponding (0,2)-tensors given by 3×3-matrices. Assume that the matrices T_{1}, T_{2}, T_{3} satisfy the following two conditions:
(a) $T_{3} T_{1}^{-1} T_{2} \neq T_{2} T_{1}^{-1} T_{3}$
(b) For all $P \in \operatorname{ker}\left(T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}\right)$, we have

$$
\operatorname{det}\left(\begin{array}{ccc}
\mid & \mid & \mid \\
T_{1} P & T_{2} P & T_{3} P \\
\mid & \mid & \mid
\end{array}\right) \neq 0
$$

Then there are exactly three points P_{1}, P_{2}, P_{3}, determined by the conics C_{1}, C_{2}, C_{3}, and a unique cubic curve K, such that for $1 \leq j \leq 3, C_{j}$ is the polar conic of K with respect to the pole P_{j}.

3 Constructing a Cubic from three Conics

Let C_{1}, C_{2}, C_{3} be three conics and let T_{1}, T_{2}, T_{3} be the corresponding (0,2)-tensors given by 3×3-matrices matrices T_{1}, T_{2}, T_{3} which satisfy the conditions (a) and (b) of Theorem 2.4.

Example: Let C_{1}, C_{2}, C_{3} be given by the following three non-constant homogeneous polynomials f_{1}, f_{2}, f_{3}, respectively:

$$
\begin{aligned}
f_{1}(X) & =x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{3} \\
f_{2}(X) & =2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+6 x_{1} x_{3}+6 x_{2} x_{3} \\
f_{3}(X) & =x_{1}^{2}+6 x_{1} x_{2}+x_{2}^{2}+2 x_{1} x_{3}-6 x_{2} x_{3}
\end{aligned}
$$

Figure 1 shows these three conics. Notice that all three conics meet in the origine, which is not excluded by the conditions (a) and (b), as we will see below. Notice also that one of the conics is a circle, which is not a restriction since we can transform any conic by a projective transformation into a circle.

Then the corresponding matrices are:

$$
T_{1}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & 0
\end{array}\right) \quad T_{2}=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 2 & 3 \\
3 & 3 & 0
\end{array}\right) \quad T_{3}=\left(\begin{array}{ccc}
1 & 3 & 1 \\
3 & 1 & -3 \\
1 & -3 & 0
\end{array}\right)
$$

It is easy to verify that the matrices T_{1}, T_{2}, T_{3} satisfy condition (a), and since $\operatorname{ker}\left(T_{3} T_{1}^{-1} T_{2}-T_{2} T_{1}^{-1} T_{3}\right)=[P]$ for $P=\left(\frac{6}{5},-\frac{24}{5}, 1\right)$, condition (b) is also easily checked.

Let us turn back to our general construction and construct the three points P_{1}, P_{2}, P_{3} : By Fact 2.3, the points P_{1}, P_{2}, P_{3} satisfy the following three necessary conditions

$$
T_{2} P_{1}=T_{1} P_{2}, \quad T_{3} P_{2}=T_{2} P_{3}, \quad T_{1} P_{3}=T_{3} P_{1}
$$

which is equivalent to

$$
\left(T_{1}^{-1} T_{2}\right) P_{1}=P_{2}, \quad\left(T_{2}^{-1} T_{3}\right) P_{2}=P_{3}, \quad\left(T_{3}^{-1} T_{1}\right) P_{3}=P_{1},
$$

Figure 1: The three conics C_{1}, C_{2}, and C_{3} of the example.
and implies that P_{1} satisfies

$$
\begin{equation*}
\left(T_{3}^{-1} T_{1}\right)\left(T_{2}^{-1} T_{3}\right)\left(T_{1}^{-1} T_{2}\right) P_{1}=P_{1} \tag{1}
\end{equation*}
$$

Since the matrices T_{j} are symmetric, for $M:=T_{3} T_{1}^{-1} T_{2}$ we have $M^{T}=T_{2} T_{1}^{-1} T_{3}$. So, equation (1) is equivalent to $M P_{1}=M^{T} P_{1}$, which is equivalent to $\left(M-M^{T}\right) P_{1}=$ 0 . Now, condition (a) ensures that $M \neq M^{T}$ and since $\left(M-M^{T}\right)$ is a non-zero, real, anti-symmetric 3×3-matrix, it has exactly one eigenvalue equal to zero. In fact, if

$$
A=\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

is an anti-symmetric matrix, then the eigenvalues of A are 0 and $\pm i \sqrt{a^{2}+b^{2}+c^{2}}$ and an eigenvector to the eigenvalue 0 is $(c,-b, a)^{T}$.
Hence, the pole P_{1} is uniquely determined by equation (1), and we obtain $P_{2}=$ $\left(T_{1}^{-1} T_{2}\right) P_{1}$ and $P_{3}=\left(T_{1}^{-1} T_{3}\right) P_{1}$. Before we proceed, let us compute the points P_{1}, P_{2}, P_{3} in our example.
Example: With respect to T_{1}, T_{2}, T_{3} we get $P_{1}=\left(\frac{6}{5},-\frac{24}{5}, 1\right), P_{2}=\left(-\frac{27}{5},-\frac{27}{5}, 3\right)$, and $P_{3}=\left(\frac{39}{5},-\frac{21}{5},-10\right)$, which correspond to the affine points $\bar{P}_{1}=\left(\frac{6}{5},-\frac{24}{5}\right)$, $\bar{P}_{2}=\left(-\frac{27}{15},-\frac{27}{15}\right)$, and $\bar{P}_{3}=\left(-\frac{39}{50}, \frac{21}{50}\right)$, respectively. Figure 2 shows the conics with their poles.

Figure 2: The three conics C_{1}, C_{2}, C_{3} of the example with the three poles P_{1}, P_{2}, P_{3}.

The goal of our construction is to find a (0,3)-tensor T_{K} of a cubic K, such that we have

$$
T_{K}\left(P_{j}, X, X\right)=T_{j}(X, X) \quad \text { for } 1 \leq j \leq 3
$$

Since by condition (b), the points P_{1}, P_{2}, P_{3} are not incident with a projective line, we may choose $\left\{P_{1}, P_{2}, P_{3}\right\}$ as a new basis. In other words, for $\tilde{P}_{1}=(1,0,0)$, $\tilde{P}_{2}=(0,1,0)$, and $\tilde{P}_{3}=(0,0,1)$, we map $P_{i} \mapsto \tilde{P}_{i}($ for $1 \leq i \leq 3)$, For $1 \leq i \leq 3$, let $T_{i}=\left(a_{j k}^{i}\right)_{1 \leq j, k \leq 3}$ and let \tilde{T}_{i} be the (0,2)-tensors (i.e., the conics $\left.\tilde{C}_{i}\right)$ in this new basis. Since for any $1 \leq i, j, k \leq 3$ we have $T_{i}\left(P_{j}, P_{k}\right)=T_{i}\left(P_{k}, P_{j}\right)=T_{j}\left(P_{k}, P_{i}\right)$, we also have

$$
\begin{equation*}
\tilde{T}_{i}\left(\tilde{P}_{j}, \tilde{P}_{k}\right)=\tilde{T}_{i}\left(\tilde{P}_{k}, \tilde{P}_{j}\right)=\tilde{T}_{j}\left(\tilde{P}_{k}, \tilde{P}_{i}\right) \tag{2}
\end{equation*}
$$

Now, let $T_{\tilde{K}}=\left(\tilde{a}_{i j k}\right)_{1 \leq i, j, k \leq 3}$ be a (0,3)-tensor defined by stipulating

$$
\tilde{a}_{i j k}:=\tilde{T}_{i}\left(\tilde{P}_{j}, \tilde{P}_{k}\right) \quad \text { for } 1 \leq i, j, k \leq 3
$$

Then, by equation (2), the tensor $T_{\tilde{K}}$ is symmetric and has the property that for $1 \leq i \leq 3$,

$$
T_{\tilde{K}}\left(\tilde{P}_{i}, X, X\right)=\tilde{T}_{i}(X, X)
$$

For the corresponding cubic \tilde{K} we therefore have that \tilde{C}_{i} is the polar conic of \tilde{K} with respect to the pole \tilde{P}_{i}. Thus, the re-transformed cubic K has the property that
the conics C_{1}, C_{2}, C_{3} are the polar conics of K with respect to the poles P_{1}, P_{2}, P_{3}, respectively.
Example: In our example, \tilde{K} in the affine plane is given by
$-2192-2919 x+264 x^{2}+122 x^{3}-1557 y+3384 x y+198 x^{2} y+3726 y^{2}-81 x y^{2}-81 y^{3}=0$,
and finally, the sought cubic K is

$$
-13 x^{3}-66 x^{2} y-27 x^{2}-216 x y-39 x y^{2}-27 y^{2}-22 y^{3} .
$$

Figure 3 shows the cubic K together with the three polar conics C_{i} with respect to their three poles P_{i}. Recall that the lines connecting P_{i} and the points of intersection of K with the polar curve C_{i} are tangent to K.

Figure 3: The cubic K together with the three poles P_{1}, P_{2}, P_{3} and the three polar conics C_{1}, C_{2}, C_{3} of the example. The tangents from P_{1} to K are also displayed.

References

[1] Étienne Bobillier. Géométrie de situation. Théorèmes sur les polaires successives. Annales de mathématiques pures et appliquées, 19:302-307, 1828-1829.
[2] Lorenz Halbeisen and Norbert Hungerbühler. Generalized pencils of conics derived from cubics. Beitr. Algebra Geom., 61(4):681-693, 2020.
[3] Ferdinand Joachimsthal. Remarques sur la condition de l'egalité de deux racines d'une équation algébrique; et sur quelques théorèmes de Géometrie, qui en suivent. J. Reine Angew. Math., 33:371-376, 1846.
[4] Gaspard Monge. Application de l'analyse à la géométrie. Paris: Mad. Ve. Bernard, Libraire de l'Ecole Impériale Polytechnique, quatrième edition, 1809.
[5] Karl Georg Christian von Staudt. Geometrie der Lage. Bauer und Raspe, 1847.
[6] Heinrich Wieleitner. Algebraische Kurven. II. Allgemeine Eigenschaften. Sammlung Göschen Band 436. Walter de Gruyter, Berlin, 1939.

