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norbert.hungerbuehler@math.ethz.ch

key-words: pencil of conics, Poncelet’s theorem, conjugate conics

2010 Mathematics Subject Classification: 51A05 51A10 51A20

Abstract

The exponential pencil Gλ := G1(G−10 G1)λ−1, generated by two conics G0, G1, carries
a rich geometric structure: It is closed under conjugation, it is compatible with duality
and projective mappings, it is convergent for λ→ ±∞ or periodic, and it is connected
in various ways with the linear pencil gλ = λG1 + (1 − λ)G0. The structure of the
exponential pencil can be used to characterize the position of G0 and G1 relative to
each other.

1 Introduction

The linear pencil gλ = λG1 + (1 − λ)G0, λ ∈ R, of two circles or conics G0 and G1 is an
extremely useful tool in the study of the geometry of circles and of conic sections, or, in
higher dimensions, of quadrics. The linear pencil has a wide range of applications: For
example, the circles of Apollonius (see [3]), Gergonne’s solution of Apollonius’ Problem to
construct a circle touching three given circles (see [2]), Cayley’s characterization of conics
which carry Poncelet polygons (see [1]), or the classification of the relative position of two
conics (see [11]). But the linear pencil is not only a tool, it is also an interesting object
in its own right with a rich geometry to study. However, the linear pencil lacks certain
desirable properties: For example, it is not compatible with duality, i.e., the linear pencil
of the dual of two conics is not the dual of the pencil of the two conics (see Sections 2.1
and 3), and the linear pencil does, in general, not exist as real conics for all λ ∈ R. In
this article, we investigate the exponential pencil Gλ = G1(G

−1
0 G1)

λ−1 of two conics G0

and G1. It turns out, that this pencil has a remarkable spectrum of geometric properties,
which we study in Section 3. In Section 4 we classify the exponential pencils according to
the relative position of the generating conics. But first, we start with some preliminary
remarks to set the stage and to fix the notation.
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2 Preliminaries

2.1 Matrix Powers

Let f : R→ Cn×n be analytic such that

(a) f(0) = I, where I is the identity matrix,

(b) f(1) = A,

(c) f(x+ y) = f(x) · f(y) for all x, y ∈ R.

In particular, we have f(−x) = f(x)−1 for all x ∈ R, and therefore A is necessarily regular.
Moreover, all matrices f(x), f(y) commute. With the infinitesimal generator F := f ′(0),
we may write f(x) = eFx. In particular, A = f(1) = eF , i.e., F is a logarithm of A. The
logarithm of a matrix is in general not unique. Nonetheless, (a)–(c) determine the values
of f(n) for all n ∈ Z. It is convenient to write f(x) = Ax for a function satisfying (a)–
(c). However, we have to keep in mind that two different logarithms of A define different
functions x 7→ Ax. In concrete cases, a function Ax can be calculated by the binomial
series

Ax = (I + (A− I))x =
∞∑
k=0

(
x

k

)
(A− I)k

whenever the series converges.

Let f(x) = Ax be a solution of (a)–(c), and suppose the matrix A is similar to the matrix
B, i.e., B = T−1AT . Then g(x) := T−1f(x)T is analytic, g(0) = I, g(1) = T−1AT = B,
and g(x+ y) = g(x) · g(y) for arbitrary x, y ∈ R. Thus, g(x) = Bx. In this situation, the
infinitesimal generators of f and g are similar: g′(0) = T−1f ′(0)T .

2.2 Projective plane and conics

We will work in the standard model of the real projective plane, i.e., we consider the set
of points P = R3 \{0}/ ∼, where x ∼ y ∈ R3 \{0} are equivalent if x = λy for some λ ∈ R.
The set of lines is B = R3 \ {0}/ ∼, where g ∼ h ∈ R3 \ {0} are equivalent, if g = λh for
some λ ∈ R. We that say a point [x] and a line [g] are incident if 〈x, g〉 = 0, where we
denoted equivalence classes by square brackets and the standard inner product in R3 by
〈·, ·〉.

As usual, a line [g] can be identified with the set of points which are incident with it. Vice
versa, a point [x] can be identified with the set of lines which pass through it. The affine
plane R2 is embedded in the present model of the projective plane by the map

(
x1
x2

)
7→

x1x2
1

 .
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The projective general linear group PGL(3,R) consists of equivalence classes [A] of reg-
ular matrices A ∈ R3×3 representing maps P → P, [x] 7→ [Ax], where two matrices are
equivalent, denoted A1 ∼ A2, if A1 = λA2 for some λ ∈ R.

A conic in this model of the projective plane is an equivalence class of a regular, linear,
selfadjoint map A : R3 → R3 with mixed signature, i.e., A has eigenvalues of both signs.
It is convenient to say a matrix A is a conic, instead of A is a representative of a conic.
We may identify a conic by the set of points [x] such that 〈x,Ax〉 = 0, or by the set of
lines [g] for which 〈A−1g, g〉 = 0 (see below). Notice that, in this interpretation, a conic
cannot be empty: Since A has positive and negative eigenvalues, there are points [p], [q]
with 〈p,Ap〉 > 0 and 〈q, Aq〉 < 0. Hence a continuity argument guarantees the existence
of points [x] satisfying 〈x,Ax〉 = 0.

From now on, we will only distinguish in the notation between an equivalence class and a
representative if necessary.

Fact 2.1. Let x be a point on the conic A. Then the line Ax is tangent to the conic A
with contact point x.

Proof. We show that the line Ax meets the conic A only in x. Suppose otherwise, that
y 6∼ x is a point on the conic, i.e., 〈y,Ay〉 = 0, and at the same time on the line Ax,
i.e., 〈y,Ax〉 = 0. By assumption, we have 〈x,Ax〉 = 0. Note, that Ax 6∼ Ay since A is
regular, and 〈Ay, x〉 = 0 since A is selfadjoint. Hence x and y both are perpendicular to
the plane spanned by Ax and Ay, which contradicts y 6∼ x. q.e.d.

In other words, the set of tangents of a conic A is the image of the points on the conic
under the map A. And consequently, a line g is a tangent of the conic iff A−1g is a point
on the conic, i.e., if and only if 〈A−1g, g〉 = 0.

Definition 2.2. If P is a point, the line AP is called its polar with respect to a conic A.
If g is a line, the point A−1g is called its pole with respect to the conic A.

Obviously, the pole of the polar of a point P is again P , and the polar of the pole of a
line g is again g. Moreover:

Fact 2.3. If the polar of a point P with respect to a conic A intersects the conic in a point
x, then the tangent in x passes through P .

Proof. For x, we have 〈x,Ax〉 = 0 since x is a point on the conic, and 〈x,AP 〉 = 0 since
x is a point on the polar of P . The tangent in x is the line Ax, and indeed, P lies on this
line, since 〈P,Ax〉 = 〈AP, x〉 = 0. q.e.d.

The fundamental theorem in the theory of poles and polars is

Fact 2.4 (La Hire’s Theorem). Let g be a line and P its pole with respect to a conic A.
Then, for every point x on g, the polar of x passes through P . And vice versa: Let P be
a point and g its polar with respect to a conic A. Then, for every line h through P , the
pole of h lies on g.
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Proof. We prove the second statement, the first one is similar. The polar of P is the line
g = AP . A line h through P satisfies 〈P, h〉 = 0 and its pole is Q = A−1h. We check, that
Q lies on g: Indeed, 〈Q, g〉 = 〈A−1h,AP 〉 = 〈AA−1h, P 〉 = 〈h, P 〉 = 0. q.e.d.

The next fact can be viewed as a generalization of Fact 2.4:

Theorem 2.5. Let A and G be conics. Then, for every point x on G, the polar p of x with
respect to A is tangent to the conic H = AG−1A in the point x′ = A−1Gx. Moreover, x′

is the pole of the tangent g = Gx in x with respect to A.

H

A

G

x

p

x′

g

Proof. It is clear that H = AG−1A is symmetric and regular, and by Sylvester’s law of
inertia, H has mixed signature. The point x on G satisfies 〈x,Gx〉 = 0. Its pole with
respect to A is the line g = Ax. This line is tangent to H iff 〈H−1g, g〉 = 0. Indeed,
〈H−1g, g〉 = 〈(AG−1A)−1Ax,Ax〉 = 〈A−1Gx,Ax〉 = 〈Gx, x〉 = 0.

Since 〈x′, Hx′〉 = 〈A−1Gx,AG−1AA−1Gx〉 = 〈Gx, x〉 = 0, the point x′ = A−1Gx lies on
H. The tangent to H in x′ is Hx′ = AG−1AA−1Gx = Ax which is indeed the polar of x
with respect to A. The last statement in the theorem follows immediately. q.e.d.

Definition 2.6. The conic H = AG−1A is called the conjugate conic of G with respect
to A.

Recall that the dual of a point P ∈ P is the line P ∈ B and the dual of the line g ∈ B is
the point g ∈ P. In particular, P and g are incident if and only if their duals are incident.
The dual lines of all points on a conic A are tangent to the conic A−1, and the dual points
of all tangents of a conic A are points on the conic A−1. Therefore, A−1 is called the dual
conic of the conic A. We will denote the dual A−1 of a conic A by A′.

The projective space P = R3 \ {0}/ ∼ can also be represented as the unit sphere S2 ⊂ R3

with antipodal identification of points. Then, this space S, endowed with the natural
metric d([x], [y]) = arcsin ‖x× y‖, becomes a complete metric space with bounded metric.
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The set of closed sets in this space is a complete metric space with respect to the inherited
Hausdorff metric. In particular, a conic A given by

{x ∈ S2 | 〈x,Ax〉 = 0}/ ∼

is a compact set in S. In this sense, we can consider the limit of a sequence of conics.

3 The exponential pencil

The linear pencil of two matrices g0, g1 ∈ Cn×n is given by

gλ := λg1 + (1− λ)g0, λ ∈ R.

This notation is consistent for the values λ = 0 and λ = 1. If g0 and g1 commute,
exponentiation of the linear pencil gives

Gλ := egλ = eλg1+(1−λ)g0 = eg1(e−g0eg1)λ−1 = G1(G
−1
0 G1)

λ−1 (1)

where Gi := egi . The last expression in (1) makes sense also for non-commuting matrices
and we may define an exponential pencil of two matrices G0, G1 ∈ Cn×n by

Gλ := G1(G
−1
0 G1)

λ−1, λ ∈ R, (2)

provided (G−10 G1)
x, x ∈ R, exists in the sense of Section 2.1. The notation Gλ in (2) is

consistent for the values λ = 0 and λ = 1. Notice that for regular matrices G0, G1, a
unique discrete exponential pencil Gn = G1(G

−1
0 G1)

n−1 for n ∈ Z exists. This general
concept applies naturally to conics and we define:

Definition 3.1. Let G0, G1 be two conics. Then

Gλ := G1(G
−1
0 G1)

λ−1, λ ∈ R,

is called an exponential pencil generated by G0 and G1 provided that all Gλ are symmetric
and real.

Remarks.

(a) For an exponential pencil to exist, it is necessary and sufficient that G−10 G1 has a
real logarithm F such that G1F is symmetric.

(b) In Section 4 we will see that the existence of an exponential pencil depends on the
position of G0 and G1 relative to each other, and except for only one case, the
exponential pencil is unique.

(c) Each Gλ in an exponential pencil generated by G0 and G1 is actually a conic: In con-
trast to the linear pencil, an exponential pencil of conics does not contain degenerate
or complex conics. This is a consequence of the following Lemma.
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Lemma 3.2. If Gλ = G1(G
−1
0 G1)

λ−1, λ ∈ R, is an exponential pencil of two conics G0, G1,
then

(i) det(Gλ) = det(G1)
λ/ det(G0)

λ−1.

(ii) Gλ has mixed signature for all λ ∈ R.

Proof. (i) Let L be a logarithm of G−10 G1. Then, we have

detGλ = detG1(G
−1
0 G1)

λ−1 = detG1 det e(λ−1)L = detG1e
trace(λ−1)L

= detG1

(
etraceL

)λ−1
= detG1

(
det eL

)λ−1
= detG1

(
detG1

detG0

)λ−1
.

(ii) Since Gλ is symmetric, it has real eigenvalues which depend continuously on λ. Then,
according to (i), the product of the eigenvalues cannot change sign and the signature of
Gλ remains constant. q.e.d.

The next Lemma will have immediate geometric consequences:

Lemma 3.3. If Gλ, λ ∈ R, is an exponential pencil of G0, G1 and ξ, µ ∈ R, there holds

GµG
−1
ξ Gµ = G2µ−ξ.

Proof.

GµG
−1
ξ Gµ = G1(G

−1
0 G1)

µ−1
(
G1(G

−1
0 G1)

ξ−1
)−1

G1(G
−1
0 G1)

µ−1

= G1(G
−1
0 G1)

µ−1(G−10 G1)
1−ξG−11 G1(G

−1
0 G1)

µ−1

= G1

(
G−10 G1

)2µ−ξ−1
= G2µ−ξ.

q.e.d.

In view of Theorem 2.5 and Definition 2.6, we get as an immediate consequence of
Lemma 3.3:

Theorem 3.4. An exponential pencil Gλ, λ ∈ R, of two conics is closed under conjugation:
The conjugate of Gξ with respect to Gµ is G2µ−ξ.

More generally, we have the following:

Lemma 3.5. If Gλ0 and Gλ1 belong to a pencil Gλ = G1(G
−1
0 G1)

λ−1 generated by G0, G1,
then Gλ0 and Gλ1 generate the same exponential pencil as G0 and G1. More precisely, we
have

Gλ1(G−1λ0 Gλ1)λ−1 = G1(G
−1
0 G1)

λ0+λ(λ1−λ0)−1 = Gλ0+λ(λ1−λ0).

In particular, the exponential pencil does not depend on the order of the defining conics
G0 and G1.
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Proof. Let f(x) := (G−10 G1)
x(λ1−λ0) for x ∈ R. Then f(0) = I, and

f(1) = (G−10 G1)
λ1−λ0 = (G−10 G1)

1−λ0G−11 G1(G
−1
0 G1)

λ1−1

=
(
G1(G

−1
0 G1)

λ0−1
)−1

G1(G
−1
0 G1)

λ1−1 = G−1λ0 Gλ1 .

Moreover, f(x+ y) = f(x)f(y). Therefore, according to Section 2.1, we may write f(x) =
(G−1λ0 Gλ1)x. We obtain

Gλ1(G−1λ0 Gλ1)λ−1 = Gλ1f(λ− 1) = G1(G
−1
0 G1)

λ1−1(G−10 G1)
(λ−1)(λ1−λ0)

where we used the original definition of f in the last equality. Now the claim follows
immediately. q.e.d.

It turns out that exponential pencils behave well with respect to duality:

Theorem 3.6. Let G0 and G1 be conics and G′0 and G′1 their duals. Suppose G0 and G1

generate an exponential pencil Gλ. Then, the dual of Gλ is an exponential pencil of G′0
and G′1. More precisely, for all λ ∈ R we have

G′1(G
′
0
−1
G′1)

λ−1 = (G1(G
−1
0 G1)

λ−1)′.

Observe that the linear pencil does not enjoy the corresponding property.

Proof. Suppose Gλ = G1(G
−1
0 G1)

λ−1 is an exponential pencil generated by G0 and G1.
Then, for x ∈ R, let f(x) := G1−xG

−1
1 = G1(G

−1
0 G1)

−xG−11 . Observe that f(0) = I,
f(1) = G0G

−1
1 and

f(x+ y) = G1(G
−1
0 G1)

−(x+y)G−11 =
(
G1(G

−1
0 G1)

−xG−11

) (
G1(G

−1
0 G1)

−yG−11

)
= f(x)f(y)

and therefore, according to Section 2.1, we may write f(x) = (G0G
−1
1 )x = (G′0

−1G′1)
x.

We obtain
(G1(G0

−1G1)
x)−1 = G−11 f(x) = G′1(G

′
0
−1
G′1)

x

and claim follows by replacing x by λ− 1. q.e.d.

The natural question is now to ask which conics G0, G1 generate an exponential pencil.
To answer this question, we recall that two conics can lie in 8 different positions relative
to each other (see [11]):

Case 1: four intersections Case 2: no intersections Case 3: two intersections

7



Case 4: two intersections,
one 1st order contact

Case 5: one 1st order contact Case 6: two 1st order
contacts

Case 7: one intersection, one
2nd order contact

Case 8: one 3rd order contact

We now go case by case through the list and investigate the existence and the geometric
properties of the resulting exponential conics. In particular, it will turn out that the ex-
ponential conic and the linear conic are quite closely related. We start with the important
observation that the exponential pencil is projectively invariant:

Lemma 3.7. Let S ∈ Rn×n be a regular matrix, inducing a projective map P→ P, x 7→ Sx.
Then the image under S of an exponential pencil Gλ = G1(G

−1
0 G1)

λ−1 of two conics
G0, G1 is an exponential pencil of their images.

Proof. For T := S−1, the images of the conics G0, G1 under S are Ḡ0 := T>G0T and
Ḡ1 := T>G1T . We want to show that the image Ḡλ = T>GλT is an exponential pencil
of Ḡ0 and Ḡ1. We start by definig f(x) := T−1(G−10 G1)

xT for x ∈ R. We have f(0) = I,
f(1) = Ḡ−10 Ḡ1 and

f(x+ y) = T−1(G−10 G1)
x+yT =

(
T−1(G−10 G1)

xT
)(
T−1(G−10 G1)

yT
)

= f(x)f(y)

and therefore, according to Section 2.1, we may write f(x) = (Ḡ−10 Ḡ1)
x. We obtain

T>Gx+1T = T>G1(G
−1
0 G1)

xT = Ḡ1f(x) = Ḡ1(Ḡ
−1
0 Ḡ1)

x

and claim follows by replacing x by λ− 1. q.e.d.

The investigation of the exponential pencils in all the Cases 1–8 listed above can now be
reduced to a canonical form in each case.

4 Classification of the exponential pencils

The two figures below show the exponential pencil of two conics G0, G1 (bold) in two
cases. On the left, the geometry seems rather gentle, on the right quite complex.
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In this section, we investigate the exponential pencil of two conics in each of the possible
cases of their relative position. It turns out that the geometric behavior of the exponential
pencil is characteristic for each case.

Theorem 4.1 (Case 1). Let G0, G1 be two conics with four intersection points. Then,

they generate an exponential conic Gλ = G1

(
G−10 G1

)λ−1
iff the common interior of G1

and G0 is connected. In this case, the exponential pencil is unique. Gλ converges for
λ → ±∞ to a line `±. The family Gλ has an envelope E with asymptotes `±. Through
every exterior point of E (i.e., points with four tangents to E), except for the points on `±,
there pass exactly two members of the exponential pencil Gλ. Each Gλ touches a member
of the linear pencil gλ = λG1 + (1− λ)G0 in two first order contact points.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

a2 0 0
0 ±b2 0
0 0 −1

 ,

where a > 1 > b > 0 or b > 1 > a > 0 for the positive sign, and a > 1 for the negative
sign (see [8]). Let

A := G−10 G1 =

a2 0 0
0 ±b2 0
0 0 1

 ,

then every solution X of eX = A leads to an exponential pencil Gλ = G1e
(λ−1)X of G0 and

G1, provided Gλ is a real symmetric matrix for all λ ∈ R. In particular, h(x) := exX must
be real for all x ∈ R. But then h′(0) = X must be real. We can therefore concentrate on
real solutions of eX = A. According to [4, Theorem 1], such a real solution exists only
for the positive sign in A. This corresponds to the case, where the common interior of G0

and G1 is connected. Then, the solution of eX = A is unique, according to [4, Theorem
2], and we obtain a unique exponential pencil given by

Gλ = G1

(
G−10 G1

)λ−1
=

a2λ 0 0
0 b2λ 0
0 0 −1

 . (3)
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The envelope E is obtained by eliminating λ from ∂
∂λ〈x,Gλx〉 = 0 and 〈x,Gλx〉 = 0. One

finds

(x21)
log b(x23)

log a| log a|log a
∣∣∣log

a

b

∣∣∣log b = (x22)
log a(x23)

log b| log b|log b
∣∣∣log

a

b

∣∣∣log a .
The figure shows in the affine plane x3 = 1 the pencil generated by the unit circle G0 and
an ellipse G1 (both bold), together with the asymptotic lines `± (red) and the envelope E
(blue).

q.e.d.

Theorem 4.2 (Case 2). Let G0, G1 be two disjoint conics. Then they generate an ex-

ponential pencil Gλ = G1

(
G−10 G1

)λ−1
iff G1 is in the interior of G0 or vice versa, in

which case the exponential pencil is unique. Gλ converge for λ → ±∞ to a point (which
coincides with a limit point of the linear pencil gλ = λG1 + (1− λ)G0), and a line (which
contains the second limit point of the linear pencil). Each Gλ touches two members of
the linear pencil gλ = λG1 + (1− λ)G0 in two first order contact points, or, if G0, G1 are
projectively equivalent to concentric circles, each Gλ belongs to the linear pencil.

Proof. Since G0, G1 are disjoint, there exist coordinates for which both conics are diagonal
(see for example [10] or [9]): W.l.o.g.

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

a2 0 0
0 ±b2 0
0 0 −1

 ,

where 1 > a, b > 0 or a, b > 1 in case of the positive sign, and 1 > a > 0, b > 0 in case of
the negative sign. Then,

A := G−10 G1 =

a2 0 0
0 ±b2 0
0 0 1

 .

As in Case 1, an exponential pencil can only exist for the positive sign in A. This cor-
responds to the case where G0 is in the interior of G1 or vice versa. Now, we have to
consider two cases:

Case 2a. a 6= b: Then, by the same reasoning as in Case 1, the exponential pencil Gλ is
unique and given by (3). The figure on the left shows, in the plane x3 = 1, the exponential
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pencil generated by the unit circle G0 and an ellipse G1 inside of G0 (both bold). The
limit as λ→∞ is the center (red), and as λ→ −∞ the ideal line. It is instructive to look
at the same configuration on the sphere (figure on the right, limit point and limit ideal
line in red).

Case 2b. a = b: In this case we have

A := G−10 G1 =

a2 0 0
0 a2 0
0 0 1

 ,

and according to [4, Theorem 2, and Corollary], there is a continuum of real solutions of
eXµ = A. So, there is a chance that the exponential pencil is not unique. From [6, §8] we
infer that all matrices

Xµ =

log a2 0 0
0 log a2 0
0 0 0

+K

2nπi 0 0
2mπi 0

0 0 0

K−1, (4)

where m,n are integers and K is an arbitrary regular matrix of the form

K =

k11 k12 0
k21 k22 0
0 0 k33

 ,

are logarithms of A, and there are no other logarithms. Then e(λ−1)Xµ has the same
block structure as K. Now, in our case, we need that Gλ = G1e

(λ−1)Xµ is real and
symmetric. But this implies that G−11 Gλ = e(λ−1)Xµ is real and symmetric for all λ.
Then the derivative of this with respect to λ at λ = 1 gives that Xµ must be real and

symmetric. Then for each k ∈ N, eXµ/2
k

is also symmetric and real, and positive definite,
because eXµ/2

k
= eXµ/2

k+1
eXµ/2

k+1
. Recall that repeated roots A1/2k of A which are real,

symmetric and positive definite, are unique. This means, that the values of eXµ/2
k

agree
for all integers k. Therefore, the infinitesimal generators Xµ must actually agree. In other
words, there is only one real symmetric logarithm X of A, and the exponential pencil is
given by (3), i.e. a family of concentric circles. Alternatively, the uniqueness can be seen
directly from (4) by imposing symmetry and real valuedness of Xµ. q.e.d.
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Theorem 4.3 (Case 3). Let G0, G1 be two conics with two intersectctions. Then they

generate a countable family of exponential pencils Gλ = G1

(
G−10 G1

)λ−1
. Such a pencil

is either periodic with a conic as envelope, or periodically expanding covering the plane
infinitely often, with a local envelope which has a singular point S. For integer values of
λ, the corresponding conics of all exponential pencils agree.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

 1 0 −a
0 1 0
−a 0 a2 − r2

 , a > 0,

(see [8]). Geometrically, G1 represents a circle of radius r > 0 in the plane x3 = 1 with
center in (a, 0) which intersects the unit circle G0, centered in (0, 0), in two real points.
I.e., −1 < a− r < 1 and 1 < a+ r, which implies that κ := (1− a+ r)(1 + a− r)(a+ r−
1)(a + r + 1) > 0 because all four factors are strictly positive. We now use a translation
T , a swap of axis P , a scaling L, and a rotation R, namely

T =

1 0 τ
0 1 0
0 0 1

 , P =

1 0 0
0 0 1
0 1 0

 ,

L =

` 0 0
0 1/` 0
0 0 1

 , R =

 c −
√

1− c2 0√
1− c2 c 0

0 0 1

 ,

with the following values

τ =
1 + a2 − r2

2a
,

` =
4
√
κ√
2a
,

c =
1

2

√
2−
√
κ

a
.

Notice that 4a2 − κ = (1 + a2 − r2)2 ≥ 0 and hence the radicand 2 −
√
κ
a ≥ 0 in c. For

U = TPLR this leads to the following representation of the conics:

U>G0U =

−1 0 0
0 1 0
0 0 1

 , U>G1U =

(a2 − r2 − 1)/2
√
κ/2 0√

κ/2 (r2 − a2 + 1)/2 0
0 0 1

 .

In the plane x3 = 1 these are rotated hyperbolas centered at (0, 0, 1), and we denote them
again by G0 and G1. Then, G−10 G1 has the form

A := G−10 G1 =

r cosφk −r sinφk 0
r sinφk r cosφk 0

0 0 1


12



for φk = 2kπ + arccos 1−a2+r2
2r , where k is an arbitrary integer. Notice, that −2r <

1− a2 + r2 < 2r, again because the factors of κ are strictly positive, and hence the values
φk are real. Here, according to [6, §8], we find the following solutions X of A = eXk :

Xk =

log r −φk 0
φk log r 0
0 0 0

 .

Therefore, we get

e(λ−1)Xk = (G−10 G1)
λ−1 =

rλ−1 cos (λ− 1)φk −rλ−1 sin (λ− 1)φk 0
rλ−1 sin (λ− 1)φk rλ−1 cos (λ− 1)φk 0

0 0 1


and finally

Gλ = G1(G
−1
0 G1)

λ−1 =

−rλ cosλφk rλ sinλφk 0
rλ sinλφk rλ cosλφk 0

0 0 1

 .

For r = 1 (and only in this case), the resulting exponential pencil is periodic with period
2π/φk. Hence, in the plane x3 = 1, Gλ are rectangular hyperbolas, rotating around
the origin with constant angular velocity φk. For r 6= 1, the rectangular hyperbolas are
rotating with constant angular velocity φk and at the same time exponentially shrinking
(r > 1) or expanding (0 < r < 1) with factor rλ. The figures below show the two cases:
G0 and G1 are bold, the envelope is blue, the singular point S is red.

q.e.d.

Remark. The case when r = 1 (i.e., when the resulting exponential pencil is periodic),
was studied with respect to Poncelet’s Theorem in [7] and [8].

Theorem 4.4 (Case 4). Let G0, G1 be two conics with two intersections and one first order

contact. Then they generate an exponential pencil Gλ = G1

(
G−10 G1

)λ−1
iff the contact

point of G1 and G0 lies on the boundary of their common interior. Then the exponential
pencil is unique. Each Gλ touches a member of the linear pencil gλ = λG1 + (1 − λ)G0

13



in two first order contact points. For λ → ±∞, Gλ converges to the tangent in the
contact point, and to a line trough the contact point, respectively. The family Gλ has an
envelope E.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

µ+ 1 0 −µ
0 1− µ 0
−µ 0 µ− 1

 , µ 6= 1, µ 6= 0.

(see [8]). Then,

A := G−10 G1 =

µ+ 1 0 −µ
0 1− µ 0
µ 0 1− µ

 .

With

T =

1 1/µ 0
0 0 1
1 0 0

 , J =

1 1 0
0 1 0
0 0 1− µ

 = I +

0 1 0
0 0 0
0 0 −µ


︸ ︷︷ ︸

=:α

we get G−10 G1 = I + TαT−1. As in the proof of Case 2b, we are only interested in real
logarithms of A. By [4, Theorem 1], the real logarithm of A exists iff µ < 1. This
corresponds to the situation where the contact point sits on the boundary of the common
interior of G0 and G1. By [4, Theorem 2], the real logarithm is unique. By the binomic
series we get

(G−10 G1)
x = (I + TαT−1)x = T

∞∑
k=0

(
x

k

)
αkT−1

=

1 + µx 0 −µx
0 (1− µ)x 0
µx 0 1− µx

 ,

and finally the exponential pencil

Gλ = G1

(
G−10 G1

)λ−1
=

1 + λµ 0 −λµ
0 (1− µ)λ 0
−λµ 0 λµ− 1

 .

Notice that the binomial series converges only for |µ| < 1. But the expression we got
for (G−10 G1)

x satisfies the properties of Section 2.1 and therefore the result for Gλ is
correct for arbitrary µ < 1, µ 6= 0. The conics Gλ are symmetric to the line (0, 1, 0)> and
touch G0, G1 in their contact point. The envelope E is obtained by eliminating λ from
∂
∂λ〈x,Gλx〉 = 0 and 〈x,Gλx〉 = 0. In the plane x3 = 1 one finds

(1 + x) ln(1− µ) = (1− x)µ(ln(− µ(x− 1)2

y2 ln(1− µ)
)− 1).

The figure shows, in the plane x3 = 1, the pencil generated by the unit circle G0 and an
ellipse G1 (both bold) together with the limiting lines (red) and the envelope E (blue).

14



q.e.d.

Theorem 4.5 (Case 5). Let G0, G1 be two conics with one first order contact point C.

Then, they generate an exponential pencil Gλ = G1

(
G−10 G1

)λ−1
iff G1 lies inside of

G0 or vice versa. This exponential pencil is unique. The family Gλ together with the
tangent in C forms a foliation of P \ {C}. Each Gλ touches a member of the linear pencil
gλ = λG1 + (1 − λ)G0 in two first order contact points. If G1 is inside of G0, then Gλ
converges to C for λ→∞, and to the tangent in C for λ→ −∞. If G0 lies inside of G1

it is the other way round.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

 1 0 −a
0 1 0
−a 0 2a− 1

 , a 6= 1, a 6= 0.

(see [8]), i.e., G0 is a unit circle centered in (0, 0, 1)> and G1 a circle with center (a, 0, 1)>

which touches G0 in (1, 0, 1)>. Then,

A := G−10 G1 =

1 0 −a
0 1 0
a 0 1− 2a

 .

With

T =

0 0 1/a
1 0 0
0 1 0

 , J =

1 0 0
0 1− a 1
0 0 1− a

 = I +

0 0 0
0 −a 1
0 0 −a


︸ ︷︷ ︸

=:α

we get G−10 G1 = I + TαT−1. As in Case 4, the real logarithm of A exists, and is unique,
iff 1 > a. This corresponds to the case where G0 is inside G1 or vice versa. Then, by the
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binomic series, we get

(G−10 G1)
x = (I + TαT−1)x = T

∞∑
k=0

(
x

k

)
αkT−1

=

(1− a)x−1(1 + a(x− 1)) 0 −(1− a)x−1ax
0µ 1 0

(1− a)x−1ax 0 (1− a)x−1(1− a(x+ 1))

 ,

and finally the exponential pencil

Gλ = G1

(
G−10 G1

)λ−1
=

(1− a)λ−1(1 + a(λ− 1)) 0 −(1− a)λ−1aλ
0 1 0

−(1− a)λ−1aλ 0 (1− a)λ−1(a(λ+ 1)− 1)

 .

Notice that the binomial series converges only for |a| < 1. However, the expression we
obtained for (G−10 G1)

x satisfies the properties of Section 2.1 and therefore, the result for
Gλ is correct for arbitrary a < 1, a 6= 0. The conics Gλ are symmetric to the line (0, 1, 0)>

and touch G0, G1 in C. The figure shows, in the plane x3 = 1, the pencil generated by
the unit circle G0 and a circle G1 inside of G0 (both bold), together with the tangent in
the contact point (red).

q.e.d.

Theorem 4.6 (Case 6). Let G0, G1 be two conics with two first order contact points C0, C1.

Then they generate an exponential pencil Gλ = G1

(
G−10 G1

)λ−1
iff G0 lies inside of G1 or

vice versa. This exponential pencil is unique, and each conic Gλ is a member of the linear
pencil gλ = λG1 + (1− λ)G0. If G1 is inside of G0, then Gλ and gλ have the same limit
for λ → ∞, and for λ → −∞ the limit of Gλ consists of the tangents in C0 and C1. If
G0 is inside of G1 it is the other way round.

The proof will actually give some more information.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

1 0 0
0 1− µ 0
0 0 −1

 , µ 6= 0, µ 6= 1,
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(see [8]). Then,

A := G−10 G1 =

1 0 0
1− µ 0

0 0 1

 .

Like in Case 2, A has only one symmetric, real logarithm if µ < 1. This inequality is
equivalent to the fact that one conic lies inside the other, and we get

(G−10 G1)
x =

1 0 0
(1− µ)x 0

0 0 1

 .

In this case, we obtain as exponential pencil

G1(G
−1
0 G1)

λ−1 =

1 0 0
(1− µ)λ 0

0 0 −1

 = g(1−(1−µ)λ)/µ.

The figure shows the pencil generated by the unit circle G0 and an ellipse G1 (both bold)
together with the limits (red).

q.e.d.

Theorem 4.7 (Case 7). Let G0, G1 be two conics with one intersection and one second

order contact. Then, they generate a unique exponential pencil Gλ = G1

(
G−10 G1

)λ−1
. The

family Gλ has a conic E as envelope. E belongs to the linear pencil of G2 − 3G0 − 6G1

and the double line joining the intersection point and the second order contact point of G0

and G1. Through every exterior point of E, except for the tangent in the contact point of
G0 and G1, there pass exactly two members of the exponential pencil Gλ.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

 1 −µ 0
−µ 1 µ
0 µ −1

 , µ 6= 0
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(see [8]). Then,

A := G−10 G1 =

 1 −µ 0
−µ 1 µ
0 −µ 1

 .

With

T =

1 0 1/µ2

0 −1/µ 0
1 0 0

 , J =

1 1 0
0 1 1
0 0 1

 = I +

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

=:α

we get G−10 G1 = I + TαT−1. By [4, Theorem 2], A has a unique real logarithm, and we
can use the binomic series (which, in this case, consists of only three terms), to obtain

(G−10 G1)
x = (I + TαT−1)x = T

∞∑
k=0

(
x

k

)
αkT−1

=

1 + x(x− 1)µ2/2 −xµ x(1− x)µ2/2
−xµ 1 xµ

x(x− 1)µ2/2 −xµ 1 + x(1− x)µ2/2

 ,

and finally the exponential pencil

Gλ = G1

(
G−10 G1

)λ−1
=

1 + λ(λ− 1)µ2/2 −λµ λ(1− λ)µ2/2
−λµ 1 µλ

λ(1− λ)µ2/2 µλ µ2λ(λ− 1)/2− 1

 .

The envelope E is obtained by eliminating λ from ∂
∂λ〈x,Gλx〉 = 0 and 〈x,Gλx〉 = 0. One

finds the conic

E =

µ2 − 8 4µ −µ2
4µ 8 −4µ
−µ2 −4µ 8 + µ2

 = G2 − 3G0 − 6G1 + 16

0 0 0
0 1 0
0 0 0

 .

It is then a simple calculation to check, that 〈x,Gλx〉 = 0 has exactly two solutions λ
whenever x is in the interior of E and away from the tangent in the contact point of G0

and G1. The figure shows in the plane x3 = 1 the pencil generated by the unit circle G0

and an ellipse G1 (both bold) together with the envelope E (blue).
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q.e.d.

Theorem 4.8 (Case 8). Let G0, G2 be two conics with one third order contact point C.

Then they generate a unique exponential pencil Gλ = G1

(
G−10 G1

)λ−1
which coincides with

the linear pencil gλ = λG1 + (1 − λ)G0. The pencil Gλ together with the tangent t in C
yields a foliation of the projective space outside C. For λ → ±∞, Gλ converges to t and
C respectively.

Proof. After applying a suitable projective map, we may assume that

G0 =

1 0 0
0 1 0
0 0 −1

 , G1 =

1 0 0
0 µ+ 1 −µ
0 −µ µ− 1

 , µ 6= 0

(see [8]). Then,

A := G−10 G1 =

1 0 0
0 µ+ 1 −µ
0 µ 1− µ

 .

With

T =

0 0 1
1 1/µ 0
1 0 0

 , J =

1 1 0
0 1 0
0 0 1

 = I +

0 1 0
0 0 0
0 0 0


︸ ︷︷ ︸

=:α

we get G−10 G1 = I + TαT−1. Again, we have a unique real logarithm of A and therefore,
by the binomic series (which, in this case, consists of only two terms), we get

(G−10 G1)
x = (I + TαT−1)x = T

∞∑
k=0

(
x

k

)
αkT−1 =

1 0 0
0 1 + xµ −xµ
0 xµ 1− xµ

 ,

and finally the exponential pencil

Gλ = G1

(
G−10 G1

)λ−1
=

1 0 0
0 µλ+ 1 −µλ
0 −µλ µλ− 1

 = gλ.

It is easy to check, that for every point P /∈ t there is exacly one λ such that 〈P,GλP 〉 = 0
The figure shows in the plane x3 = 1 the pencil generated by the unit circle G0 and a
hyperbola G1 (both bold) and the limits (red).
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q.e.d.

5 A triangle center

Starting with the circumcircle G0 and the incircle G1 of a triangle ∆0 = A0B0C0, we obtain
a discrete chain of conjugate conics Gn = G1(G

−1
0 G1)

n−1, for n = 0, 1, 2, . . .. Because of
Theorem 2.5, the triangle ∆1 joining the contact points A1, B1, C1 of the incircle of ∆0 is
tangent to G2. Iteration of this construction yields a sequence of triangles ∆n (see figure
below) having vertices on Gn and sides tangent to Gn+1. The corresponding contact points
on Gn+1 are the vertices of ∆n+1. This is a chain of dual Poncelet triangles in the sense
of [7].

According to Theorem 4.2, the linear and the exponental pencil of G0 and G1 have the
same limit point. Hence, the sequence of triangles ∆n converges together with the Gn
for n → ∞ to the dilation center X of ∆0: This is Triangle Center X(3513) in the
Encyclopedia of Triangle Centers [5]. This center has hereby a new interpretation. The
figure shows the situation for a triangle ∆0 (blue) and G0, G1 (bold) with the limit point
X (red).
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G1

∆0

G0

A0 B0

C0

A1

B1

C1

X

Since ∆0 is a Poncelet triangle for G0, G1, any other point A′0 on G0 defines a triangle ∆′0
with vertices A′0, B

′
0, C

′
0 on G0 with incircle G1. Each such triangle ∆′0 generates a chain

of dual Poncelet triangles with the same center X.
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valuable suggestions which greatly helped to improve the article.
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[10] Erkki Pesonen. Über die Spektraldarstellung quadratischer Formen in linearen
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