A Theorem of Fermat
on
Congruent Number Curves

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
lorenz.halbeisen@math.ethz.ch

Norbert Hungerbühler
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
norbert.hungerbuehler@math.ethz.ch

key-words: congruent numbers, Pythagorean triples

2010 Mathematics Subject Classification: 11G05 11D25

Abstract

A positive integer \(A \) is called a *congruent number* if \(A \) is the area of a right-angled triangle with three rational sides. Equivalently, \(A \) is a *congruent number* if and only if the congruent number curve \(y^2 = x^3 - A^2x \) has a rational point \((x, y) \in \mathbb{Q}^2 \) with \(y \neq 0 \). Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.

1 Introduction

A positive integer \(A \) is called a *congruent number* if \(A \) is the area of a right-angled triangle with three rational sides. So, \(A \) is congruent if and only if there exists a rational Pythagorean triple \((a, b, c)\) (i.e., \(a, b, c \in \mathbb{Q}, \ a^2 + b^2 = c^2 \), and \(ab \neq 0 \)), such that \(\frac{ab}{2} = A \). The sequence of integer congruent numbers starts with

\[5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, \ldots \]

For example, \(A = 7 \) is a congruent number, witnessed by the rational Pythagorean triple

\[\left(\frac{24}{5}, \frac{35}{12}, \frac{337}{60} \right). \]

It is well-known that \(A \) is a congruent number if and only if the cubic curve

\[C_A : y^2 = x^3 - A^2x \]

has a rational point \((x_0, y_0)\) with \(y_0 \neq 0 \). The cubic curve \(C_A \) is called a congruent number curve. This correspondence between rational points on congruent number curves and rational Pythagorean triples can be made explicit as follows: Let

\[C(\mathbb{Q}) := \{(x, y, A) \in \mathbb{Q} \times \mathbb{Q}^* \times \mathbb{Z}^* : y^2 = x^3 - A^2x \}, \]
where \(Q^* := Q \setminus \{0\}, \mathbb{Z}^* := \mathbb{Z} \setminus \{0\} \), and
\[
P(Q) := \{(a, b, c, A) \in Q^3 \times \mathbb{Z}^* : a^2 + b^2 = c^2 \text{ and } ab = 2A\}.
\]
Then, it is easy to check that
\[
\psi : P(Q) \to C(Q) \quad (a, b, c, A) \mapsto \left(\frac{A(b + c)}{a}, \frac{2A^2(b + c)}{a^2}, A\right)
\]
is bijective and
\[
\psi^{-1} : C(Q) \to P(Q) \quad (x, y, A) \mapsto \left(\frac{2xA}{y}, \frac{x^2 - A^2}{y}, \frac{x^2 + A^2}{y}, A\right).
\]
For positive integers \(A \), a triple \((a, b, c)\) of non-zero rational numbers is called a **rational Pythagorean** \(A \)-**triple** if \(a^2 + b^2 = c^2 \) and \(A = |ab| \). Notice that if \((a, b, c)\) is a rational Pythagorean \(A \)-triple, then \(A \) is a congruent number and \(|a|, |b|, |c|\) are the lengths of the sides of a right-angled triangle with area \(A \). Notice also that we allow \(a, b, c \) to be negative.

It is convenient to consider the curve \(C_A \) in the projective plane \(\mathbb{RP}^2 \), where the curve is given by
\[
C_A : y^2z = x^3 - A^2xz^2.
\]
On the points of \(C_A \), one can define a commutative, binary, associative operation “+”, where \(\theta \), the neutral element of the operation, is the projective point \((0, 1, 0)\) at infinity. More formally, if \(P \) and \(Q \) are two points on \(C_A \), then let \(P \# Q \) be the third intersection point of the line through \(P \) and \(Q \) with the curve \(C_A \). If \(P = Q \), the line through \(P \) and \(Q \) is replaced by the tangent in \(P \). Then \(P + Q \) is defined by stipulating
\[
P + Q := \theta \#(P \# Q),
\]
where for a point \(R \) on \(C_A \), \(\theta \# R \) is the point reflected across the \(x \)-axis. The following figure shows the congruent number curve \(C_A \) for \(A = 5 \), together with two points \(P \) and \(Q \) and their sum \(P + Q \).
More formally, for two points \(P = (x_0, y_0) \) and \(Q = (x_1, y_1) \) on a congruent number curve \(C_A \), the point \(P + Q = (x_2, y_2) \) is given by the following formulas:

- If \(x_0 \neq x_1 \), then
 \[
 x_2 = \lambda^2 - x_0 - x_1, \quad y_2 = \lambda(x_0 - x_2) - y_0,
 \]
 where
 \[
 \lambda := \frac{y_1 - y_0}{x_1 - x_0}.
 \]

- If \(P = Q \), i.e., \(x_0 = x_1 \) and \(y_0 = y_1 \), then
 \[
 x_2 = \lambda^2 - 2x_0, \quad y_2 = 3x_0\lambda - \lambda^3 - y_0, \tag{3}
 \]
 where
 \[
 \lambda := \frac{3x_0^2 - A^2}{2y_0}. \tag{4}
 \]

Below we shall write \(2 \cdot P \) instead of \(P + P \).

- If \(x_0 = x_1 \) and \(y_0 = -y_1 \), then \(P + Q := \mathcal{O} \). In particular, \((0, 0) + (0, 0) = (A, 0) + (-A, 0) = \mathcal{O}\).

- Finally, we define \(\mathcal{O} + P := P \) and \(P + \mathcal{O} := P \) for any point \(P \), in particular, \(\mathcal{O} + \mathcal{O} = \mathcal{O} \).

With the operation “+”, \((C_A, +)\) is an abelian group with neutral element \(\mathcal{O} \). Let \(C_A(Q) \) be the set of rational points on \(C_A \) together with \(\mathcal{O} \). It is easy to see that \((C_A(Q), +)\) is a subgroup of \((C_A, +)\). Moreover, it is well known that the group \((C_A(Q), +)\) is finitely generated. One can readily check that the three points \((0, 0)\) and \((\pm A, 0)\) are the only points on \(C_A \) of order 2, and one easily finds other points of finite order on \(C_A \). But do we find also rational points of finite order on \(C_A \)? This question is answered by the following

Theorem 1. If \(A \) is a congruent number and \((x_0, y_0)\) is a rational point on \(C_A \) with \(y_0 \neq 0 \), then the order of \((x_0, y_0)\) is infinite. In particular, if there exists one rational Pythagorean \(A \)-triple, then there exist infinitely many such triples.

The usual proofs of **Theorem 1** are quite involved. For example, Koblitz [4, Ch.I, §9, Prop.17] gives a proof using Dirichlet’s theorem on primes in an arithmetic progression, and in Chahal [1, Thm.3], a proof is given using the Lutz-Nagell theorem, which states that rational points of finite order are integral. However, both results, Dirichlet’s theorem and the Lutz-Nagell theorem, are quite deep results, and the aim of this article is to provide a simple proof of **Theorem 1** which relies on an elementary theorem of Fermat.

2 A Theorem of Fermat

In [2], Fermat gives an algorithm to construct different right-angled triangles with three rational sides having the same area (see also Hungerbühler [3]). Moreover, Fermat claims
that his algorithm yields infinitely many distinct such right-angled triangles. However, he
did not provide a proof for this claim. In this section, we first present Fermat’s algorithm
and then we show that this algorithm delivers infinitely many pairwise distinct rational
right-angled triangles of the same area.

FERMAT’S ALGORITHM. Assume that \(A \) is a congruent number, and that \((a_0, b_0, c_0)\) is
a rational Pythagorean \(A \)-triple, i.e., \(A = \frac{|ab_0|}{2} \). Then

\[
ap_1 := \frac{4c_0^2a_0b_0}{2c_0(a_0^2 - b_0^2)}, \quad b_1 := \frac{c_0^4 - 4a_0^2b_0^2}{2c_0(a_0^2 - b_0^2)}, \quad c_1 := \frac{c_0^4 + 4a_0^2b_0^2}{2c_0(a_0^2 - b_0^2)},
\]

(5)
is also a rational Pythagorean \(A \)-triple. Moreover, \(a_0b_0 = a_1b_1 \), i.e., if \((a_0, b_0, c_0, A) \in P(\mathbb{Q})\), then \((a_1, b_1, c_1, A) \in P(\mathbb{Q})\).

Proof. Let \(m := c_0^2 \), let \(n := 2a_0b_0 \), and let

\[
X := 2mn, \quad Y := m^2 - n^2, \quad Z := m^2 + n^2,
\]
in other words,

\[
X = 4c_0^2a_0b_0, \quad Y = c_0^4 - 4a_0^2b_0^2, \quad Z = c_0^4 + 4a_0^2b_0^2.
\]

Then obviously, \(X^2 + Y^2 = Z^2 \), and since \(a_0, b_0, c_0 \in \mathbb{Q} \), \((|X|, |Y|, |Z|)\) is a rational
Pythagorean triple, where the area of the corresponding right-angled triangle is

\[
\tilde{A} = \left| \frac{XY}{2} \right| = \left| 2a_0b_0c_0^2(c_0^4 - 4a_0^2b_0^2) \right|.
\]

Since \(a_0^2 + b_0^2 = c_0^2 \), we get \(c_0^4 = (a_0^2 + b_0^2)^2 = a_0^4 + 2a_0^2b_0^2 + b_0^4 \) and therefore

\[
c_0^4 - 4a_0^2b_0^2 = a_0^4 - 2a_0^2b_0^2 + b_0^4 = (a_0^2 - b_0^2)^2 > 0.
\]

So, for

\[
ap_1 = \frac{X}{2c_0(a_0^2 - b_0^2)}, \quad b_1 = \frac{Y}{2c_0(a_0^2 - b_0^2)}, \quad c_1 = \frac{Z}{2c_0(a_0^2 - b_0^2)},
\]

we have \(a_1^2 + b_1^2 = c_1^2 \) and

\[
\frac{a_1b_1}{2} = \frac{X}{2 \cdot 4c_0^2(a_0^2 - b_0^2)^2} = \frac{2a_0b_0c_0^2(c_0^4 - 4a_0^2b_0^2)}{4c_0^2(a_0^2 - b_0^2)^2} = \frac{2a_0b_0c_0^2(a_0^2 - b_0^2)^2}{4c_0^2(a_0^2 - b_0^2)^2} = \frac{a_0b_0}{2}.
\]

q.e.d.

THEOREM 3. Assume that \(A \) is a congruent number, that \((a_0, b_0, c_0)\) is a rational Pythagorean
\(A \)-triple, and for positive integers \(n \), let \((a_n, b_n, c_n)\) be the rational Pythagorean
\(A \)-triple we obtain by Fermat’s Algorithm from \((a_{n-1}, b_{n-1}, c_{n-1})\). Then for any distinct
non-negative integers \(n, n' \), we have \(|c_n| \neq |c_{n'}|\).

Proof. Let \(n \) be an arbitrary but fixed non-negative integer. Since \(A = \frac{|ab_0|}{2} \), we have
\(2A = |a_nb_n| \), and consequently

\[
a_n^2b_n^2 = 4A^2.
\]

(6)
Furthermore, since \(a_n^2 + b_n^2 = c_n^2 \), we have
\[
(a_n^2 + b_n^2)^2 = a_n^4 + 2a_n^2b_n^2 + b_n^4 = a_n^4 + 8A^2 + b_n^4 = c_n^4,
\]
and consequently we get
\[
c_n^4 - 16A^2 = a_n^4 - 8A^2 + b_n^4 = a_n^4 - 2a_n^2b_n^2 + b_n^4 = (a_n^2 - b_n^2)^2 > 0.
\]
Therefore,
\[
\sqrt{(a_n^2 - b_n^2)^2} = |a_n^2 - b_n^2| = \sqrt{c_n^4 - 16A^2},
\]
and with (5) and (6) we finally have
\[
|c_{n+1}| = \frac{c_n^4 + 16A^2}{2c_n \sqrt{c_n^4 - 16A^2}}.
\]

Now, assume that \(c_n = \frac{u}{v} \) where \(u \) and \(v \) are in lowest terms. We consider the following two cases:

u is odd: First, we write \(v = 2^k \cdot \tilde{v} \), where \(k \geq 0 \) and \(\tilde{v} \) is odd. In particular, \(c_n = \frac{u}{2^k \cdot \tilde{v}} \). Since \(c_{n+1} \) is rational, \(\sqrt{c_n^4 - 16A^2} \in \mathbb{Q} \). So,
\[
\sqrt{c_n^4 - 16A^2} = \frac{\sqrt{u^4 - 16A^2 \tilde{v}^4}}{v^4} = \frac{\bar{u}}{v^2}
\]
for a positive odd integer \(\bar{u} \). Then
\[
|c_{n+1}| = \frac{\frac{u^4 + 16A^2 u^4}{v^4}}{2u\bar{u}v^3} = \frac{\bar{u}}{2u\bar{u}v} = \frac{\bar{u}}{2u\bar{u}2^k \tilde{v}} = \frac{\bar{u}}{2^{k+1} u\bar{u}\tilde{v}} = \frac{u'}{2^{k+1} \cdot v'}
\]
where \(\bar{u}, u', v' \) are odd integers and \(\gcd(u', v') = 1 \). This shows that
\[
c_n = \frac{u}{2^k \cdot \tilde{v}} \Rightarrow |c_{n+1}| = \frac{u'}{2^{k+1} \cdot v'}
\]
where \(u, \tilde{v}, u', v' \) are odd.

u is even: First, we write \(u = 2^k \cdot \tilde{u} \), where \(k \geq 1 \) and \(\tilde{u} \) is odd. In particular, \(c_n = \frac{2^k \cdot \tilde{u}}{v} \), where \(v \) is odd. Similarly, \(A = 2^l \cdot \tilde{A} \), where \(l \geq 0 \) and \(\tilde{A} \) is odd. Then
\[
c_n^4 \pm 16A^2 = \frac{2^{4k} \cdot \tilde{u}^4 \pm 2^{4+2l} \tilde{A}^2 v^4}{v^4},
\]
where both numbers are of the form
\[
\frac{2^{2m} \tilde{u}}{v^4},
\]
where \(\tilde{u} \) is odd and \(4 \leq 2m \leq 2k \), i.e., \(2 \leq m \leq 2k \). Therefore,
\[
|c_{n+1}| = \frac{\frac{2^{2m} u_0 \cdot v^3}{2 \cdot 2^k \tilde{u} \cdot v^4 \cdot 2^m u_1}}{v'} = \frac{2^{m-k-1} \cdot u'}{v'},
\]
where \(u_0, u_1, u', v' \) are odd. Since \(m < 2k + 1 \), we have \(m - k - 1 < k \), and therefore we obtain

\[
c_n = \frac{2^k \cdot \tilde{u}}{v} \quad \Rightarrow \quad |c_{n+1}| = \frac{2^{k'} \cdot u'}{v'}
\]

where \(\tilde{u}, v, u', v' \) are odd and \(0 \leq k' < k \).

Both cases together show that whenever \(c_n = 2^k \cdot \frac{\tilde{u}}{v} \), where \(k \in \mathbb{Z} \) and \(u, v \) are odd, then \(|c_{n+1}| = 2^{k'} \cdot \frac{u'}{v'} \), where \(u', v' \) are odd and \(k' < k \). So, for any distinct non-negative integers \(n \) and \(n' \), \(|c_n| \neq |c_{n+1}| \). q.e.d.

The proof of THEOREM 3 gives us the following reformulation of FERMAT’S ALGORITHM:

Corollary 4. Assume that \(A \) is a congruent number, and that \((a_0, b_0, c_0)\) is a rational Pythagorean \(A \)-triple, i.e., \(A = \left\lfloor \frac{a_0 b_0}{2} \right\rfloor \). Then

\[
a_1 = \frac{4A c_0}{\sqrt{c_0^2 - 16A^2}}, \quad b_1 = \frac{\sqrt{c_0^4 - 16A^2}}{2c_0}, \quad c_1 = \frac{c_0^4 + 16A^2}{2c_0 \sqrt{c_0^4 - 16A^2}}.
\]

is also a rational Pythagorean \(A \)-triple.

Proof. Notice that \(c_0^4 - 4a_0^2b_0^2 = c_0^4 - 16A^2 \) and recall that \(|a_0^2 - b_0^2| = \sqrt{c_0^4 - 16A^2} \). q.e.d.

3 Doubling points with Fermat’s Algorithm

Before we prove THEOREM 1 (i.e., that congruent number curves do not contain rational points of finite order), we first prove that FERMAT’S ALGORITHM 2 is essentially doubling points on congruent number curves.

Lemma 5. Let \(A \) be a congruent number, let \((a_0, b_0, c_0)\) be a rational Pythagorean \(A \)-triple, and let \((a_1, b_1, c_1)\) be the rational Pythagorean \(A \)-triple obtained by FERMAT’S ALGORITHM from \((a_0, b_0, c_0)\). Furthermore, let \((x_0, y_0)\) and \((x_1, y_1)\) be the rational points on the curve \(C_A \) which correspond to \((a_0, b_0, c_0)\) and \((a_1, b_1, c_1)\), respectively. Then we have

\[
2 \ast (x_0, y_0) = (x_1, -y_1).
\]

Proof. Let \((a_0, b_0, c_0)\) be a rational Pythagorean \(A \)-triple. Then, according to (5), the rational Pythagorean \(A \)-triple \((a_1, b_1, c_1)\) which we obtain by FERMAT’S ALGORITHM is given by

\[
a_1 := \frac{4c_0^2a_0b_0}{2c_0(a_0^2 - b_0^2)}, \quad b_1 := \frac{c_0^4 - 4a_0^2b_0^2}{2c_0(a_0^2 - b_0^2)}, \quad c_1 := \frac{c_0^4 + 4a_0^2b_0^2}{2c_0(a_0^2 - b_0^2)}.
\]

Now, by (1), the coordinates of the rational point \((x_1, y_1)\) on \(C_A \) which corresponds to the
rational Pythagorean A-triple \((a_1, b_1, c_1)\) are given by

\[
x_1 = \frac{a_0 b_0 \cdot (b_1 + c_1)}{2 \cdot a_1} = \frac{a_0 b_0 \cdot 2 c_0^4}{2 \cdot 4 c_0^2 a_0 b_0} = \frac{c_0^2}{4},
\]

\[
y_1 = \frac{2 \left(\frac{a_0 b_0}{2}\right)^2 (b_1 + c_1)}{a_1^2} = \frac{1}{8} (a_0^2 - b_0^2) c_0.
\]

Let still \((a_0, b_0, c_0)\) be a rational Pythagorean A-triple. Then, again by (1), the corresponding rational point \((x_0, y_0)\) on \(C_A\) is given by

\[
x_0 = \frac{b_0 (b_0 + c_0)}{2}, \quad y_0 = \frac{b_0^2 (b_0 + c_0)}{2}.
\]

Now, as we have seen in (3) and (4), the coordinates of the point \((x'_1, y'_1) := 2 \cdot (x_0, y_0)\) are given by \(x'_1 = \lambda^2 - 2x_0, \quad y'_1 = 3x_0 \lambda - \lambda^3 - y_0\), where

\[
\lambda = \frac{3 \lambda^2 - \left(\frac{a_0 b_0}{2}\right)^2}{2y_0} = \frac{3(b_0 + c_0)^2 - a_0^2}{4(b_0 + c_0)} = \frac{3(b_0 + c_0)^2 - a_0^2}{4(b_0 + c_0)} = \frac{3(b_0 + c_0)^2 - (b_0^2 - c_0^2)}{4(b_0 + c_0)} = \frac{3b_0^2 + 6b_0 c_0 + 3c_0^2}{4(b_0 + c_0)} = \frac{2b_0^2 + 3b_0 c_0 + c_0^2}{2(b_0 + c_0)} = \frac{(2b_0 + c_0)(b_0 + c_0)}{2(b_0 + c_0)} = \frac{2b_0 + c_0}{2}.
\]

Hence,

\[
x'_1 = \lambda^2 - 2x_0 = \frac{(2b_0 + c_0)^2}{4} - b_0 (b_0 + c_0) = \frac{(4b_0^2 + 4b_0 c_0 + c_0^2) - (4b_0^2 + 4b_0 c_0)}{4} = \frac{c_0^2}{4}
\]

and

\[
y'_1 = 3x_0 \lambda - \lambda^3 - y_0 = \frac{1}{8} (2b_0^2 c_0 - c_0^3) = \frac{1}{8} (b_0^2 - a_0^2) c_0,
\]

i.e., \(x_1 = x'_1\) and \(y_1 = -y'_1\), as claimed. \(\text{q.e.d.}\)

With Lemma 5, we are now able to prove Theorem 1, which states that for a congruent number \(A\), the curve \(C_A : y^2 = x^3 - A^2x\) does not have rational points of finite order other than \((0, 0)\) and \((\pm A, 0)\).

Proof of Theorem 1. Assume that \(A\) is a congruent number, let \((x_0, y_0)\) be a rational point on \(C_A\) which \(y_0 \neq 0\), and let \((a_0, b_0, c_0)\) be the rational Pythagorean A-triple which corresponds to \((x_0, y_0)\) by (2). Furthermore, for positive integers \(n\), let \((a_n, b_n, c_n)\) be the rational Pythagorean A-triple we obtain by Fermat’s Algorithm from \((a_{n-1}, b_{n-1}, c_{n-1})\), and let \((x_n, y_n)\) be the rational point on \(C_A\) which corresponds to the rational Pythagorean A-triple \((a_n, b_n, c_n)\) by (1).
By the proof of Lemma 5 we know that the x-coordinate of $2 \ast (x_n, y_n)$ is equal to $\frac{c_n^2}{4}$, and by Theorem 3 we have that for any distinct non-negative integers n, n', $|c_n| \neq |c_{n'}|$. Hence, for all distinct non-negative integers n, n' we have
\[(x_n, y_n) \neq (x_{n'}, y_{n'}),\]
which shows that the order of (x_0, y_0) is infinite. \[\quad \text{q.e.d.}\]

References

