A Theorem of Fermat

on

Congruent Number Curves

Lorenz Halbeisen

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland lorenz.halbeisen@math.ethz.ch

Norbert Hungerbühler

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland norbert.hungerbuehler@math.ethz.ch

key-words: congruent numbers, Pythagorean triples

2010 Mathematics Subject Classification: 11G05 11D25

Abstract

A positive integer A is called a *congruent number* if A is the area of a right-angled triangle with three rational sides. Equivalently, A is a *congruent number* if and only if the congruent number curve $y^2 = x^3 - A^2x$ has a rational point $(x,y) \in \mathbb{Q}^2$ with $y \neq 0$. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.

1 Introduction

A positive integer A is called a **congruent number** if A is the area of a right-angled triangle with three rational sides. So, A is congruent if and only if there exists a rational Pythagorean tripel (a,b,c) (i.e., $a,b,c \in \mathbb{Q}$, $a^2+b^2=c^2$, and $ab \neq 0$), such that $\frac{ab}{2}=A$. The sequence of integer congruent numbers starts with

$$5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, \dots$$

For example, A = 7 is a congruent number, witnessed by the rational Pythagorean triple

$$\left(\frac{24}{5}, \frac{35}{12}, \frac{337}{60}\right)$$
.

It is well-known that A is a congruent number if and only if the cubic curve

$$C_A: y^2 = x^3 - A^2x$$

has a rational point (x_0, y_0) with $y_0 \neq 0$. The cubic curve C_A is called a **congruent** number curve. This correspondence between rational points on congruent number curves and rational Pythagorean triples can be made explicit as follows: Let

$$C(\mathbb{Q}) := \{(x, y, A) \in \mathbb{Q} \times \mathbb{Q}^* \times \mathbb{Z}^* : y^2 = x^3 - A^2 x\},\$$

where $\mathbb{Q}^* := \mathbb{Q} \setminus \{0\}, \mathbb{Z}^* := \mathbb{Z} \setminus \{0\}$, and

$$P(\mathbb{Q}) := \{(a, b, c, A) \in \mathbb{Q}^3 \times \mathbb{Z}^* : a^2 + b^2 = c^2 \text{ and } ab = 2A\}.$$

Then, it is easy to check that

$$\psi: P(\mathbb{Q}) \to C(\mathbb{Q})$$

$$(a, b, c, A) \mapsto \left(\frac{A(b+c)}{a}, \frac{2A^2(b+c)}{a^2}, A\right)$$
(1)

is bijective and

$$\psi^{-1} : C(\mathbb{Q}) \to P(\mathbb{Q})$$

$$(x, y, A) \mapsto \left(\frac{2xA}{y}, \frac{x^2 - A^2}{y}, \frac{x^2 + A^2}{y}, A\right).$$
(2)

For positive integers A, a triple (a, b, c) of non-zero rational numbers is called a **rational Pythagorean** A-**triple** if $a^2 + b^2 = c^2$ and $A = \left|\frac{ab}{2}\right|$. Notice that if (a, b, c) is a rational Pythagorean A-triple, then A is a congruent number and |a|, |b|, |c| are the lengths of the sides of a right-angled triangle with area A. Notice also that we allow a, b, c to be negative.

It is convenient to consider the curve C_A in the projective plane $\mathbb{R}P^2$, where the curve is given by

$$C_A: y^2z = x^3 - A^2xz^2.$$

On the points of C_A , one can define a commutative, binary, associative operation "+", where \mathscr{O} , the neutral element of the operation, is the projective point (0,1,0) at infinity. More formally, if P and Q are two points on C_A , then let P#Q be the third intersection point of the line through P and Q with the curve C_A . If P = Q, the line through P and Q is replaced by the tangent in P. Then P + Q is defined by stipulating

$$P + Q := \mathscr{O} \# (P \# Q),$$

where for a point R on C_A , $\mathcal{O} \# R$ is the point reflected across the x-axis. The following figure shows the congruent number curve C_A for A=5, together with two points P and Q and their sum P+Q.

More formally, for two points $P = (x_0, y_0)$ and $Q = (x_1, y_1)$ on a congruent number curve C_A , the point $P + Q = (x_2, y_2)$ is given by the following formulas:

• If $x_0 \neq x_1$, then

$$x_2 = \lambda^2 - x_0 - x_1, \qquad y_2 = \lambda(x_0 - x_2) - y_0,$$

where

$$\lambda := \frac{y_1 - y_0}{x_1 - x_0}.$$

• If P = Q, i.e., $x_0 = x_1$ and $y_0 = y_1$, then

$$x_2 = \lambda^2 - 2x_0, \qquad y_2 = 3x_0\lambda - \lambda^3 - y_0,$$
 (3)

where

$$\lambda := \frac{3x_0^2 - A^2}{2y_0}. (4)$$

Below we shall write 2 * P instead of P + P.

- If $x_0 = x_1$ and $y_0 = -y_1$, then $P + Q := \mathcal{O}$. In particular, $(0,0) + (0,0) = (A,0) + (A,0) = (-A,0) + (-A,0) = \mathcal{O}$.
- Finally, we define $\mathscr{O}+P:=P$ and $P+\mathscr{O}:=P$ for any point P, in particular, $\mathscr{O}+\mathscr{O}=\mathscr{O}.$

With the operation "+", $(C_A, +)$ is an abelian group with neutral element \mathscr{O} . Let $C_A(\mathbb{Q})$ be the set of rational points on C_A together with \mathscr{O} . It is easy to see that $(C_A(\mathbb{Q}), +)$ is a subgroup of $(C_A, +)$. Moreover, it is well known that the group $(C_A(\mathbb{Q}), +)$ is finitely generated. One can readily check that the three points (0,0) and $(\pm A,0)$ are the only points on C_A of order 2, and one easily finds other points of finite order on C_A . But do we find also rational points of finite order on C_A ? This question is answered by the following

THEOREM 1. If A is a congruent number and (x_0, y_0) is a rational point on C_A with $y_0 \neq 0$, then the order of (x_0, y_0) is infinite. In particular, if there exists one rational Pythagorean A-triple, then there exist infinitely many such triples.

The usual proofs of Theorem 1 are quite involved. For example, Koblitz [4, Ch. I, § 9, Prop. 17] gives a proof using Dirichlet's theorem on primes in an arithmetic progression, and in Chahal [1, Thm. 3], a proof is given using the Lutz-Nagell theorem, which states that rational points of finite order are integral. However, both results, Dirichlet's theorem and the Lutz-Nagell theorem, are quite deep results, and the aim of this article is to provide a simple proof of Theorem 1 which relies on an elementary theorem of Fermat.

2 A Theorem of Fermat

In [2], Fermat gives an algorithm to construct different right-angled triangles with three rational sides having the same area (see also Hungerbühler [3]). Moreover, Fermat claims

that his algorithm yields infinitely many distinct such right-angled triangles. However, he did not provide a proof for this claim. In this section, we first present Fermat's algorithm and then we show that this algorithm delivers infinitely many pairwise distinct rational right-angled triangles of the same area.

FERMAT'S ALGORITHM 2. Assume that A is a congruent number, and that (a_0, b_0, c_0) is a rational Pythagorean A-triple, i.e., $A = \left| \frac{a_0 b_0}{2} \right|$. Then

$$a_1 := \frac{4c_0^2 a_0 b_0}{2c_0(a_0^2 - b_0^2)}, \quad b_1 := \frac{c_0^4 - 4a_0^2 b_0^2}{2c_0(a_0^2 - b_0^2)}, \quad c_1 := \frac{c_0^4 + 4a_0^2 b_0^2}{2c_0(a_0^2 - b_0^2)},$$
 (5)

is also a rational Pythagorean A-triple. Moreover, $a_0b_0 = a_1b_1$, i.e., if $(a_0,b_0,c_0,A) \in P(\mathbb{Q})$, then $(a_1,b_1,c_1,A) \in P(\mathbb{Q})$.

Proof. Let $m := c_0^2$, let $n := 2a_0b_0$, and let

$$X := 2mn$$
, $Y := m^2 - n^2$, $Z := m^2 + n^2$,

in other words,

$$X = 4c_0^2 a_0 b_0, \quad Y = c_0^4 - 4a_0^2 b_0^2, \quad Z = c_0^4 + 4a_0^2 b_0^2.$$

Then obviously, $X^2 + Y^2 = Z^2$, and since $a_0, b_0, c_0 \in \mathbb{Q}$, (|X|, |Y|, |Z|) is a rational Pythagorean triple, where the area of the corresponding right-angled triangle is

$$\tilde{A} = \left| \frac{XY}{2} \right| = \left| 2a_0b_0c_0^2(c_0^4 - 4a_0^2b_0^2) \right|.$$

Since $a_0^2 + b_0^2 = c_0^2$, we get $c_0^4 = (a_0^2 + b_0^2)^2 = a_0^4 + 2a_0^2b_0^2 + b_0^4$ and therefore

$$c_0^4 - 4a_0^2b_0^2 \ = \ a_0^4 - 2a_0^2b_0^2 + b_0^4 \ = \ (a_0^2 - b_0^2)^2 > 0.$$

So, for

$$a_1 = \frac{X}{2c_0(a_0^2 - b_0^2)}, \quad b_1 = \frac{Y}{2c_0(a_0^2 - b_0^2)}, \quad c_1 = \frac{Z}{2c_0(a_0^2 - b_0^2)},$$

we have $a_1^2 + b_1^2 = c_1^2$ and

$$\frac{a_1b_1}{2} \ = \ \frac{XY}{2\cdot 4c_0^2(a_0^2-b_0^2)^2} \ = \ \frac{2a_0b_0c_0^2(c_0^4-4a_0^2b_0^2)}{4c_0^2(a_0^2-b_0^2)^2} \ = \ \frac{2a_0b_0c_0^2(a_0^2-b_0^2)^2}{4c_0^2(a_0^2-b_0^2)^2} \ = \ \frac{a_0b_0}{2}.$$

q.e.d.

THEOREM 3. Assume that A is a congruent number, that (a_0, b_0, c_0) is a rational Pythagorean A-triple, and for positive integers n, let (a_n, b_n, c_n) be the rational Pythagorean A-triple we obtain by FERMAT'S ALGORITHM from $(a_{n-1}, b_{n-1}, c_{n-1})$. Then for any distinct non-negative integers n, n', we have $|c_n| \neq |c_{n'}|$.

Proof. Let n be an arbitrary but fixed non-negative integer. Since $A = \left| \frac{a_n b_n}{2} \right|$, we have $2A = |a_n b_n|$, and consequently

$$a_n^2 b_n^2 = 4A^2. (6)$$

Furthermore, since $a_n^2 + b_n^2 = c_n^2$, we have

$$(a_n^2 + b_n^2)^2 = a_n^4 + 2a_n^2b_n^2 + b_n^4 = a_n^4 + 8A^2 + b_n^4 = c_n^4,$$

and consequently we get

$$a_n^4 - 16A^2 = a_n^4 - 8A^2 + b_n^4 = a_n^4 - 2a_n^2b_n^2 + b_n^4 = (a_n^2 - b_n^2)^2 > 0$$

Therefore,

$$\sqrt{(a_n^2 - b_n^2)^2} = |a_n^2 - b_n^2| = \sqrt{c_n^4 - 16A^2}$$

and with (5) and (6) we finally have

$$|c_{n+1}| = \frac{c_n^4 + 16A^2}{2c_n\sqrt{c_n^4 - 16A^2}}.$$

Now, assume that $c_n = \frac{u}{v}$ where u and v are in lowest terms. We consider the following two cases:

u is odd: First, we write $v=2^k\cdot \tilde{v}$, where $k\geq 0$ and \tilde{v} is odd. In particular, $c_n=\frac{u}{2^k\cdot \tilde{v}}$. Since c_{n+1} is rational, $\sqrt{c_n^4-16A^2}\in\mathbb{Q}$. So,

$$\sqrt{c_n^4 - 16A^2} = \sqrt{\frac{u^4 - 16A^2v^4}{v^4}} = \frac{\tilde{u}}{v^2}$$

for a positive odd integer \tilde{u} . Then

$$|c_{n+1}| = \frac{\frac{u^4 + 16A^2v^4}{v^4}}{\frac{2u\tilde{u}}{3}} = \frac{\bar{u}}{2u\tilde{u}v} = \frac{\bar{u}}{2u\tilde{u}2^k\tilde{v}} = \frac{\bar{u}}{2^{k+1}u\tilde{u}\tilde{v}} = \frac{u'}{2^{k+1}\cdot v'}$$

where \bar{u}, u', v' are odd integers and $\gcd(u', v') = 1$. This shows that

$$c_n = \frac{u}{2^k \cdot \tilde{v}} \quad \Rightarrow \quad |c_{n+1}| = \frac{u'}{2^{k+1} \cdot v'}$$

where u, \tilde{v}, u', v' are odd.

u is even: First, we write $u=2^k\cdot \tilde{u}$, where $k\geq 1$ and \tilde{u} is odd. In particular, $c_n=\frac{2^k\cdot \tilde{u}}{v}$, where v is odd. Similarly, $A=2^l\cdot \tilde{A}$, where $l\geq 0$ and \tilde{A} is odd. Then

$$c_n^4 \pm 16A^2 = \frac{2^{4k} \cdot \tilde{u}^4 \pm 2^{4+2l}\tilde{A}^2v^4}{v^4},$$

where both numbers are of the form

$$\frac{2^{2m}\bar{u}}{v^4}$$

where \bar{u} is odd and $4 \leq 2m \leq 4k$, i.e., $2 \leq m \leq 2k$. Therefore,

$$|c_{n+1}| = \frac{2^{2m}u_0 \cdot v^3}{2 \cdot 2^k \tilde{u} \cdot v^4 \cdot 2^m u_1} = \frac{2^{m-k-1} \cdot u'}{v'},$$

where u_0, u_1, u', v' are odd. Since m < 2k + 1, we have m - k - 1 < k, and therefore we obtain

$$c_n = \frac{2^k \cdot \tilde{u}}{v} \quad \Rightarrow \quad |c_{n+1}| = \frac{2^{k'} \cdot u'}{v'}$$

where \tilde{u}, v, u', v' are odd and $0 \le k' < k$.

Both cases together show that whenever $c_n = 2^k \cdot \frac{u}{v}$, where $k \in \mathbb{Z}$ and u, v are odd, then $|c_{n+1}| = 2^{k'} \cdot \frac{u'}{v'}$, where u', v' are odd and k' < k. So, for any distinct non-negative integers n and n', $|c_n| \neq |c_{n+1}|$.

The proof of Theorem 3 gives us the following reformulation of Fermat's Algorithm:

COROLLARY 4. Assume that A is a congruent number, and that (a_0, b_0, c_0) is a rational Pythagorean A-triple, i.e., $A = \left| \frac{a_0 b_0}{2} \right|$. Then

$$a_1 = \frac{4Ac_0}{\sqrt{c_0^4 - 16A^2}}, \quad b_1 = \frac{\sqrt{c_0^4 - 16A^2}}{2c_0}, \quad c_1 = \frac{c_0^4 + 16A^2}{2c_0\sqrt{c_0^4 - 16A^2}},$$

is also a rational Pythagorean A-triple.

Proof. Notice that $c_0^4 - 4a_0^2b_0^2 = c_0^4 - 16A^2$ and recall that $|a_0^2 - b_0^2| = \sqrt{c_0^4 - 16A^2}$. q.e.d.

3 Doubling points with Fermat's Algorithm

Before we prove Theorem 1 (i.e., that congruent number curves do not contain rational points of finite order), we first prove that Fermat's Algorithm 2 is essentially doubling points on congruent number curves.

LEMMA 5. Let A be a congruent number, let (a_0, b_0, c_0) be a rational Pythagorean A-triple, and let (a_1, b_1, c_1) be the rational Pythagorean A-triple obtained by FERMAT'S ALGORITHM from (a_0, b_0, c_0) . Furthermore, let (x_0, y_0) and (x_1, y_1) be the rational points on the curve C_A which correspond to (a_0, b_0, c_0) and (a_1, b_1, c_1) , respectively. Then we have

$$2*(x_0,y_0)=(x_1,-y_1).$$

Proof. Let (a_0, b_0, c_0) be a rational Pythagorean A-triple. Then, according to (5), the rational Pythagorean A-triple (a_1, b_1, c_1) which we obtain by FERMAT'S ALGORITHM is given by

$$a_1 := \frac{4c_0^2 a_0 b_0}{2c_0(a_0^2 - b_0^2)}, \quad b_1 := \frac{c_0^4 - 4a_0^2 b_0^2}{2c_0(a_0^2 - b_0^2)}, \quad c_1 := \frac{c_0^4 + 4a_0^2 b_0^2}{2c_0(a_0^2 - b_0^2)}.$$

Now, by (1), the coordinates of the rational point (x_1, y_1) on C_A which corresponds to the

rational Pythagorean A-triple (a_1, b_1, c_1) are given by

$$x_1 = \frac{a_0 b_0 \cdot (b_1 + c_1)}{2 \cdot a_1} = \frac{a_0 b_0 \cdot 2c_0^4}{2 \cdot 4c_0^2 a_0 b_0} = \frac{c_0^2}{4},$$
$$y_1 = \frac{2(\frac{a_0 b_0}{2})^2 (b_1 + c_1)}{a_1^2} = \frac{1}{8}(a_0^2 - b_0^2)c_0.$$

Let still (a_0, b_0, c_0) be a rational Pythagorean A-triple. Then, again by (1), the corresponding rational point (x_0, y_0) on C_A is given by

$$x_0 = \frac{b_0(b_0 + c_0)}{2}, \qquad y_0 = \frac{b_0^2(b_0 + c_0)}{2}.$$

Now, as we have seen in (3) and (4), the coordinates of the point $(x'_1, y'_1) := 2 * (x_0, y_0)$ are given by $x'_1 = \lambda^2 - 2x_0$, $y'_1 = 3x_0\lambda - \lambda^3 - y_0$, where

$$\lambda = \frac{3x_0^2 - (\frac{a_0b_0}{2})^2}{2y_0} = \frac{\frac{3b_0^2(b_0 + c_0)^2 - a_0^2b_0^2}{4}}{b_0^2(b_0 + c_0)} = \frac{3(b_0 + c_0)^2 - a_0^2}{4(b_0 + c_0)} = \frac{3(b_0 + c_0)^2 + (b_0^2 - c_0^2)}{4(b_0 + c_0)} = \frac{(3b_0^2 + 6b_0c_0 + 3c_0^2) + (b_0^2 - c_0^2)}{4(b_0 + c_0)} = \frac{4b_0^2 + 6b_0c_0 + 2c_0^2}{4(b_0 + c_0)} = \frac{2b_0^2 + 3b_0c_0 + c_0^2}{2(b_0 + c_0)} = \frac{(2b_0 + c_0)(b_0 + c_0)}{2(b_0 + c_0)} = \frac{(2b_0 + c_0)}{2}.$$

Hence,

$$x_1' = \lambda^2 - 2x_0 = \frac{(2b_0 + c_0)^2}{4} - b_0(b_0 + c_0) = \frac{(4b_0^2 + 4b_0c_0 + c_0^2) - (4b_0^2 + 4b_0c_0)}{4} = \frac{c_0^2}{4}$$

and

$$y_1' = 3x_0\lambda - \lambda^3 - y_0 = \frac{1}{8}(2b_0^2c_0 - c_0^3) = \frac{1}{8}(b_0^2 - a_0^2)c_0,$$

i.e., $x_1 = x'_1$ and $y_1 = -y'_1$, as claimed.

q.e.d.

With LEMMA 5, we are now able to prove THEOREM 1, which states that for a congruent number A, the curve $C_A: y^2 = x^3 - A^2x$ does not have rational points of finite order other than (0,0) and $(\pm A,0)$.

Proof of Theorem 1. Assume that A is a congruent number, let (x_0, y_0) be a rational point on C_A which $y_0 \neq 0$, and let (a_0, b_0, c_0) be the rational Pythagorean A-triple which corresponds to (x_0, y_0) by (2). Furthermore, for positive integers n, let (a_n, b_n, c_n) be the rational Pythagorean A-triple we obtain by FERMAT'S ALGORITHM from $(a_{n-1}, b_{n-1}, c_{n-1})$, and let (x_n, y_n) be the rational point on C_A which corresponds to the rational Pythagorean A-triple (a_n, b_n, c_n) by (1).

By the proof of LEMMA 5 we know that the x-coordinate of $2 * (x_n, y_n)$ is equal to $\frac{c_n^2}{4}$, and by THEOREM 3 we have that for any distinct non-negative integers $n, n', |c_n| \neq |c_{n'}|$. Hence, for all distinct non-negative integers n, n' we have

$$(x_n, y_n) \neq (x_{n'}, y_{n'}),$$

which shows that the order of (x_0, y_0) is infinite.

q.e.d.

References

- [1] Jasbir S. Chahal, Congruent numbers and elliptic curves, American Mathematical Monthly, vol. 113 (2006), 308–317.
- [2] PIERRE DE FERMAT, Fermat's Diophanti Alex. Arith., 1670, in Œuvres III (Ministère de l'instruction publique, ed.), Gauthier-Villars et fils, Paris, 1896, pp. 254–256.
- [3] Norbert Hungerbühler, A proof of a conjecture of Lewis Carroll, Mathematics Magazine, vol. 69 (1996), 182–184.
- [4] NEAL KOBLITZ, *Introduction to Elliptic Curves and Modular Forms*, 2nd ed., [Graduate Texts in Mathematics 97], Springer-Verlag, New York, 1993.