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A Worked out Galois Group for the
Classroom

Lorenz Halbeisen and Norbert Hungerbühler

Abstract. Let f = X6 − 3X2 − 1 ∈ Q[X] and let Lf be the splitting of f over Q. We show
by hand that the Galois group Gal(Lf/Q) of the Galois extension Lf/Q is isomorphic to the
alternating groupA4. Moreover, we show that the six roots of f correspond to the six edges of
a tetrahedron and that the four roots of the polynomial X4 + 18X2 − 72X + 81 correspond
to the four faces of a tetrahedron, which allows us to determine all eight proper intermediate
fields of the extension Lf/Q.

1. INTRODUCTION. Teaching Galois Theory, one often has the problem that the
Galois group of a field extension of Q is either quite simple or too difficult to be
computed by hand. An example of a Galois group which is isomorphic to the dihedral
group of order 8 can be found in Stewart [3, Ch. 13]. Introducing this example, Stewart
writes that this Galois group has an “archetypal quality, since a simpler example would
be too small to illustrate the theory adequately, and anything more complicated would
be unwieldy” [3, p. 155]. Moreover, it is usually rather tedious to compute the Galois
group along with the intermediate fields and their relations.

The aim of this note is to provide a worked out field extension over Q whose Ga-
lois group is isomorphic to the alternating group A4 (i.e., to the symmetry group of
the tetrahedron), and to compute by hand all intermediate fields and their relations.
If we do not require that the ground field is Q, a canonical way to obtain a field ex-
tension L/K with Gal(L/K) ∼= A4 for some fields L ) K ) Q, is to start with a
polynomial f ∈ Q[X] of degree 4 such that the Galois group of the field extension
L/Q— where L is the splitting field of f over Q— is isomorphic to the symmetry
group S4. Then, since A4 E S4, by the Galois correspondence we find a quadratic ex-
tension K of Q such that Gal(L/K) ∼= A4 (see also Osofsky [2, p. 222]). However,
since the ground field K of the field extension L/K is already a field extension of Q,
it is quite exhausting to compute Gal(L/K) and the intermediate fields of L/K by
hand.

Before we present our example in the next section, we set up the terminology (ac-
cording to [1, 3]), where we assume that the reader is familiar with the basic facts of
Galois Theory with respect to field extensions over Q.

If f ∈ Q[X] is a polynomial, then the smallest subfield of C containing all of the
roots of f is called the splitting field of f over Q. The splitting field of f over Q is
unique up to isomorphism. If L/Q is a field extension and Q ⊆ M ⊆ L is a field,
then M is called an intermediate field of L/Q. If M ⊆ L are fields, then the group
of all automorphisms of L which fix M point-wise is the Galois group of the field
extension L/M , denoted Gal(L/M). Let f ∈ Q[X] be a polynomial, Lf its splitting
field over Q, and M an intermediate subfield, so Q ⊆ M ⊆ Lf . Let g ∈ M [X] and
let Kg ⊆ Lf be its splitting field over M . Then Kg/M is a Galois extension. We will
only consider Galois extensions of this type.
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Now we can state the main theorem of Galois Theory.
THE GALOIS CORRESPONDENCE. Let L/Q be an arbitrary Galois extension. Then
the following holds:

• To each subgroup H 6 Gal(L/Q) there exists an intermediate field LH , such that

LH =
{
a ∈ L : ∀σ ∈ H

(
σ(a) = a

)}
.

• For each intermediate field Q ⊆M ⊆ L we have Gal(L/M) 6 Gal(L/Q) and

LGal(L/M) = M.

• Let M1 and M2 be intermediate fields of some field extension L/Q, and let H1 :=
Gal(L/M1). If, for some σ ∈ Gal(L/Q), we have Gal(L/M2) = σH1σ

−1, then
the fields M1 and M2 are conjugate.

• If Q ⊆ M ⊆ L is such that Gal(L/M) is a normal subgroup of Gal(L/Q) (i.e.,
the conjugate class ofM contains onlyM ), then the field extensionM/Q is Galois
and

Gal(M/Q) ∼= Gal(L/Q)/Gal(L/M).

2. A FIELD EXTENSION L/Q WITH GAL(L/Q) ∼= A4. We start with the
polynomial f = X6 − 3X2 − 1 and consider its splitting field Lf overQ. The goal is
to show that Gal(Lf/Q) ∼= A4, where A4 is the alternating group of degree 4, which
is isomorphic to the symmetry group of the tetrahedron.

In order to compute the roots of f , we replace X2 by ξ and first compute the roots
of the irreducible polynomial g = ξ3 − 3ξ − 1. To see that g is irreducible, consider
the polynomial

g̃ := (ξ − 2)3 − 3(ξ − 2)− 1 = ξ3 − 6ξ2 + 9ξ − 3.

By the Eisenstein-Schönemann Criterion (with p = 3), we see that g̃ is irreducible
over Q, and so is g.

Observe that every complex number ξ 6= 0 can be written as ξ = α+ β with α3 +
β3 = 1. Indeed, for β = ξ − α we have β3 = ξ3 − 3ξ2α+ 3ξα2 − α3 and hence

1 = α3 + β3 = ξ(ξ2 − 3ξα+ 3α2) .

This is a quadratic equation for α ∈ C with a solution if ξ 6= 0. In particular, a root ξ
of g can be written in the form ξ = α+ β with α3 + β3 = 1. Then

g = (α+ β)3 − 3(α+ β)− 1 = α3 + 3α2β + 3αβ3 + β3 − 3α− 3β − 1 = 0.

So, since α3 + β3 = 1, we have

3αβ(α+ β)− 3(α+ β) = 0

and since α+ β 6= 0, we obtain

αβ = 1, β =
1

α
, and α3 +

1

α3
= 1.
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If we set z := α3, then z + 1
z

= 1 and hence z2 − z + 1 = 0. We choose the solution

z1 = 1
2

+ i
√

3
2

= eπi/3.

Now α is a third root of z1 and we choose α = eπi/9. Since β = 1
α

= ᾱ, we obtain

ξ1 := ξ = α+ ᾱ = 2 cos(π/9).

Then

ξ3
1 = (α+ ᾱ)3 = α3 + 3α2 ᾱ︸︷︷︸

=α

+ 3α ᾱ2︸︷︷︸
=ᾱ

+ ᾱ3 = 3(α+ ᾱ︸ ︷︷ ︸
=ξ1

) + α3 + ᾱ3︸ ︷︷ ︸
=1

= 3 ξ1 + 1

which shows that ξ1 is indeed a root of g = ξ3 − 3ξ − 1. The two remaining third
roots of z1 are

e2πi/3 · eπi/9 = e7πi/9 = α7,

e4πi/3 · eπi/9 = e13πi/9 = α13.

Hence, the roots of g are given by

ξ1 = α+ ᾱ = 2 cos(π/9),

ξ2 = α7 + ᾱ7 = 2 cos(7π/9),

ξ3 = α13 + ᾱ13 = 2 cos(13π/9).

Thus, g = ξ3 − 3ξ − 1 = (ξ − ξ1)(ξ − ξ2)(ξ − ξ3), which shows that ξ1 ξ2 ξ3 = 1,
ξ1 ξ2 + ξ2 ξ3 + ξ3 ξ1 = −3, and ξ1 + ξ2 + ξ3 = 0.

Notice that

−ξ2 = eπi(e7πi/9 + e−7πi/9) = e16πi/9 + e2πi/9 = e−2πi/9 + e2πi/9 = α2 + ᾱ2,

and similarly we have −ξ3 = α4 + ᾱ4. Thus, we have

2− ξ2
1 = 2− (α+ ᾱ)2 = 2− (2α ᾱ︸︷︷︸

=1

+ α2 + ᾱ2︸ ︷︷ ︸
=−ξ2

) = 2− (2− ξ2) = ξ2 .

Similarly we get 2 − ξ2
2 = ξ3 and 2 − ξ2

3 = ξ1. This shows that Q(ξ1) = Q(ξ2) =
Q(ξ3). In particular, Q(ξ1) is the splitting field of g over Q. So, for Lg := Q(ξ1), the
field extension Lg/Q is Galois.

For convenience in later arguments, we rewrite the three roots of g as follows:

ξ1 = α+ ᾱ = 2 cos(π/9)

ξ2 = 2 cos(7π/9) = −2 cos(7π/9 + π) = −2 cos(2π/9)

ξ3 = 2 cos(13π/9) = −2 cos(13π/9 + π) = −2 cos(4π/9) .

Then by construction we obtain the six pairwise distinct roots of f as ±
√
ξk for

1 ≤ k ≤ 3. In particular, we define

ζ1 :=
√

2 cos(π/9) ζ4 := −ζ1

ζ2 := i
√

2 cos(2π/9) ζ5 := −ζ2

ζ3 := i
√

2 cos(4π/9) ζ6 := −ζ3 .
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This shows that

f = (X − ζ1)(X + ζ1)(X − ζ2)(X + ζ2)(X − ζ3)(X + ζ3).

Notice that since ξ1 ξ2 ξ3 = 1, we have ζ2
1 ζ

2
2 ζ

2
3 = 1, which implies that the product

(±ζ1)(±ζ2)(±ζ3) = ±1. Moreover, by definition of ζ1, ζ2, ζ3 we have ζ1 ζ2 ζ3 =
−1.

Now, let us show that f is irreducible over Q. For this, assume on the contrary
that f = p · q for some non-constant polynomials p, q ∈ Q[X]. If deg(p) = 1, e.g.,
p = (X − ζ1), then ζ1 ∈ Q, which is obviously a contradiction. Assume now that
deg(p) = 2, e.g., p = (X − ζ1)(X + ζ1) = X2 − ξ1 or p = (X − ζ1)(X − ζ2) =
X2 − (ζ1 + ζ2)X + ζ1 ζ2. Then, in the former case this would imply ξ1 ∈ Q, and in
the latter case this would imply ζ1 ζ2 = − 1

ζ3
∈ Q. Thus, in both cases we arrive at a

contradiction. If deg(p) = 3 and p is of the form

p = (X − ζ1)(X + ζ1)(X − ζ2) = X3 − ζ2X
2 + . . . ,

then ζ2 ∈ Q, which is again a contradiction. Finally, if deg(p) = 3 and p is of the
form

p = (X − ζ1)(X − ζ2)(X − ζ3) = 1 + bX + cX2 +X3,

then q is of the form

q = (X + ζ1)(X + ζ2)(X + ζ3) = −1 + bX − cX2 +X3.

Since f = p · q = X6 − 3X2 − 1, we must have 2b − c2 = 0 and b2 − 2c = −3.
In particular, b = c2

2
and therefore c4

4
− 2c + 3 = 0, but since c4

4
− 2c + 3 > 1 for

all c ∈ R, we conclude that p /∈ Q[X]. Thus, there are no non-constant polynomials
p, q ∈ Q[X] such that f = p · q, which shows that f is irreducible over Q. In particu-
lar, since f ∈ Q[X] is a monic, irreducible polynomial of degree 6 with the six roots
ζ1, . . . , ζ6, we have ζm /∈ Q(ξk) for 1 ≤ m ≤ 6 and 1 ≤ k ≤ 3.

Let Gf := Gal(Lf/Q) and Gg := Gal(Lg/Q), where Lf and Lg are the split-
ting fields of f and g, respectively. Then, since deg(g) = 3 and Lg = Q(ξ1), we
have |Gg| = 3 and therefore Gg

∼= C3, where Cn denotes the cyclic group of or-
der n. Furthermore, since the field extension Lg/Q is Galois, Gal(Lf/Lg) E Gf and
Gf/Gal(Lf/Lg) ∼= C3. Since ζm /∈ Q(ξk), Gal(Lf/Lg) is not the trivial group.

Now, we consider Gal(Lf/Lg). Let σ ∈ Gal(Lf/Lg). Then σ(ξk) = ξk for 1 ≤
k ≤ 3. Thus, σ(ζm) = ±ζm for all 1 ≤ m ≤ 6. To see this, consider, for example,
ξ1 = σ(ξ1) = σ(ζ1 · ζ1) = σ(ζ1) · σ(ζ1). Therefore, Gal(Lf/Lg) 6 C2 ×C2 ×C2.

If we adjoin to the field Lg a root ζm (for 1 ≤ m ≤ 6), then we obtain the in-
termediate field Lg ( Lg(ζm) ⊆ Lf , where Gal(Lg(ζm)/Lg) ∼= C2. Since ζ2

m = ξk
for some 1 ≤ k ≤ 3 and Q(ξ1) = Q(ξ2) = Q(ξ3), we have Lg(ζm) = Q(ζm). Since
each of the fields Q(ζk) (for 1 ≤ k ≤ 3) is the splitting field of a quadratic polyno-
mial of the form Z2 − ζ2

k for 1 ≤ k ≤ 3, each of the field extensions Q(ζk)/Lg (for
1 ≤ k ≤ 3) is Galois with Gal(Q(ζk)/Lg) ∼= C2.

Now, there are three possible intermediate fields of the formQ(ζm), namelyQ(ζ1),
Q(ζ2), and Q(ζ3). To see that these three intermediate fields are pairwise distinct,
notice first that, since ζ1 =

√
2 cos(ϕ) ∈ R, we have Q(ζ1) ⊆ R, and therefore

ζ2, ζ3 /∈ Q(ζ1). Furthermore, if ζ1 ∈ Q(ζ2), then, since <(ζ2) = 0, we can write

ζ1 = a+ b ζ2
2 + c ζ4

2 = a+ b ξ2 + c ξ2
2 with a, b, c ∈ Q.
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Thus, ζ1 ∈ Q(ξ2), which is not the case. Similarly, ζ1 /∈ Q(ξ3). Furthermore, if ζ2 ∈
Q(ζ3), then with ζ2 ζ3 = 1

ζ1
we would have ζ1 ∈ Q(ζ3), which is not the case.

To summarize, for 1 ≤ k ≤ 3 we have Lg(ζk) ( Lf , Gal(Lg(ζk)/Lg) ∼= C2, and
from Gal(Lf/Lg) 6 C2 × C2 × C2 we obtain that C2 × C2 6 Gal(Lf/Lg). In par-
ticular we have that Gal(Lf/Q) is not cyclic.

Finally, we show that Lf = Q(ζi, ζj) for any distinct i and j with 1 ≤ i, j ≤ 3. To
see this, recall that (±ζ1)(±ζ2)(±ζ3) = ±1, which implies that we can compute, for
example, ζ2 from ζ1 and ζ3. Now, since Q(ζ2

i ) = Q(ξi), which implies ξi ∈ Q(ζi),
and since Q(ξi) = Q(ξj) for all 1 ≤ i, j ≤ 3, we conclude that ξj ∈ Q(ζi) for all
1 ≤ i, j ≤ 3. Furthermore, since ζj is a root of Z2 − ξj ∈ Q(ζi)[Z] and ζj /∈ Q(ζi),
we have Gal(Lf/Q(ζi)) ∼= C2. In particular, Gal(Lf/Lg) ∼= C2 × C2.

Now, we are ready to show that Gal(Lf/Q) ∼= A4. Since Lf = Q(ζ1, . . . , ζ6),
every element π ∈ Gal(Lf/Q) corresponds to a permutation of ζ1, . . . , ζ6, where
the elements ξ1, ξ2, ξ3 (i.e., the elements ζ2

1 , ζ
2
2 , ζ

2
3 ) are permuted cyclically. By the

observations above, every π ∈ Gal(Lf/Q) can be written as π = σml ◦ρn for l ∈
{1, 2, 3}, m ∈ {0, 1}, and n ∈ {0, 1, 2}, where, in cycle notation,

ρ = (ζ1 ζ2 ζ3)(ζ4 ζ5 ζ6) ,

and for 1 ≤ j ≤ 6,

σl(ζj) =

{
ζj if j ∈ {l, l + 3},
−ζj otherwise.

Since ρ corresponds to a cyclic permutation of ξ1, ξ2, ξ3, we have ρ ∈ Gal(Lg/Q),
and since for 1 ≤ i ≤ 3 we have σl(ξi) = ξi, σl ∈ Gal(Lf/Lg). So, since
Gal(Lf/Lg) ∼= C2 × C2, we get that for any pairwise distinct i, j, k ∈ {1, 2, 3},
if σl(ζi) = −ζi and σl(ζj) = −ζj , then σl(ζk) = ζk (i.e., l = k), which corresponds
to the fact that ζk = −1

ζi·ζj
.

Let us now consider a tetrahedron T with the six edges 1 , 2 , 3 , 4 , 5 , 6 ,
where the pairs of edges ( 1 , 4 ), ( 2 , 5 ), and ( 3 , 6 ) are opposite edges of T . If
we identify the six edges 1 , . . . , 6 with the six roots ζ1, . . . , ζ6 of f , then every
element π ∈ Gal(Lf/Q) corresponds to an element of the symmetry group of the
tetrahedron T , i.e., to an element of the alternating group A4 (this fact is visualized by
Figure 3 at the end of the next section).

3. SUBGROUPS AND INTERMEDIATE FIELDS. Figure 1 illustrates all sub-
groups ofA4. For some of these subgroups ofA4, we already found the corresponding
intermediate fields. In particular, we found that the field that corresponds to C2 ×
C2 is Lg = Q(ξ1), and since C2 × C2 is a normal subgroup of A4, we obtain that
Gal(Lg/Q) ∼= A4/(C2 × C2) ∼= C3. Furthermore, the three fields which correspond
to the subgroups C2 are Q(ζ1), Q(ζ2), and Q(ζ3). Notice that these three fields are
pairwise conjugate. To see this, let σ ∈ Gal(Lf/Q(ζ1)) and let, for example, π ∈
Gal(Lf/Q) be such that π(ζ1) = −ζ2, π(ζ2) = −ζ3, π(ζ3) = ζ1. Then

π◦σ◦π−1(ζ2) = π◦σ(−ζ1) = π(−ζ1) = ζ2,

which shows that the automorphism π◦σ◦π−1 fixes ζ2, i.e., π◦σ◦π−1 is an element of
Gal(Lf/Q(ζ2)).
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A4

C2 × C2

C3C3

C2C2 C2

C3 C3

{ι}

Figure 1. Subgroup Diagram of Gal(Lf/Q) ∼= A4. For two groups H and G, an arrow H −→ G or H −�
G indicates that H is a subgroup or a normal subgroup of G; and ι denotes the identity automorphism of Lf .

In order to find the four intermediate fieldsMi (for 1 ≤ i ≤ 4) with Gal(Lf/Mi) ∼=
C3, we proceed as follows. First, we identify ζ1, . . . , ζ6 with the numbers 1, . . . , 6
and the elements of the group A4 with a subgroup of S6 (i.e., the symmetry group of
{1, . . . , 6}). Furthermore, let, again in cycle notation,

H1 := 〈(1 2 3)(4 5 6)〉, H2 := 〈(1 5 6)(4 2 3)〉,

H3 := 〈(3 4 5)(6 1 2)〉, H4 := 〈(2 6 4)(5 3 1)〉,

be the four subgroups of A4 which are isomorphic to C3. Then, the four intermediate
fields Mi are the four fixed-fields

Mi := LHi
f =

{
a ∈ Lf : ∀σ ∈ Hi, σ(a) = a

}
.

Let ϑ1, ϑ2, ϑ3, ϑ4, be defined as follows:

ϑ1 := ξ1(ζ2 + ζ6) + ξ2(ζ3 + ζ4) + ξ3(ζ1 + ζ5)

ϑ2 := ξ1(ζ5 + ζ3) + ξ2(ζ6 + ζ4) + ξ3(ζ1 + ζ2)

ϑ3 := ξ1(ζ5 + ζ6) + ξ2(ζ3 + ζ1) + ξ3(ζ4 + ζ2)

ϑ4 := ξ1(ζ2 + ζ3) + ξ2(ζ6 + ζ1) + ξ3(ζ4 + ζ5) .

It is not hard to verify that for each 1 ≤ i ≤ 4, Mi = Q(ϑi). For example, consider
the element σ := (1 3 2)(4 6 5) =

(
(1 2 3)(4 5 6)

)2 ∈ H1. Then

σ(ϑ1) = ξ3(ζ1 + ζ5) + ξ1(ζ2 + ζ6) + ξ2(ζ3 + ζ4) = ϑ1

which shows that σ ∈ Gal(Lf/M1). Furthermore, we can verify that for

σ2 := (2 5)(3 6), σ3 := (1 4)(2 5), σ4 := (1 4)(3 6),
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we have

L
σ2H1σ

−1
2

f = M2, L
σ3H1σ

−1
3

f = M3, L
σ4H1σ

−1
4

f = M4,

which shows that the four intermediate fieldsM1, . . . ,M4 are pairwise conjugate. For
example, let τ := (1 3 2)(4 6 5) ∈ H1. Then π := σ2 ◦τ ◦σ−1

2 = (1 6 5)(2 4 3) and
we have

π(ϑ2) = ξ3(ζ1 + ζ2) + ξ1(ζ5 + ζ3) + ξ2(ζ6 + ζ4) = ϑ2

which shows that π ∈ Gal(Lf/M2). Moreover, we get that

π(ϑ1) = ξ3(ζ4 + ζ5) + ξ1(ζ2 + ζ3) + ξ2(ζ6 + ζ1) = ϑ4,

π(ϑ4) = ξ3(ζ4 + ζ2) + ξ1(ζ5 + ζ6) + ξ2(ζ3 + ζ1) = ϑ3,

π(ϑ3) = ξ3(ζ1 + ζ5) + ξ1(ζ2 + ζ6) + ξ2(ζ3 + ζ4) = ϑ1,

which shows that π is a cyclic permutation of ϑ1, ϑ4, and ϑ3.
Figure 2 illustrates all intermediate fields of the field extension Lf/Q.

Q

Q(ξ1) = Q(ξ2) = Q(ξ3)

Q(ϑ1)Q(ϑ2)

Q(ζ2)Q(ζ1) Q(ζ3)

Q(ϑ3) Q(ϑ4)

Q(ζ1, ζ2) = Q(ζ2, ζ3) = Q(ζ3, ζ1)

Figure 2. Diagram of intermediate fields. For two fieldsK andM , an arrowK −→M orK −�M indicates
that K is a subfield of M , and K −�M indicates that the field extension is Galois.

Finally, we consider the polynomial h := (X − ϑ1)(X − ϑ2)(X − ϑ3)(X − ϑ4).
To keep the notation short, we introduce the following function: For integers a, b we
define a (Mod b) by stipulating b (Mod b) := b and a (Mod b) := a (mod b) for
a 6= b. Then, since for 1 ≤ j ≤ 6, ζj = −ζj+3 (mod 6) and ζ2

j = ξj (mod 3), and bear-
ing in mind the identities

ζ1 · ζ2 · ζ3 = 1, ξ1 · ξ2 · ξ3 = 1,
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ξ1 + ξ2 + ξ3 = 0, ξ2
1 · ξ2

2 + ξ2
1 · ξ2

3 + ξ2
2 · ξ2

3 = 9,

and for 1 ≤ i ≤ 3,

ξ2
i + ξ2

i+1 (Mod 3) = 4 + ξi, ξ2
i = 2− ξi+1 (Mod 3), ξ3

i = 3ξi + 1,

ξ4
i

(
ξ2
i+1 (Mod 3) + ξ2

i+2 (Mod 3)

)
= 17− 9ξi+1 (Mod 3),

we obtain

h = X4 + 18X2 − 72X + 81.

Since ϑ1, . . . , ϑ4 belong to Lh, where Lh is the splitting field of h ∈ Q[X] overQ,
Lh is a subfield of Lf , and since Lh/Q is a Galois extension, Gal(Lf/Lh) E A4 and
therefore Gal(Lh/Q) ∼= A4/Gal(Lf/Lh), which implies that Gal(Lh/Q) is iso-
morphic to either {ι}, C3, or A4. We have seen above that there is a π ∈ Gal(Lh/Q)
which is a cyclic permutation of ϑ1, ϑ3, ϑ4, and similarly, we find a π′ ∈ Gal(Lh/Q)
which is a cyclic permutation of ϑ2, ϑ3, ϑ4. Hence, Gal(Lh/Q) must be isomorphic
to A4. In particular, the fields Lf and Lh are isomorphic.

Let us consider again the tetrahedron T with the six edges ζ1, . . . , ζ6, where the
pairs of edges ζi, ζi+3 (for 1 ≤ i ≤ 3) are opposite edges of T . We already know that
the group Gal(Lf/Q) is isomorphic to the symmetry group of the tetrahedron acting
on its six edges. We show now that Gal(Lh/Q) is isomorphic to the symmetry group
of the tetrahedron acting on its four faces. For this, we identify the four faces of the
tetrahedron with the four roots ϑ1, . . . , ϑ4 of h as illustrated in Figure 3.

ζ5

ζ4

ζ3

ζ1

ζ2

ζ6

ϑ2

ϑ4

ϑ3

ϑ1 (rear face)

Figure 3.
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In order to see that the elements of the symmetry group of the tetrahedron corre-
spond simultaneously to the elements of Gal(Lf/Q) and Gal(Lh/Q), respectively,
we consider two elements of the symmetry group of the tetrahedron.

First, let ρ1 be the rotation by the angle π about the axis joining the midpoints of the
edges ζ1 and ζ4. Then ρ1 acts on the edges and the faces of the tetrahedron as follows:

ζ1 → ζ1 ζ4 → ζ4 ζ3 ↔ ζ6 ζ2 ↔ ζ5

and

ξ1(ζ2 + ζ6) + ξ2(ζ3 + ζ4) + ξ3(ζ1 + ζ5)︸ ︷︷ ︸
ϑ1

↔ ξ1(ζ5 + ζ3) + ξ2(ζ6 + ζ4) + ξ3(ζ1 + ζ2)︸ ︷︷ ︸
ϑ2

ξ1(ζ5 + ζ6) + ξ2(ζ3 + ζ1) + ξ3(ζ4 + ζ2)︸ ︷︷ ︸
ϑ3

↔ ξ1(ζ2 + ζ3) + ξ2(ζ6 + ζ1) + ξ3(ζ4 + ζ5)︸ ︷︷ ︸
ϑ4

.

Notice that the intermediate field which corresponds to ρ1 is Q(ζ1).
Second, let ρ2 be the rotation by the angle 2π/3 about the axis joining the center

of the face ϑ1 with the opposite vertex. Then ρ2 acts on the edges and the faces of the
tetrahedron as follows:

ζ1 → ζ2 ζ2 → ζ3 ζ3 → ζ1 ζ4 → ζ5 ζ5 → ζ6 ζ6 → ζ4

and

ξ1(ζ2 + ζ6) + ξ2(ζ3 + ζ4) + ξ3(ζ1 + ζ5)︸ ︷︷ ︸
ϑ1

→ ξ2(ζ3 + ζ4) + ξ3(ζ1 + ζ5) + ξ1(ζ2 + ζ6)︸ ︷︷ ︸
ϑ1

ξ1(ζ5 + ζ3) + ξ2(ζ6 + ζ4) + ξ3(ζ1 + ζ2)︸ ︷︷ ︸
ϑ2

→ ξ2(ζ6 + ζ1) + ξ3(ζ4 + ζ5) + ξ1(ζ2 + ζ3)︸ ︷︷ ︸
ϑ4

ξ1(ζ2 + ζ3) + ξ2(ζ6 + ζ1) + ξ3(ζ4 + ζ5)︸ ︷︷ ︸
ϑ4

→ ξ2(ζ3 + ζ1) + ξ3(ζ4 + ζ2) + ξ1(ζ5 + ζ6)︸ ︷︷ ︸
ϑ3

ξ1(ζ5 + ζ6) + ξ2(ζ3 + ζ1) + ξ3(ζ4 + ζ2)︸ ︷︷ ︸
ϑ3

→ ξ2(ζ6 + ζ4) + ξ3(ζ1 + ζ2) + ξ1(ζ5 + ζ3)︸ ︷︷ ︸
ϑ2

.

Notice that the intermediate field which corresponds to ρ2 is Q(ϑ1).

Conclusion. What we have achieved is a visualization of a Galois group in terms of
the edges and faces of a tetrahedron. In particular, we found two polynomials f and h
of degree six and four, respectively, such that the roots of f correspond to the six edges
and the roots of h correspond to the to the four faces (or vertices) of the tetrahedron.
Moreover, since we were able to carry out all the calculations by hand, we obtained
a complete understanding of the field extension Lf/Q, and in addition, we have an
illustrative example of a Galois extension that shows the power and beauty of Galois
Theory.
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