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Abstract

We give necessary and sufficient conditions, both algebraic and geometric,
for a quadrilateral to be the level set of the sum of the distances to m ≥ 2
different lines.

1 Introduction

In [6] the authors set out to design a single Cartesian equation in variables (x, y) whose set
of solutions is a quadrilateral in the Euclidean plane R2 whose vertices are given by their
coordinates. Apart from the four basic arithmetic operations, the equation contains only
the absolute value as a further operation. The method presented in the said article works
well for most convex quadrilaterals (though not all) but is cumbersome for non-convex
or crossed quadrilaterals. We briefly describe the approach in [6]: Let (x0, y0), (x1, y1),
(x2, y2), (x3, y3) be the Cartesian coordinates of the vertices of a quadrilateral where its
perimeter is traversed in the corresponding order of the vertices. Solve the linear system

x0 y0 1 0 0 0 −0 −0
x1 y1 1 0 0 0 −x1 −y1
x2 y2 1 0 0 0 −0 −0
x3 y3 1 0 0 0 −x3 −y3
0 0 0 x0 y0 1 −x0 −y0
0 0 0 x1 y1 1 −0 −0
0 0 0 x2 y2 1 −x2 −y2
0 0 0 x3 y3 1 −0 −0


︸ ︷︷ ︸

=:M



A
B
C
D
E
F
G
H


=



−0
−1
−0
−1
−1
−0
−1
−0


. (1)
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Then the equation which describes the boundary of the quadrilateral is given by∣∣∣∣Ax+By + C

Gx+Hy + I

∣∣∣∣+

∣∣∣∣Dx+ Ey + F

Gx+Hy + I

∣∣∣∣ = 1. (2)

Observe, however, that for given (x0, y0), (x1, y1), (x2, y2) the equation detM = 0 is
quadratic in the variables (x3, y3) and describes a conic through the points (x0, y0), (x1, y1),
(x2, y2). For example, for (x0, y0) = (1, 1), (x1, y1) = (−1, 2), (x2, y2) = (−1, 1), we obtain
the conic 3+x2−6y+2y2 = 0 (see Figure 1). For all points (x3, y3) on this conic (different
from the three given points), the equation (1) has no solution.

−2 −1 1 2

1

2

0

(x0, y0)(x2, y2)

(x1, y1)

(x3, y3)

Figure 1: For all convex quadrilaterals with fixed vertices (x0, y0), (x1, y1),
(x2, y2) and fourth point (x3, y3) on the red ellipse the equation (1) has
no solution.

The problem with a non-convex or a crossed quadrilateral is, that equation (2) draws a
convex solution in the projective plane that passes over the ideal line (see Figure 2).

(x0, y0)

(x1, y1)

(x3, y3)

(x2, y2)

Figure 2: A non-convex quadrilateral.

Nevertheless, it is also possible to write the non-convex boundary of the quadrilateral in
Figure 2 as the level set of a single Cartesian equation: The vertices are (x0, y0) = (0, 0),
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(x1, y1) = (1, 1), (x2, y2) = (−2, 0), (x3, y3) = (1,−1). Then the quadrilateral is the level
set{

x ∈ R2 : max
(
max(〈n1, x〉 − d1, 〈n2, x〉 − d2),min(〈n3, x〉 − d3, 〈n4, x〉 − d4)

)
= 1
}

(3)

Here

n1 =
√

1
10(−1,−3)t, n2 =

√
1
10(−1, 3)t, n3 =

√
1
2(1,−1)t, n4 =

√
1
2(1, 1)t

are the outer unit normal vectors of the sides of the quadrilateral, 〈·, ·〉 is the Euclidean

inner product, and d1 = d2 =
√

2
5 − 1, d3 = d4 = −1. Notice also that the minimum and

the maximum function in (3) can be expressed with the absolute value:

min(a, b) = 1
2
(a+ b− |a− b|), max(a, b) = 1

2
(a+ b+ |a− b|).

We refrain from giving a general formula for this problem here, but focus now on
the actual goal of this article: Let f : R2 → R, x 7→ f(x), denote the (weighted)
sum of the distances of a point x to a set of given straight lines `1, . . . , `m. We then
ask, which quadrilaterals can be written as the level set of such a function f .

This question is also motivated by Descartes’ solution of Pappus’ problem as
described in Chapter 23 of [2]: Given m straight lines `i in the plane, n angles θi,
and a line segment a. For any point x in the plane, the oblique distances δi to
the lines `i are defined as the (positive) lengths of segments that are drawn from x
toward `i making angle θi with `i. Find the locus of points x for which the following
ratios are constant:

for m = 3 lines δ21 : δ2δ3

for m = 2k ≥ 4 lines δ1 . . . δk : δk+1 . . . δ2k

for m = 2k + 1 ≥ 5 lines δ1 . . . δk+1 : aδk+2 . . . δ2k+1

Instead of oblique distances, we can equivalently work with weighted normal dis-
tances (see Figure 3).

δi di

`i

x

θi

Figure 3: Oblique distances interpreted as weighted normal distances:
δi = di csc(θi)
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The classical Greek geometry has considered the following loci:

• the sum of the distances to two given points is a constant (this gives an ellipse),

• the ratio of the distances to two points is a constant (this gives a circle of
Apollonius),

• the ratio of (products of) distances to straight lines is a constant (this is
Pappus’ problem).

But the sum of the distances to straight lines appears then only in Viviani’s theorem
from 1649, and in its generalizations (see, e.g., [1]). However, there the question is
not about the locus. In this sense we close a gap here by considering the locus of
the set of points for each of which the sum of the distances to given straight lines is
a constant.

2 Weighted distances to tree lines

Before we start we fix some notation which we will use throughout this text. The
vertices of the quadrilateral will be denoted by A,B,C,D. We will consider the
corresponding complete quadrangle and denote by E the intersection of AB and
CD, and by F the intersection of AD and BC (see Figure (5). `1 is the diagonal
AC, `2 the diagonal BD, and `′3 the diagonal EF . The intersections of the diagonals
are O = `1∩ `2, P = `1∩ `′3, and Q = `2∩ `′3. When we work with vectors, O will be
the origin. Moreover, we use the notation a = |OA|, b = |OB|, c = |OC|, d = |OD|,
p = |OP |, q = |OQ| for the lengths of the respective segments.

In this section we treat the question which quadrilaterals can be described as
level sets of the weighted sum of the distances to three lines. Suppose we are given
a convex quadrilateral ABCD in the Euclidean plane. By choosing unit normal

vectors n1, n2 to `1, `2, and M =

(
0 −1
1 0

)
we may write A = −aMn1, B = bMn2,

C = cMn1, D = −dMn2.

A further line `3 which does not meet the quadrilateral and with unit normal
vector n3 will be determined later. We assume that the orientation of n3 is such
that the quadrilateral lies in the half plane with boundary `3 in which n3 points.
The line `i is given by the equation

〈ni, x〉 − di = 0, ‖ni‖ = 1,

where x = (x1, x2) ∈ R2 runs along `i. The distance of a point x ∈ R2 from `i is
given by the function

fi(x) = |〈ni, x〉 − di|.
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C

A

`1

B

D

`2

n1

n2

O a

b

c

ds3

s4

s1

s2

Figure 4: The quadrilateral ABCD.

The weighted sum of the distances of x to `1, `2 and `3 is

f(x) =
3∑

i=1

kifi(x)

for weights ki ≥ 0. Then the gradient of f along the boundary of the quadrilateral
is given as follows:

along s1 ∇f = k1n1 + k2n2 + k3n3

along s2 ∇f = k1n1 − k2n2 + k3n3

along s3 ∇f = −k1n1 − k2n2 + k3n3

along s4 ∇f = −k1n1 + k2n2 + k3n3

The gradient of f along s1 is perpendicular to s1, and hence there exists α ∈ R\{0}
such that

−αM(bMn2 + aMn1) = k1n1 + k2n2 + k3n3

or equivalently
k3n3 = n1(αa− k1) + n2(αb− k2). (4)

Similarly, with s2, s3, s4 in place of s1, we obtain

k3n3 = n1(βc− k1) + n2(−βb+ k2) (5)

k3n3 = n1(−γc+ k1) + n2(−γd+ k2) (6)

k3n3 = n1(−δa+ k1) + n2(δd− k2) (7)

Since n1 and n2 are linearly independent, we infer from (4)–(7)

αa− k1 = βc− k1 = −γc+ k1 = −δa+ k1

αb− k2 = −βb+ k2 = −γd+ k2 = δd− k2.
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It follows that
α = 2εcd, β = 2εad, γ = 2εab, δ = 2εbc

for arbitrary ε > 0, and

k1 = εac(b+ d), k2 = εbd(a+ c), k3n3 = n1εac(d− b) + n2εbd(c− a).

It turns out that this result has a nice geometric interpretation which can be seen
by choosing ε = 2

(a+c)(b+d)
. Then the wights

k1 =
2ac

a+ c
, k2 =

2bd

b+ d
(8)

are the harmonic means of the segments of the diagonals, and

k3n3 = n1
2ac(d− b)

(a+ c)(b+ d)
+ n2

2bd(c− a)

(b+ d)(c+ a)
.

We consider the following three cases:

1. Suppose a = c and b = d. In this case the quadrilateral is a parallelogram,
and we have k3 = 0. Hence, in this case, the third line `3 is not necessary.

2. Suppose a = c and b < d (the case b > d is symmetric). In this case the
quadrilateral is an oblique kite, and we have

k1 = a, k2 =
2bd

b+ d
, k3 = a

d− b
b+ d

, n3 = n1. (9)

This means that the third line `3 is parallel to n1.

3. Suppose a 6= c and b 6= d. Without loss of generality we assume a > c, b > d.
P ∈ `1 is the harmonic conjugate of O with respect to A and C, and Q ∈ `2 is
the harmonic conjugate of O with respect to B and D (see [4], and Figure 5).
Then the distances of P and Q respectively from O are

p =
2ac

a− c
, q =

2bd

b− d
. (10)

A simple calculation shows that

(a− c)(b− d)

(a+ c)(b+ d)
M ~PQ = −k3n3. (11)

Hence, `3 is parallel to the outer diagonal `′3. Observe that (11) also shows
that −n3 points towards the half plane bounded by `′3 which contains the
quadrilateral ABCD. Hence we must choose `3 ‖ `′3 on the other side of the
quadrilateral ABCD. What we also learn from (11) is that

k3 =
(a− c)(b− d)

(a+ c)(b+ d)
|PQ|. (12)
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A

`1

B

O

`2

C

D

E

F

`′3

Q

n2

n1
P

Figure 5: The complete quadrangle ABCD.

To sumarize we have the following:

Theorem 1. 1. Every parallelogram is the level set of a weighted sum of the
distances to its diagonals. The weights are given by (8).

2. Every convex oblique kite is the level set of a weighted sum of the distances to
its diagonals and a third line parallel to the diagonal which is bisected by the
other. The weights are given by (9).

3. Every convex quadrilateral which is neither a parallelogram nor an oblique kite
is the level set of a weighted sum of the distances to its diagonals and a third
line which is parallel to the outer diagonal of the complete quadrangle. The
weights are given by (8) and (12).

We remark, that for a parallelogram, the points E,F, P,Q lie on the ideal line (of
the projective plane), for an oblique kite, P or Q lies on the ideal line, and for a
trapezoid, E or F lies on the ideal line.

3 Distances to an arbitrary number of lines

If we restrict ourselves to the case of an unweighted sum, the question arises which
quadrilaterals occur as level sets of the sum of the distances to two or more lines.
We start with the general case of m ≥ 2 lines.
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3.1 A necessary condition

Let `1, . . . , `m be different straight lines in the Euclidean plane R2, m ≥ 2. The line
`i is again given by the equation

〈ni, x〉 − di = 0, ‖ni‖ = 1,

where x = (x1, x2) ∈ R2 runs along `i, and n is a unit normal vector of `i. The
distance of a point x ∈ R2 to `i is given by the function

fi(x) = |〈ni, x〉 − di|.

The sum of the distances of x to `1, . . . , `m is

f(x) =
m∑
i=1

fi(x).

As a sum of convex functions, f is also convex. We assume that at least two of the
lines `i are not parallel. Then it follows that f is coercive and hence the level sets
of f are bounded. The lines `i divide the plane into convex poygonal regions. On
each such region, f is an affine function. Therefore, f attains its minimum either
in a single point (a vertex of one of the mentioned polygons), along a line segment
(the side of one of the polygons), or in all points of one of the polygons. Let us
assume, that f has a unique minimum in a point x0 ∈ R2. By suitable choice of the
coordinate system we can achieve x0 = 0. Let us further assume that only two of
the lines, say `1 and `2 pass through the origin, which we denote by O. Then the
level sets

{x ∈ R2 : f(x) = h}
are quadrilaterals for all h ∈ (f(0), f(0)+ε) provided ε > 0 is sufficiently small. Let
a, b, c, d continue to denote the positive distances of the vertices of the quadrilateral
from O (see Figure 6). Then, with

M =

(
0 −1
1 −0

)
the vertices are given by −aMn1, bMn2, cMn1 and −dMn2 if we chose the orien-
tation of the normal vectors n1, n2 as indicated in Figure 6.

We choose the orientations of the normal vectors n3, . . . , nm such that d3, . . . , dm <
0. Let n0 :=

∑m
i=3 ni. Then the gradient of f along the line segments s1, . . . , s4 is

given as follows:

along s1: ∇f = n1 + n2 + n0

along s2: ∇f = n1 − n2 + n0

along s3: ∇f = −n1 − n2 + n0

along s4: ∇f = −n1 + n2 + n0
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cMn1

−aMn1

`1

bMn2

−dMn2

`2

n1

n2

O a

b

c

ds3

s4

s1

s2

Figure 6: The level set (red) for h ∈ (f(0), f(0) + ε), ε > 0 small.

The gradient of f along s1 is perpendicular to s1, hence there exists α ∈ R \ {0}
such that

−M(bMn2 + aMn1) = α(n1 + n2 + n0)

or equivalently
n1(a− α) + n2(b− α) = αn0. (13)

In the same way, we have

n1(c− β) + n2(−b+ β) = βn0 (14)

n1(−c+ γ) + n2(−d+ γ) = γn0 (15)

n1(−a+ δ) + n2(d− δ) = δn0 (16)

The equations (13)–(16) can only hold simultaneously if all 2 × 2 minors of the
matrix 

−a− α −b− α α
−c− β −b+ β β
−c+ γ −d+ γ γ
−a+ δ −d− δ δ

 (17)

vanish. In particular we have

det

(
b− α α
d− δ δ

)
= bδ − dα = 0

det

(
−b+ β β
−d+ γ γ

)
= −bγ + dβ = 0

det

(
a− α α
c− β β

)
= aβ − cα = 0

det

(
−c− β β
−a+ δ δ

)
+ det

(
−b+ β β
−d− δ δ

)
= (a− d)β + (c− b)δ = 0.
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This is a linear system for α, β, γ, δ, and a nontrivial solution exists only if

0 = det


−d 0 0 b
0 d −b 0
−c a 0 0
0 a− d 0 c− b

 = b(bcd+ bda− bca− cda).

Recall that b, c, d, a > 0 and hence the last condition is equivalent to

1

a
+

1

c
=

1

b
+

1

d
.

In summary, we have obtained the following theorem:

Theorem 2. Let `1, . . . , `m, m ≥ 2, be straight lines in the Euclidean plane, not all
parallel. Assume that the sum f(x) of the distances of a point x to the lines `1, . . . , `m
attains its minimum in a single point x0 in which only two of the lines `1, . . . , `m
meet. Then, the level sets {x ∈ R2 : f(x) = h} form a family of homothetic convex
quadrilaterals for all h ∈ (f(0), f(0) + ε) provided ε > 0 is small enough. The
intersection of the diagonals divides them into segments of lengths b and d on one
diagonal and of lengths c and a on other diagonal. These lengths satisfy the conditon

1

a
+

1

c
=

1

b
+

1

d
. (18)

Observe that the theorem is trivially valid for m = 2 where the level sets are
rectangles.

We want to interpret condition (18) geometrically. To this end, we express the
points E and F by the vectors n1 and n2:

E =
1

ad− bc
M
(
ac(b+ d)n1 + bd(a+ c)n2

)
(19)

F =
1

ab− cd
M
(
ac(b+ d)n1 − bd(a+ c)n2

)
(20)

Here, we assume for the moment that the quadrilateral is neither a parallelogram
nor a trapezoid, i.e., both denominators ad − bc and ab − cd in (19) and (20) are
different from zero. Using these expressions, we find for the scalar product

〈E,F 〉 =
(abc− abd+ acd− bcd)(abc+ abd+ acd+ bcd)

(ad− bc)(ab− cd)
.

This expression is equal to 0, if and only if the vectors E and F are orthogonal, and
if and only if (18) holds. Thus we obtain:

Corollary 3. Let ABCD be a convex complete quadrilateral which is neither a par-
allelogram nor a trapezoid. Then, with the notation used before, the condition (18)
is equivalent to the fact that O lies on the Thales circle over the segment EF (see
Figure 7).
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O

A

B

C

D

E

F

t

a

c

d

b

Figure 7: Necessary and sufficient condition for 1
a + 1

c = 1
b + 1

d : The Thales
circle t over the segment EF passes through O.

The condition (18) can be interpreted geometrically in yet another way (see Fig-
ure 8): Indeed, it is easy to check that for a > d, b > c and a = |O′A′|, b = |O′B′|,
c = |O′C ′|, d = |O′D′|, the line RS passes through O′ if and only if the condi-
tion (18) holds — apply the intersecting chords theorem for the point O′ and for the
point C ′.

O′
A′

D′
B′

C ′

R

S

Figure 8: Geometric interpretation of condition (18).

Remark 4. Note that for a rectangle (18) is trivially always satisfied. For a trape-
zoid we have either ab = cd or ac = bd. Thus, (18) is equivalent to a = d or
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a = b, respectively. Hence, a trapezoid satisfies (18) if and only if it is symmetric.
Geometrically, the Thales circle over EF degenerates for a trapezoid to the normal
to the parallel sides of the trapezoid going through E or F , and hence, under the
conditon (18), to the symmetry axis of the trapezoid.

3.2 The case of two lines

The case of two lines is simple:

Proposition 5. Each rectangle is the level set of the sum of the distances to its
diagonals. Vice versa, given two intersecting lines `1, `2 and a number d ∈ R, the
level set of the sum of the distances to `1 and `2 is a rectangle with `1, `2 as diagonals.

Notice that a rectangle can also be written as the level set of the sum of the
distances to m ≥ 4 lines. Indeed, we can add to the two diagonals

• any number of pairs of parallel lines with the rectangle between them,

• any number of equilateral triangles with the rectangle in its interior,

• the pair `1, `2 more than once,

or any combination of these variants.

3.3 The case of three lines

If we set k1 = k3 in (9) it follows that b = 0. A kite can therefore not be the level
set of the sum of the distances to three different lines. If the quadrilateral is not a
kite, then the points P and Q exist, and the condition k1 = k3 in (8) and (12) imply

|PQ| = p · b+ d

b− d
(21)

where we assume b > d. Similarly, k2 = k3 yields

|PQ| = q · a+ c

a− c
. (22)

From these two equations we deduce

pq

|PQ|
= |PQ| · b− d

b+ d
· a− c
a+ c

= k3

where we have used (12) for the last equality. So, we obtain:

12



Theorem 6. A necessary and sufficient condition for a convex rectangle ABCD to
be the level set of the sum of the distances to three lines is

|OP ||OQ|
|PQ|

=
2|OA||OC|
|AC|

=
2|OB||OD|
|BD|

, (23)

where O is the intersection of the diagonals AC and BD, and where P and Q are
the intersections of AC and BD with the outer diagonal.

If ABCD is a quadrilateral which satisfies the condition of Theorem 6, then the
three triangle inequalities must hold in the triangle OPQ. If we denote r = |PQ|,
then this means that

(p2 + q2 + r2)2 − 2(p4 + q4 + r4) > 0

(see, e.g., [5]). Using (21) and (22) this can be expressed by the inequality

(3ab+bc+ad−cd)(ab+3bc−ad+cd)(ab−bc+3ad+cd)(−ab+bc+ad+3cd) < 0. (24)

So, we obtain:

Corollary 7. A quadrilateral which is the level set of the sum of the distances to
three lines exists if and only if the diagonal segments a, b, c, d satisfy (18) and (24).

We give two constructions of quadrilaterals which are the level set of the sum of
the distances to three lines.

Construction 1. Start with four segments of lengths a, b, d, c which satisfy (18)
such that A′, O′, C ′ are collinear with a = |O′A′| > c = |O′C ′|, and B′, O′, D′ are
collinear with b = |O′B′| > d = |O′D′| (see Figure 8). Construct the harmonic
conjugate P ′ of O′ with respect to A′C ′, and the harmonic conjugate Q′ of O′ with
respect to B′D′. Construct a segment of length r = |O′P ′| b+d

b−d . Condition (24) is
satisfied if and only if |O′P ′|, |O′Q′| and r are the sides of a triangle OPQ. Then
the quadrilateral ABCD is easily constructed as can be seen in Figure 5.

Construction 2. We start with three points AOC with a = |OA| > c = |OC| on
the diagonal `1 of the quadrilateral ABCD, and its second diagonal `2 meeting `1
in O. We need to find the points B and D on `2. To do so, construct the harmonic
conjugate P of AOC. Observe that we have

|OQ|
|PQ|

Thm. 6
=

2ac

(a+ c)|OP |
(10)
=

a− c
a+ c

=
c

2ac
a−c − c

(10)
=
|OC|
|PC|

.

Hence Q is an intersection of `2 and the Apollonian circle K for this ratio which is
the Thales circle over AC as indicated in Figure 9.
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O
A`1 C

`2

P

K

Q1

Q2

Figure 9: Construction of the point Q (two solutions).

It remains to find B,D on `2 such that B,D,O,Q are harmonic points and such
that (18) is satisfied. The construction is given in Figure 10: K1 is the circle with
diameter OQ, and K2 the circle with diameter OH, where |OH| = 2ac

a+c
, and where

O is between H and Q. Then, B is the intersection of the common tangents of K1

and K2. If X, Y denote the contact points of these tangents on K1, then D is the
intersection of XY and OQ. Let Z and W denote the contact points of K2 with
the tangents, and D′ be the intersection of ZW with OQ. Then B,D,O,Q and
B,D′, H,O are harmonic points by construction. The harmonic mean of |OD′| and
|OB| is |OH|. Since the segments on the tangents |O′O| = |O′X| = |O′Z| have
equal lengths, it follows that |OD′| = |OD|. Hence, the harmonic mean |OD| and
|OB| is |OH|, and therefore (18) is satisfied, and the construction is completed.

O Q

K1

H

K2

X

B

Z

DD′

Y

W

O′

Figure 10: Construction of the points B and D.

We have learned from Construction 2 that Q on `2 lies on the Thales circle over
AC. By symmetry, the point P on `1 is a point of the Thales circle over BD. We
can therefore reformulate Theorem 6 geometrically as follows:
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Theorem 8. Let ABCDEF be a convex complete quadrangle with the notation used
before. A necessary and sufficient condition for the quadrilateral ABCD to be the
level set of the sum of the distances to three lines is that the Thales circle over EF
passes through O and that one of the following (and consequently both) conditions
hold:

(i) The Thales circle over AC on `1 passes through Q.

(ii) The Thales circle over BD on `2 passes through P .

If ABCD is a trapezoid, E or F lie on the ideal line. In this case, the Thales
circle over EF in Theorem 8 has to be interpreted as in Remark 4.

Recall that condition (18) is equivalent to the fact that the Thales circle over
EF passes through O. We also note that according to the Bodenmiller-Steiner
Theorem, the three Thales circles over die diagonals AC, BD and EF of a complete
quadrangle meet in two points, and hence, their centers are collinear (see [3], [4],
and Figure 11).

The following calculation shows that the conditions (i) and (ii) in Theorem 8
together also imply (18): We have

P = 2 · ac

a− c
Mn1, Q = 2 · bd

d− b
Mn2.

Eliminating 〈n1, n2〉 from the equations

〈A−Q,C −Q〉 = 0, 〈B − P,D − P 〉 = 0

yields again

(abc− abd+ acd− bcd)(abc+ abd+ acd+ bcd) = 0

which is equivalent to (18). This gives a further possibility to reformulate the result:

Theorem 9. Let ABCDEF a convex complete quadrangle with the notation used
before. A necessary and sufficient condition for the quadrilateral ABCD to be the
level set of the sum of the distances to three lines is that the Thales circle over AC
passes through Q, and the Thales circle over BD passes through P .

3.4 The case of four lines

One can readily verify that actually all 2× 2 minors of the matrix (17) vanish for

α =
a(b+ d)

2d
, β =

c(b+ d)

2d
, γ =

c(b+ d)

2b
, δ =

a(b+ d)

2b
,
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Q

B

D

E

F

Figure 11: Necessary and sufficient conditions for a quadrilateral to be the
level set of the sum of the distances to three lines.

if the condition (18) holds. For this choice the equations (13)–(16) coincide and
yield

n0 = n1
d− b
d+ b

+ n2
c− a
c+ a

.

Clearly, we have ‖n0‖ < 1. Therefore, it is possible to choose unit vectors n3, . . . , nm

(in particular m = 4) such that

n0 = n3 + . . .+ nm.

Then we can take lines `3, . . . , `m with corresponding unit normale vectors n3, . . . , nm

such that the quadrilateral lies in the half planes into which these vectors point and
we obtain the following result:

Theorem 10. Every convex quadrilateral which satisfies condition (18) is the level
set of the sum of the distances to 4 (or any number greater than 4) lines.
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