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Abstract

A pair (a,b) of positive integers is a pythagorean pair if a® + b* is a square.
A pythagorean pair (a,b) is called a pythapotent pair of degree h if there is
another pythagorean pair (k,l), which is not a multiple of (a,b), such that
(ahk, bhl) is a pythagorean pair. To each pythagorean pair (a,b) we assign an
elliptic curve T';n yn for h > 3 with torsion group isomorphic to Z /27 x Z./4Z,
such that T';nyn has positive rank over Q if and only if (a,b) is a pytha-
potent pair of degree h. As a side result, we get that if (a, b) is a pythapotent
pair of degree h, then there exist infinitely many pythagorean pairs (k,1),
not multiples of each other, such that (ak,b"l) is a pythagorean pair. In
particular, we show that any pythagorean pair is always a pythapotent pair
of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have
been studied.

1 Introduction

A pythagorean pair is a pair (a,b) of positive integers such that a® + b? is a square. We
adopt the usual notation a? +b? = O for this. A pythagorean pair (a,b) is called a pytha-
potent pair of degree h if there is another pythagorean pair (k,[), which is not a multiple
of (a,b), such that (a"k,b"]) is also a pythagorean pair, i.e.,

A+ =0, E+0P%=0, and (d"%)?>+ 0" =0,

To simplify the language, we will call a pythapotent pair of degree 3, 4 and 5 a cubic,
quartic and quintic pythapotent pair, respectively. We will also keep the definition of a



double-pythapotent and quadratic pythapotent pair given in [3] that address a pythapotent
pair of degree 1 and 2, respectively.

As the pair of squares (a?,b?) of a pythagorean pair (a,b) is never a pythagorean pair,
it is natural to ask whether the Hadamard-Schur products (a"k,b"¢),h > 1, of pytha-
gorean pairs can be a pythagorean pair or not. For a double-pythapotent and quadratic
pythapotent pair, the question has been investigated in [3]. More precisely, it has been
shown that for each pythagorean pair (a,b), the elliptic curve I'yp (I'42 42, resp.) has
torsion group isomorphic to Z/27 x 7./47Z (Z/2Z. x 7./8Z, resp.) and that (a,b) is a
double-pythapotent (quadratic pythapotent, resp.) pair if and only if I'yp (42 32, resp.)
has positive rank over Q. With the points of infinite order on the curve I'qy (I';2 42, resp.)
infinitely many pythagorean pairs (k,l) can be generated, not multiples of each other,
such that (ak,bl) ((a®k,bl), resp.) are pythagorean pairs. Moreover, every elliptic curve
I with torsion group Z/27 x 7,/8Z is isomorphic to a curve of the form I'j2 ;2 for some
pythagorean pair (a,b).

In this work, we will answer affirmatively the question for h > 3, which generalizes
the results of [3] concerning double-pythapotent and quadratic pythapotent pairs. The
question will lead, indeed, again in a natural way to associated elliptic curves of positive
rank over Q.

For a positive integer h, we assign the elliptic curve
Cgnpn s 37 = 2+ (@® +0")2? + ®"*'x

to the pythagorean pair (a,b). We will show that then the curve I';n yn with h > 3 has
torsion group isomorphic to Z /27 x 7./47Z. (see Proposition 2), and that (a,b) is a pytha-
potent pair of degree h if and only if T';n p» has positive rank over Q (see Theorem 3).
With the points of infinite order on the curve I';n;n we can generate infinitely many
pythagorean pairs (k,1), not multiples of each other, such that (a"k,b"1) are pythagorean
pairs. In particular, we show that any pythagorean pair is actually a cubic pythapotent
pair (see Corollary 10).

Example. Let us have a look at an example. The pythagorean pair (a,b) = (3,4) is a
quartic pythapotent pair. Indeed, for the pythagorean pair (k,1) = (176,57) we have

(3%-176)2 + (4% - 57)% = 204002,

However, since the rank of the elliptic curve I'ss 45 is 0, (3,4) is not a quintic pythapotent
pair. With the help of the theory of elliptic curves, we will later uncover the formulas
with which such examples can be systematically generated. In particular, we will see how
to find the matching pair (k,l) (see the examples in Section 2).

Remark 1. In [3], the parametrization I ;2 y2 for elliptic curves with torsion group Z /27 x
7./8Z, where (a,b) is a pythagorean pair, was obtained by using Schroeter’s construction
of cubic curves with line involutions (see [4]). Other new parametrizations obtained by
Schroeter’s construction for elliptic curves with torsion groups Z/10Z, Z./127Z., and Z./147Z.
can be found in [5]. Furthermore, the curves I, ;n, where (a,b) is a pythagorean pair,
are obtained by replacing the terms a* + b* and a*b* in the parametrization of [g2 2 by
a® 4 b? and a?Mb?h | respectively.



2 Pythapotent Pairs of Degree h

In a first step we show that for any distinct pythagorean pairs (a1,b1) and (ag,bs) with
relatively prime components, i.e., ged(aj,b) = ged(ag,by) = 1, and for any distinct
positive integers k # [, we have

k bl
b'f 7éa2+bl '

With this result we then show that T';n ,n» has torsion group isomorphic to Z/27 x 7 /AZ.
for any positive integer h # 2, and it has torsion group isomorphic to Z/27Z x 7./8Z
for h = 2. Finally, we show how we obtain pythagorean pairs (k,[) from a point on Lon ph
whose x-coordinate is a square such that (ahk‘, bhl) is a pythagorean pair.

Lemma 1. If (a1,b1) and (az,bs) are relatively prime pythagorean pairs and k and 1 are
distinct positive integers, then

— ok — b,
k ?é l -
—I- by a2 + b
Proof. Let mq,n1,mz2,no be positive integers such that a3 = m? — n?, by = 2ming,

as = m% — n%, by = 2many. Assume towards a contradiction that

k_ pk L _ gl
aj —bi a3 —by
ak +b%  ab+ 0}

Then, solving this equation for the integers ny and nso, respectively, we obtain that

2l 2l 2k

a2k + b2k == D and all + bl == |:|

Since the components of both pairs (a1,b1) and (ag, ba) are relatively prime, we must have
that %l and 2l—k are integers, which implies that there are positive integers s and ¢ such
that ks = 2] and It = 2k. This implies that ts = 4, and therefore, we have either t = 1
and s =4,t =4 and s =1, or t = s = 2. In the first case we have [ = 2k, which gives
us aj + b3 = [J, which is impossible, in the second we obtain af + b} = O, which is also
impossible, and in the third case we have k = [, which contradicts our assumption that k
and [ are distinct. q.e.d.

Proposition 2. If (a,b) is a pythagorean pair, then the elliptic curve
Lon ph = 2%+ (a® + M)z + ooy
has torsion group Z./27. x Z./]AZ: for any positive integer h # 2, and it has torsion group

7.)27. x 7./8Z for h = 2.

Proof. We use Kubert’s parametrization for elliptic curves with torsion group containing
Z7/27 x Z.]AZ (see [6, p.217)):

V+ay—ey = a° —ex? (1)



for

621)2—1—16 wherev#O,:l:%.
All curves in this family have a torsion group which has Z/27 x Z./AZ. as a subgroup, i.e.,
by Mazur’s torsion theorem, the torsion group must be either Z /27 x Z/AZ or Z./2Z. x
Z./87. Furthermore, it is easily seen that for e # €/, the corresponding curves in Kubert’s
parametrization are non-isomorphic. By replacing x by Z + e and y + % by ¢ in (1) we get
an elliptic curve which is isomorphic to

§? =i +ai® +bi (2)

with
a

2. (160> +1) and b= (160> — 1)
Now, for v = g, let p:=a" —b" and q := 4(a” +b"). Then, if we put

4X 8Y

= d ) = —————
@ +om2 VT Gy

S

in (2), we get the equivalent curve
Topnt Y2 = X34 (a® + 0" X? + o2 X.

By Lemma 1 and the fact that the curves of the form (1) are non-isomorphic for different
values of e, we get that for any pythagorean pairs (aj,b1) and (az, by) and for any distinct
positive integers k # [, the two curves Fa;f’b;f and Faé bl are non-isomorphic. Notice that
if (a,b) is a pythagorean pair where a and b are not relatively prime, then there is a
pythagorean pair (@, b) such that the curves Lgn pn and I'zn gn are isomorphic. This implies
that for any positive integer h, the torsion group of Ty n is either Z/27 x Z/AZ or
Z7/27 x 7Z/8Z. Now we use [3, Proposition 1] which says that an elliptic curve I" has
torsion group Z/27 x 7Z./8Z if and only if there is a pythagorean pair (a,b) such that T’
is isomorphic to I'y2 j2. Thus, the torsion group of I';u yn is isomorphic to Z/27 x Z/8Z.
only when h = 2, and it is isomorphic to Z/2Z x 7./4Z. otherwise. This completes the
proof. q.e.d.

As a matter of fact we would like to mention that the proof of Proposition 2 implies that
Kubert’s parametrization for elliptic curves with torsion group containing Z /27 x 7Z./AZ.
gives us a curve with torsion group Z /27 x 7Z./8Z. if and only if e is of the form

e = ——— where (a,b,c) is a pythagorean triple.

Theorem 3. The pythagorean pair (a,b) is a pythapotent pair of degree h if and only if
the elliptic curve I n yh has positive rank over Q.

The following Lemmata 4, 5 and 6 prepare the proof of Theorem 3. First, we transform
the curve I';n yn to another curve on which we carry out our calculations.

ah bh
T Y

SIS

Lemma 4. If (%,7), T # 0, is a point on the curve U'yn yn, then the point (
point on the curve

) is a
y2r = a4 (a® + b*M)x + abha?

In particular, if (Z,9) is a rational point, then so is (#, 9.
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Proof. If (z,7) lies on Tyn i, then (XY, Z) = (a"b", 3, %) is a point on the projective
curve
XY?=d""Z3 + (® + 0®M X 2% + a"b" X2 2.

Since = Z # 0, the point (X,Y, Z) also satisfies the dehomogenized equation

%(%)2 =a"" + (a® + th)g + a"bh<§)2.
Hence, (%, %) = (“hg_cbh, ) is a point on the affine curve
y2r = a"" + (®" + v*")x + a"ba?,
as claimed. q.e.d.

We will now use the group structure on elliptic curves to add points. In particular we
will write [2] P to denote the point P + P.

Lemma 5. Let P = (v1,y1) be a rational point on T yn and let xo be the x-coordinate

of the point [2|P. Then, xg := %—which 18 the x-coordinate of the point on the curve

y2x = abh + (0 + VM) 2 + a"bPa? which corresponds to [2]P— can be written as xo = %,
hbh

where ¢ = §* and p = a"b" - §? for some §,p € Q, and where p and q satisfy

a-(a"q +b'p) = O and v (a"p+btg) = O. (3)

Proof. By Silverman and Tate [7, p. 27] we have

2 2
59— B
To = (172) for B := a*"?",
(2y1)
and therefore we obtain
abh 4y? albh
Ty = = — 5
T2 (xf — B)

Thus we have xg = g for ¢ = ¢ and p = " - p? with p = 2y; and § = m% — B.
Now, for

p= 4ahbh(xi’ + (a2h + th)x% + azhb%azl) and ¢ = (27 — a2hbzh)2 ,

we obtain
a - (ahg +b'p) = a2h(a2hb2h + 2022y + x%)2 =0
and
v (alp + bq) = b (azhb% + 202"z + x%)2 = O
which completes the proof. q.e.d.

The next result gives a relation between rational points on I'jn ,n with square z-coordinates
and pythagorean pairs (k,1) such that (a"k,b") is a pythagorean pair.



Lemma 6. Let (a,b) be a pythagorean pair. Then every pythagorean pair (k,l) such that
(ahk, bhi ) is a pythagorean pair corresponds to a rational point on Lgn pn whose x-coordinate
18 a square, and vice versa.

Proof. Let xo = ¢%/f? be the x-coordinate of a rational point [2]P on L yn pn for some

z2

q = g2 satisfy (3), i.e., a®"¢g? + a®"b?" f2 = O, and b*"¢? + a*"p?" f2 = O. So,

rational values f and g. Then, by Lemma 5, bt “hl;];'f 2, where p = a"b" - 2 and

(%)2 + b?h = p? for some p € Q, (4)
and (%)2 +a?h = 0. Let $= tg_pfl and b = ”(;2;11’. Then p = bht(;?_?) and ¢ = t%bf'i,

which gives us

t

b g? + b2 2
g .

It follows from (4) that ¢ is a rational number, say t = Z. Finally, since (%)2 +a?h =0,

-
we obtain
a?h o (r? =24 (2rs)? = 0O,

2

and for k := 12 — s2, | := 2rs, we finally get

(a"k)* + (b"1)? = O where k? + 1% = 0,
which shows that (a,b) is a pythapotent pair of degree h.

Assume now that we find a pythagorean pair (k,1) such that (ak,b"!) is a pythagorean
pair. Without loss of generality we may assume that k& and [ are relatively prime. Thus,
we find relatively prime positive integers r and s such that k = r2 — s? and | = 2rs. With
r,s,a,b we can compute xg = I’Z—;lz, which is the z-coordinate of a rational point on I'jn yn
whose z-coordinate is obviously a square. q.e.d.

We are now ready for the proof of the main theorem.

Proof of Theorem 3. For every rational point P on I',; with square z-coordinate let
(kp,lp) be the corresponding pythagorean pair. By Lemma 6 it is enough to show that
no rational point with square z-coordinate has finite order. Notice that if P is a point
of infinite order, then for every integer i, [2i]P is a rational point on ', ,n with square
z-coordinate, and not all of the corresponding pythagorean pairs (]{7[22'} Py Ui p) can be
multiples of (a,b).

Let us consider the z-coordinates of the torsion points on the curve I'jn yn with h > 3.
For simplicity, we consider the 8 torsion points on the equivalent curve

2 alb" 2h 2h hih
v=— + (" + ™) + a"b"x.

The two torsion points at infinity are (0,1,0) (which is the neutral element of the group)
and (1,0,0) (which is a point of order 2). The other two points of order 2 are (—‘Z—:,O)



and (—Z—Z,O), and the four points of order 4, which correspond to the four points on
the curve where the tangent to the curve is parallel to the z-axis, are (1,:|:(ah + bh))
and (—1, +(ah — bh)). The corresponding points on the curve I';n 4 are the three points
(0,0), (—b*",0) and (—a?",0) of order 2, and the four points (a"b", £a"b"(a” 4 b")) and
(—ahbh, +a"b" (ol - bh)) of order 4. Since x5 is a square, we have that none of the values

0 2h _b2h

hih hih
—a™", , a”b”, —a"b",

is a rational square, except 0 and possibly a"b". If x5 = 0, then this implies [ = 0, but
(k,0) is not a pythagorean pair. If h is odd, a"b" cannot be a square unless ab = O,
but it is impossible because it is equivalent to the rank 0 congruent number elliptic curve

y? = 23 — 2 (also see [1, p. 175]). Consider now the case when h is even. For the case
h = 2 see [3]. For h > 4, recall that xo = bZLQlQ where k and [ are relatively prime. Now,

if 2o = ab", then 12 = a"b~"k?, and therefore (ak)? + (b")? = a"k?(a” + b"). Thus, if
(a"k)? 4 (b"1)? = O, then also a”(a” + b"*) = 0, and since h is even, also

"+ =0.

However, since h > 4, by [2, Main Theorem 2] this is impossible. Thus, there is no pytha-
gorean pair (k,1) such that (ak,b"]) is a pythagorean pair.
q.e.d.

Corollary 7. If (a,b) is a pythapotent pair of degree h, then there are infinitely many
pythagorean pairs (k,1), not multiples of each other, such that (a"k,b"1) is a pythagorean
pair.

Proof. By Theorem 3, there exists a point P on I'js ;n of infinite order. Now, for every
integer i, [2i]P is a rational point on I'; pn with square z-coordinate, and each of the
corresponding pythagorean pairs (Kp;p,l[2;p) can be a multiple of just finitely many
other such pythagorean pairs. Thus, there are infinitely many integers j, such that the
pythagorean pairs (kjg;)p, 25)p) are not multiples of each other. g.e.d.

Algorithm. The following algorithm describes how to construct pythagorean pairs (k, )
from rational points on T'js jn of infinite order.

Let P be a rational point on I';n yn of infinite order and let z2 be the z-coordinate
of [2]P.

Let f and g be relatively prime positive integers such that

Let r and s be relatively prime positive integers such that

T Vg b
p; :

S

Let k := 12 — 5% and let [ := 2rs.



Then (a"k,b") is a pythagorean pair.

Examples. For m =2 and n = 1, let a = m? —n? and b = 2mn. Then (a,b) = (3,4) is a
pythagorean pair and we have:

1. For h = 1,2,5,7,10, the rank of I';s ;» is 0. Hence, (3,4) is not a pythapotent pair
of degree h for these h’s.

2. The curve I'ys s, with torsion group 7Z/27Z x 7Z/4Z, has rank 1 with generator
P = (—3888,50544). The z-coordinate of [2]P is 1202 which leads to (k,1) = (8,15)
with

(33-8)? 4 (43 - 15)% = 9842
In particular, (3,4) is a cubic pythapotent pair.

3. The curve I'yaa, with torsion group 7Z/27Z x 7Z/4Z, has rank 1 with generator
P = (—11616,1779360). The z-coordinate of [2]P is (%)2 which leads to (k,l) =
(176, 57) with

(3% 176)2 + (4% - 57)% = 204002
In particular, (3,4) is a quartic pythapotent pair.

4. The curve I'g6 6, with torsion group Z7/27 x 7./AZ., has rank 1 with generator

p = (46022056 ' 678725632000 The g-coordinate of [2]P is (3%3338)2 which leads to
(k,1) = (82680, 6919) with

(3% - 82680)% + (45 - 6919)? = 666039767

In particular, (3,4) is a pythapotent pair of degree 6.

We now have a closer look at the degrees h = 1,2, 3. Corollaries 8 and 9 specify concrete
conditions which imply that a pythagorean pair (a,b) is a pythapotent pair of degree 1 and
2 respectively, while Corollary 10 shows that a pythagorean pair (a,b) is automatically a
cubic pythapotent pair.

2

Corollary 8. Let (a,b) be a pythagorean pair with a = m? —n? and b = 2mn such that

at least one of the following two conditions is satisfied:
(i) bm? —n? =0 (i3) m* 4 3mn +n* =0

Then (a,b) is a double-pythapotent pair.

Notice that both conditions in Corollary 8 are satisfied for infinitely many pairs (m,n)
leading to pythagorean pairs (a,b).

Proof. One gets the quadratic conditions in the statement by imposing each of the points
with z-coordinates n?(m? — n?) and mn(m — n)? on the curve I'y;, respectively. In the
first case, the right hand side of the equation y? = x(z + a?)(z + b?) becomes n*(5m? —
n?)(m3 —mn?)2, and in the second case we get m?n?(m — n)*(m + n)%(m? + 3mn + n?).
The result is then obtained from [3, Algorithm 1]. q.e.d.
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Corollary 9. Let (a,b) be a pythagorean pair with a = m? —n? and b = 2mn such that

at least one of the following conditions (i)—(iii) is satisfied.
(i) —m* —4mn3 +n* =0
(ii) m* +4m?n? —nt =0

(ii5) m* — 2m3n + 2m?n? 4+ 2mn3 + 0t =0
Then (a,b) is a quadratic pythapotent pair.

Proof. The quartic conditions (i)—(iii) are obtained by imposing each of the points with
a-coordinates —8m?*n*(m + n)?, 8m*n?(m? — n?), 8m3n3(m* — n?), on the curve T,z
respectively. Note that each of the quartic conditions (i)—(iii) is equivalent to an elliptic
curve of rank one. The result then follows from [3, Algorithm 2]. q.e.d.

Corollary 10. Let (a,b) be a pythagorean pair. Then (a,b) is a cubic pythapotent pair.

Proof. Let a = m?—n? and b = 2mn. Since the curve 'y 33 owns the non-obvious rational
point

P = (—=16(m* — n?)’m*n*,16(m* — n®)’>m*n*(m*® + n?)(m* — 6m*n* + n")),

the result immediately comes from Algorithm 2 as follows. The z-coordinate of the point
[2]P is

(2m?*n?(m — n)*(n+m)?/(m?* + n2))2
which, by applying Algorithm 2, leads to

k = 4mn(m? +n?), I = (m—n)*(n+m)?

with
(@®k)? + (%) = (4mn(m* + n*)(m — n)?(n +m)?)%

q.e.d.

We conclude the paper with two open problems.

Question 1. Take an arbitrary pythagorean pair (a,b). Is there an h > 4 such that (a,b)
is a pythapotent pair of degree h?

Question 2. Take an arbitrary h > 4. Is there a pythagorean pair (a,b) which is a pytha-
potent pair of degree h? Or equivalently: Is there a pythagorean pair (a,b) such that Lon ph
has positive rank over Q¢

Notice that Corollary 10 answers both questions for h = 3. Corollaries 8 and 9 give
partial answers to Question 1 for h = 1 and h = 2 respectively.
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