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Abstract

A pair (a, b) of positive integers is a pythagorean pair if a2 + b2 is a square.
A pythagorean pair (a, b) is called a pythapotent pair of degree h if there is
another pythagorean pair (k, l), which is not a multiple of (a, b), such that
(ahk, bhl) is a pythagorean pair. To each pythagorean pair (a, b) we assign an
elliptic curve Γah,bh for h ≥ 3 with torsion group isomorphic to Z/2Z×Z/4Z
such that Γah,bh has positive rank over Q if and only if (a, b) is a pytha-
potent pair of degree h. As a side result, we get that if (a, b) is a pythapotent
pair of degree h, then there exist infinitely many pythagorean pairs (k, l),
not multiples of each other, such that (ahk, bhl) is a pythagorean pair. In
particular, we show that any pythagorean pair is always a pythapotent pair
of degree 3. In a previous work, pythapotent pairs of degrees 1 and 2 have
been studied.

1 Introduction

A pythagorean pair is a pair (a, b) of positive integers such that a2 + b2 is a square. We
adopt the usual notation a2+ b2 = � for this. A pythagorean pair (a, b) is called a pytha-
potent pair of degree h if there is another pythagorean pair (k, l), which is not a multiple
of (a, b), such that (ahk, bhl) is also a pythagorean pair, i.e.,

a2 + b2 = � , k2 + l2 = � , and (ahk)2 + (bhl)2 = � .

To simplify the language, we will call a pythapotent pair of degree 3, 4 and 5 a cubic,
quartic and quintic pythapotent pair, respectively. We will also keep the definition of a
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double-pythapotent and quadratic pythapotent pair given in [3] that address a pythapotent
pair of degree 1 and 2, respectively.

As the pair of squares (a2, b2) of a pythagorean pair (a, b) is never a pythagorean pair,
it is natural to ask whether the Hadamard–Schur products (ahk, bhℓ), h ≥ 1, of pytha-
gorean pairs can be a pythagorean pair or not. For a double-pythapotent and quadratic
pythapotent pair, the question has been investigated in [3]. More precisely, it has been
shown that for each pythagorean pair (a, b), the elliptic curve Γa,b (Γa2,b2 , resp.) has
torsion group isomorphic to Z/2Z × Z/4Z (Z/2Z × Z/8Z, resp.) and that (a, b) is a
double-pythapotent (quadratic pythapotent, resp.) pair if and only if Γa,b (Γa2,b2 , resp.)
has positive rank over Q. With the points of infinite order on the curve Γa,b (Γa2,b2 , resp.)
infinitely many pythagorean pairs (k, l) can be generated, not multiples of each other,
such that (ak, bl) ((a2k, b2l), resp.) are pythagorean pairs. Moreover, every elliptic curve
Γ with torsion group Z/2Z × Z/8Z is isomorphic to a curve of the form Γa2,b2 for some
pythagorean pair (a, b).

In this work, we will answer affirmatively the question for h ≥ 3, which generalizes
the results of [3] concerning double-pythapotent and quadratic pythapotent pairs. The
question will lead, indeed, again in a natural way to associated elliptic curves of positive
rank over Q.

For a positive integer h, we assign the elliptic curve

Γah,bh : y2 = x3 + (a2h + b2h)x2 + a2hb2hx

to the pythagorean pair (a, b). We will show that then the curve Γah,bh with h ≥ 3 has
torsion group isomorphic to Z/2Z×Z/4Z (see Proposition 2), and that (a, b) is a pytha-
potent pair of degree h if and only if Γah,bh has positive rank over Q (see Theorem 3).
With the points of infinite order on the curve Γah,bh we can generate infinitely many

pythagorean pairs (k, l), not multiples of each other, such that (ahk, bhl) are pythagorean
pairs. In particular, we show that any pythagorean pair is actually a cubic pythapotent
pair (see Corollary 10).

Example. Let us have a look at an example. The pythagorean pair (a, b) = (3, 4) is a
quartic pythapotent pair. Indeed, for the pythagorean pair (k, l) = (176, 57) we have

(34 · 176)2 + (44 · 57)2 = 204002.

However, since the rank of the elliptic curve Γ35,45 is 0, (3, 4) is not a quintic pythapotent
pair. With the help of the theory of elliptic curves, we will later uncover the formulas
with which such examples can be systematically generated. In particular, we will see how
to find the matching pair (k, l) (see the examples in Section 2).

Remark 1. In [3], the parametrization Γa2,b2 for elliptic curves with torsion group Z/2Z×
Z/8Z, where (a, b) is a pythagorean pair, was obtained by using Schroeter’s construction
of cubic curves with line involutions (see [4]). Other new parametrizations obtained by
Schroeter’s construction for elliptic curves with torsion groups Z/10Z, Z/12Z, and Z/14Z
can be found in [5]. Furthermore, the curves Γah,bh , where (a, b) is a pythagorean pair,
are obtained by replacing the terms a4 + b4 and a4b4 in the parametrization of Γa2,b2 by
a2h + b2h and a2hb2h, respectively.

2



2 Pythapotent Pairs of Degree h

In a first step we show that for any distinct pythagorean pairs (a1, b1) and (a2, b2) with
relatively prime components, i.e., gcd(a1, b1) = gcd(a2, b2) = 1, and for any distinct
positive integers k 6= l, we have

ak1 − bk1
ak1 + bk1

6= al2 − bl2
al2 + bl2

.

With this result we then show that Γah,bh has torsion group isomorphic to Z/2Z×Z/4Z
for any positive integer h 6= 2, and it has torsion group isomorphic to Z/2Z × Z/8Z
for h = 2. Finally, we show how we obtain pythagorean pairs (k, l) from a point on Γah,bh

whose x-coordinate is a square such that (ahk, bhl) is a pythagorean pair.

Lemma 1. If (a1, b1) and (a2, b2) are relatively prime pythagorean pairs and k and l are
distinct positive integers, then

ak1 − bk1
ak1 + bk1

6= al2 − bl2
al2 + bl2

.

Proof. Let m1, n1,m2, n2 be positive integers such that a1 = m2
1 − n2

1, b1 = 2m1n1,
a2 = m2

2 − n2
2, b2 = 2m2n2. Assume towards a contradiction that

ak1 − bk1
ak1 + bk1

=
al2 − bl2
al2 + bl2

.

Then, solving this equation for the integers n1 and n2, respectively, we obtain that

a
2l

k

2 + b
2l

k

2 = � and a
2k

l

1 + b
2k

l

1 = � .

Since the components of both pairs (a1, b1) and (a2, b2) are relatively prime, we must have
that 2l

k
and 2k

l
are integers, which implies that there are positive integers s and t such

that ks = 2l and lt = 2k. This implies that ts = 4, and therefore, we have either t = 1
and s = 4, t = 4 and s = 1, or t = s = 2. In the first case we have l = 2k, which gives
us a42 + b42 = �, which is impossible, in the second we obtain a41 + b41 = �, which is also
impossible, and in the third case we have k = l, which contradicts our assumption that k
and l are distinct. q.e.d.

Proposition 2. If (a, b) is a pythagorean pair, then the elliptic curve

Γah,bh : y2 = x3 + (a2h + b2h)x2 + a2hb2hx ,

has torsion group Z/2Z × Z/4Z for any positive integer h 6= 2, and it has torsion group
Z/2Z×Z/8Z for h = 2.

Proof. We use Kubert’s parametrization for elliptic curves with torsion group containing
Z/2Z×Z/4Z (see [6, p. 217]):

y2 + xy − ey = x3 − ex2 (1)
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for
e = v2 − 1

16 where v 6= 0, ±1
4 .

All curves in this family have a torsion group which has Z/2Z×Z/4Z as a subgroup, i.e.,
by Mazur’s torsion theorem, the torsion group must be either Z/2Z × Z/4Z or Z/2Z ×
Z/8Z. Furthermore, it is easily seen that for e 6= e′, the corresponding curves in Kubert’s
parametrization are non-isomorphic. By replacing x by x̃+ e and y+ x̃

2 by ỹ in (1) we get
an elliptic curve which is isomorphic to

ỹ2 = x̃3 + ãx̃2 + b̃x̃ (2)

with
ã = 2 · (16v2 + 1) and b̃ = (16v2 − 1)2.

Now, for v = p
q
, let p := ah − bh and q := 4(ah + bh). Then, if we put

x̃ =
4X

(ah + bh)2
and ỹ =

8Y

(ah + bh)3

in (2), we get the equivalent curve

Γah,bh : Y 2 = X3 + (a2h + b2h)X2 + a2hb2hX.

By Lemma 1 and the fact that the curves of the form (1) are non-isomorphic for different
values of e, we get that for any pythagorean pairs (a1, b1) and (a2, b2) and for any distinct
positive integers k 6= l, the two curves Γak

1
,bk

1

and Γal
2
,bl

2

are non-isomorphic. Notice that

if (a, b) is a pythagorean pair where a and b are not relatively prime, then there is a
pythagorean pair (ā, b̄) such that the curves Γah,bh and Γāh,b̄h are isomorphic. This implies
that for any positive integer h, the torsion group of Γah,bh is either Z/2Z × Z/4Z or
Z/2Z × Z/8Z. Now we use [3, Proposition 1] which says that an elliptic curve Γ has
torsion group Z/2Z × Z/8Z if and only if there is a pythagorean pair (a, b) such that Γ
is isomorphic to Γa2,b2 . Thus, the torsion group of Γah,bh is isomorphic to Z/2Z × Z/8Z
only when h = 2, and it is isomorphic to Z/2Z × Z/4Z otherwise. This completes the
proof. q.e.d.

As a matter of fact we would like to mention that the proof of Proposition 2 implies that
Kubert’s parametrization for elliptic curves with torsion group containing Z/2Z × Z/4Z
gives us a curve with torsion group Z/2Z×Z/8Z if and only if e is of the form

e = −a2b2

4c4
where (a, b, c) is a pythagorean triple.

Theorem 3. The pythagorean pair (a, b) is a pythapotent pair of degree h if and only if
the elliptic curve Γah,bh has positive rank over Q.

The following Lemmata 4, 5 and 6 prepare the proof of Theorem 3. First, we transform
the curve Γah,bh to another curve on which we carry out our calculations.

Lemma 4. If (x̄, ȳ), x̄ 6= 0, is a point on the curve Γah,bh, then the point (a
hbh

x̄
, ȳ
x̄
) is a

point on the curve
y2x = ahbh + (a2h + b2h)x+ ahbhx2.

In particular, if (x̄, ȳ) is a rational point, then so is (a
hbh

x̄
, ȳ
x̄
).
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Proof. If (x̄, ȳ) lies on Γah,bh , then (X̄, Ȳ , Z̄) = (ahbh, ȳ, x̄) is a point on the projective
curve

XY 2 = ahbhZ3 + (a2h + b2h)XZ2 + ahbhX2Z.

Since x̄ = Z̄ 6= 0, the point (X̄, Ȳ , Z̄) also satisfies the dehomogenized equation

X

Z

(Y

Z

)2
= ahbh + (a2h + b2h)

X

Z
+ ahbh

(X

Z

)2
.

Hence, ( X̄
Z̄
, Ȳ
Z̄
) = (a

hbh

x̄
, ȳ
x̄
) is a point on the affine curve

y2x = ahbh + (a2h + b2h)x+ ahbhx2,

as claimed. q.e.d.

We will now use the group structure on elliptic curves to add points. In particular we
will write [2]P to denote the point P + P .

Lemma 5. Let P = (x1, y1) be a rational point on Γah,bh and let x2 be the x-coordinate

of the point [2]P . Then, x0 := ahbh

x2
—which is the x-coordinate of the point on the curve

y2x = ahbh+(a2h + b2h)x+ ahbhx2 which corresponds to [2]P— can be written as x0 =
p
q
,

where q = q̃2 and p = ahbh · p̃2 for some q̃, p̃ ∈ Q, and where p and q satisfy

ah · (ahq + bhp) = � and bh · (ahp+ bhq) = � . (3)

Proof. By Silverman and Tate [7, p. 27] we have

x2 =
(x21 −B)2

(2y1)2
for B := a2hb2h,

and therefore we obtain

x0 =
ahbh

x2
=

4y21 a
hbh

(x21 −B)2
.

Thus we have x0 =
p
q
for q = q̃2 and p = ahbh · p̃2 with p̃ = 2y1 and q̃ = x21 −B.

Now, for

p = 4 ahbh(x31 + (a2h + b2h)x21 + a2hb2hx1) and q = (x21 − a2hb2h)2 ,

we obtain
ah · (ahq + bhp) = a2h

(

a2hb2h + 2b2hx1 + x21
)2

= �

and
bh · (ahp+ bhq) = b2h

(

a2hb2h + 2a2hx1 + x21
)2

= �

which completes the proof. q.e.d.

The next result gives a relation between rational points on Γah,bh with square x-coordinates

and pythagorean pairs (k, l) such that (ahk, bhl) is a pythagorean pair.
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Lemma 6. Let (a, b) be a pythagorean pair. Then every pythagorean pair (k, l) such that
(ahk, bhl) is a pythagorean pair corresponds to a rational point on Γah,bh whose x-coordinate
is a square, and vice versa.

Proof. Let x2 = g2/f2 be the x-coordinate of a rational point [2]P on Γah,bh for some

rational values f and g. Then, by Lemma 5, ahbh

x2
= ahbh·f2

g2
, where p = ahbh · f2 and

q = g2 satisfy (3), i.e., a2hg2 + a2hb2hf2 = �, and b2hg2 + a2hb2hf2 = �. So,

( g

f

)2
+ b2h = ρ2 for some ρ ∈ Q, (4)

and
(

g
f

)2
+ a2h = �. Let g

f
= 2ρt

t2+1 and bh = ρ(t2−1)
t2+1 . Then ρ = bh(t2+1)

t2−1 and g
f
= 2bht

t2−1 ,
which gives us

t =
bhf ±

√

g2 + b2hf2

g
.

It follows from (4) that t is a rational number, say t = r
s
. Finally, since

(

g
f

)2
+ a2h = �,

we obtain
a2h · (r2 − s2)2 + b2h · (2rs)2 = �,

and for k := r2 − s2, l := 2rs, we finally get

(ahk)2 + (bhl)2 = � where k2 + l2 = �,

which shows that (a, b) is a pythapotent pair of degree h.

Assume now that we find a pythagorean pair (k, l) such that (ahk, bhl) is a pythagorean
pair. Without loss of generality we may assume that k and l are relatively prime. Thus,
we find relatively prime positive integers r and s such that k = r2 − s2 and l = 2rs. With
r, s, a, b we can compute x2 =

b2hl2

k2
, which is the x-coordinate of a rational point on Γah,bh

whose x-coordinate is obviously a square. q.e.d.

We are now ready for the proof of the main theorem.

Proof of Theorem 3. For every rational point P on Γa,b with square x-coordinate let
(kP , lP ) be the corresponding pythagorean pair. By Lemma 6 it is enough to show that
no rational point with square x-coordinate has finite order. Notice that if P is a point
of infinite order, then for every integer i, [2i]P is a rational point on Γah,bh with square
x-coordinate, and not all of the corresponding pythagorean pairs (k[2i]P , l[2i]P ) can be
multiples of (a, b).

Let us consider the x-coordinates of the torsion points on the curve Γah,bh with h ≥ 3.
For simplicity, we consider the 8 torsion points on the equivalent curve

y2 =
ahbh

x
+ (a2h + b2h) + ahbhx.

The two torsion points at infinity are (0, 1, 0) (which is the neutral element of the group)

and (1, 0, 0) (which is a point of order 2). The other two points of order 2 are (−ah

bh
, 0)
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and (− bh

ah
, 0), and the four points of order 4, which correspond to the four points on

the curve where the tangent to the curve is parallel to the x-axis, are
(

1,±(ah + bh)
)

and
(

−1,±(ah − bh)
)

. The corresponding points on the curve Γah,bh are the three points

(0, 0), (−b2h, 0) and (−a2h, 0) of order 2, and the four points
(

ahbh,±ahbh(ah + bh)
)

and
(

−ahbh,±ahbh(ah − bh)
)

of order 4. Since x2 is a square, we have that none of the values

0, −a2h, −b2h, ahbh, −ahbh,

is a rational square, except 0 and possibly ahbh. If x2 = 0, then this implies l = 0, but
(k, 0) is not a pythagorean pair. If h is odd, ahbh cannot be a square unless ab = �,
but it is impossible because it is equivalent to the rank 0 congruent number elliptic curve
y2 = x3 − x (also see [1, p. 175]). Consider now the case when h is even. For the case

h = 2 see [3]. For h ≥ 4, recall that x2 = b2hl2

k2
where k and l are relatively prime. Now,

if x2 = ahbh, then l2 = ahb−hk2, and therefore (ahk)2 + (bhl)2 = ahk2(ah + bh). Thus, if
(ahk)2 + (bhl)2 = �, then also ah(ah + bh) = �, and since h is even, also

ah + bh = � .

However, since h ≥ 4, by [2, Main Theorem2] this is impossible. Thus, there is no pytha-
gorean pair (k, l) such that (ahk, bhl) is a pythagorean pair.

q.e.d.

Corollary 7. If (a, b) is a pythapotent pair of degree h, then there are infinitely many
pythagorean pairs (k, l), not multiples of each other, such that (ahk, bhl) is a pythagorean
pair.

Proof. By Theorem 3, there exists a point P on Γah,bh of infinite order. Now, for every
integer i, [2i]P is a rational point on Γah,bh with square x-coordinate, and each of the
corresponding pythagorean pairs (k[2i]P , l[2i]P ) can be a multiple of just finitely many
other such pythagorean pairs. Thus, there are infinitely many integers j, such that the
pythagorean pairs (k[2j]P , l[2j]P ) are not multiples of each other. q.e.d.

Algorithm. The following algorithm describes how to construct pythagorean pairs (k, l)
from rational points on Γah,bh of infinite order.

• Let P be a rational point on Γah,bh of infinite order and let x2 be the x-coordinate
of [2]P .

• Let f and g be relatively prime positive integers such that

g

f
=

√
x2.

• Let r and s be relatively prime positive integers such that

r

s
=

bhf +
√

g2 + b2hf2

g
.

• Let k := r2 − s2 and let l := 2rs.

7



Then (ahk, bhl) is a pythagorean pair.

Examples. For m = 2 and n = 1, let a = m2 −n2 and b = 2mn. Then (a, b) = (3, 4) is a
pythagorean pair and we have:

1. For h = 1, 2, 5, 7, 10, the rank of Γah,bh is 0. Hence, (3, 4) is not a pythapotent pair
of degree h for these h’s.

2. The curve Γa3,b3 , with torsion group Z/2Z × Z/4Z, has rank 1 with generator
P = (−3888, 50544). The x-coordinate of [2]P is 1202 which leads to (k, l) = (8, 15)
with

(33 · 8)2 + (43 · 15)2 = 9842.

In particular, (3, 4) is a cubic pythapotent pair.

3. The curve Γa4,b4 , with torsion group Z/2Z × Z/4Z, has rank 1 with generator

P = (−11616, 1779360). The x-coordinate of [2]P is
(

912
11

)2
which leads to (k, l) =

(176, 57) with
(34 · 176)2 + (44 · 57)2 = 204002.

In particular, (3, 4) is a quartic pythapotent pair.

4. The curve Γa6,b6 , with torsion group Z/2Z × Z/4Z, has rank 1 with generator

P =
(

46022656
9 ,−678725632000

27

)

. The x-coordinate of [2]P is
(

3542528
10335

)2
which leads to

(k, l) = (82680, 6919) with

(36 · 82680)2 + (46 · 6919)2 = 666039762.

In particular, (3, 4) is a pythapotent pair of degree 6.

We now have a closer look at the degrees h = 1, 2, 3. Corollaries 8 and 9 specify concrete
conditions which imply that a pythagorean pair (a, b) is a pythapotent pair of degree 1 and
2 respectively, while Corollary 10 shows that a pythagorean pair (a, b) is automatically a
cubic pythapotent pair.

Corollary 8. Let (a, b) be a pythagorean pair with a = m2 − n2 and b = 2mn such that
at least one of the following two conditions is satisfied:

(i) 5m2 − n2 = � (ii) m2 + 3mn+ n2 = �

Then (a, b) is a double-pythapotent pair.

Notice that both conditions in Corollary 8 are satisfied for infinitely many pairs (m,n)
leading to pythagorean pairs (a, b).

Proof. One gets the quadratic conditions in the statement by imposing each of the points
with x-coordinates n2(m2 − n2) and mn(m − n)2 on the curve Γa,b respectively. In the
first case, the right hand side of the equation y2 = x(x + a2)(x + b2) becomes n4(5m2 −
n2)(m3 −mn2)2, and in the second case we get m2n2(m− n)4(m+ n)2(m2 + 3mn+ n2).
The result is then obtained from [3, Algorithm 1]. q.e.d.
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Corollary 9. Let (a, b) be a pythagorean pair with a = m2 − n2 and b = 2mn such that
at least one of the following conditions (i)–(iii) is satisfied.

(i) −m4 − 4mn3 + n4 = �

(ii) m4 + 4m2n2 − n4 = �

(iii) m4 − 2m3n+ 2m2n2 + 2mn3 + n4 = �

Then (a, b) is a quadratic pythapotent pair.

Proof. The quartic conditions (i)–(iii) are obtained by imposing each of the points with
x-coordinates −8m2n4(m + n)2, 8m4n2(m2 − n2), 8m3n3(m2 − n2), on the curve Γa2,b2

respectively. Note that each of the quartic conditions (i)–(iii) is equivalent to an elliptic
curve of rank one. The result then follows from [3, Algorithm 2]. q.e.d.

Corollary 10. Let (a, b) be a pythagorean pair. Then (a, b) is a cubic pythapotent pair.

Proof. Let a = m2−n2 and b = 2mn. Since the curve Γa3,b3 owns the non-obvious rational
point

P =
(

−16(m2 − n2)2m4n4, 16(m2 − n2)2m4n4(m2 + n2)(m4 − 6m2n2 + n4)
)

,

the result immediately comes from Algorithm 2 as follows. The x-coordinate of the point
[2]P is

(

2m2n2(m− n)2(n+m)2/(m2 + n2)
)2

which, by applying Algorithm 2, leads to

k = 4mn(m2 + n2), l = (m− n)2(n+m)2,

with
(a3k)2 + (b3l)2 = (4mn(m4 + n4)(m− n)2(n+m)2)2.

q.e.d.

We conclude the paper with two open problems.

Question 1. Take an arbitrary pythagorean pair (a, b). Is there an h ≥ 4 such that (a, b)
is a pythapotent pair of degree h?

Question 2. Take an arbitrary h ≥ 4. Is there a pythagorean pair (a, b) which is a pytha-
potent pair of degree h? Or equivalently: Is there a pythagorean pair (a, b) such that Γah,bh

has positive rank over Q?

Notice that Corollary 10 answers both questions for h = 3. Corollaries 8 and 9 give
partial answers to Question 1 for h = 1 and h = 2 respectively.
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