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Abstract

We investigate the geometry of Hessian curves Hc : x
3+y3+z3+cxyz = 0. In

particular, we present an elementary characterisation of Hessian curves with
torsion group Z/6Z. As an application we show, for example, that a result
of Mordell’s implies that the equation 7m4−26m2e2−49e4−n2 = 0 does not
have a solution in positive integers.

1 Introduction

One can show that every non-singular, irreducible cubic curve C in the real projec-
tive plane has a point of inflection O (see Bix [1, Theorem12.7]), and with respect
to O , one can define a commutative, binary, associative operation “+” on the points
of C, where O is the neutral element. In fact, if P and Q are two points of C, then
let P#Q be the third intersection point of the line through P and Q with the curve
C. If P = Q, the line trough P and Q is replaced by the tangent in P . Then P +Q
is defined by stipulating

P +Q := O#(P#Q).

In particular, −P := O#P . With this definition, (C,+) is an abelian group with
neutral element O . Let C(Q) be the set of rational points on C. Then one can show
that

(
C(Q),+

)
. is a subgroup of (C,+). Now, Mordell’s Theorem states that

the group
(
C(Q),+

)
is finitely generated. For the proof of Mordell’s Theorem,

one usually works with the Weierstrass normal form

y2 = x3 + ax2 + bx (1)
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or

y2 = x3 + bx+ c. (2)

For group calculations in the Weierstrass normal form, the inflection point O =
(0, 1, 0) at infinity is used. For example, the Weierstrass normal form (1) is used in
Silverman and Tate [11, Section 3.5], and form (2) is used by Mordell in [8, Chap-
ter 16]. The two Weierstrass normal forms (1) and (2) are very well investigated.
However, there are also other normal forms of cubic curves, for example the Hesse
normal form

x3 + y3 + 1 + cxy = 0 for some c ∈ R,

which reads in homogeneous coordinates as

X3 + Y 3 + Z3 + cXY Z = 0.

These so-called Hessian curves play a key-role in the proof that every non-singular,
irreducible cubic curve in the real projective plane has a point of inflection (see
Bix [1, Theorem12.7]), and Hessian curves are also used in cryptography (see Doche
and Lange [2]). For integral points on Hessian curves X3 + Y 3 + Z3 = nXY Z see
for example Dofs [3].

Below we will translate some results known for cubic curves in Weierstrass normal
form (1) to curves in Hesse normal form. For this, we first summarise some facts
about curves in Weierstrass normal form, and then we transform these curves into
Hessian curves. Then, we give a characterisation of Hessian curves with torsion
group Z/6Z. As a byproduct we give a complete list of rational or integral solutions
of following equations:

• 1 + 8x3 = y2

• 1 + 2x+ x2 + x3 + 2x4 + x5 = y2

• x2y2 + x3 + y3 − 9xy + 54 = 0

• x4 + 13x2e2 + 128y4 = z2

• 2x4 + 13x2y2 + 64y4 = z2

• x4 − 26x2y2 − 343y4 = z2

• 7x4 − 26x2y2 − 49y4 = z2
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2 Some facts about Weierstrassian curves

We say that a cubic curve Wa,b (with parameters a, b ∈ R) in the real plane R2 is a
Weierstrassian curve if

Wa,b : y
2 = x3 + ax2 + bx for some a, b ∈ R,

i.e., if Wa,b is in Weierstrass normal form. Furthermore, we say that two Weier-
strassian curves Wa,b and Wa′,b′ are equivalent, denoted Wa,b ∼ Wa′,b′, if there
exists a non-zero real α, such that a′ = α2a and b′ = α4b. Since α 6= 0, the relation
“∼” is obviously an equivalence relation. For example, all Weierstrassian curves of
the form y2 = x3−n2x, where n is a non-zero integer, belong to the same equivalence
class (i.e., are pairwise equivalent). Notice that if Wa,b ∼ Wa′,b′ and (x, y) ∈ R2 is
a point on Wa,b, then (α2x, α3y) is a point on Wa′,b′; and vice versa, if (x′, y′) ∈ R2

is a point on Wa′,b′, then (α−2x′, α−3y′) is a point on Wa,b. So, the transformation
(x, y) 7→ (α2x, α3y) maps Wa,b to Wa′,b′ and is a homomorphism of the groups on
Wa,b andWa′,b′ . In particular, if α ∈ Q, then each rational point onWa,b corresponds
to a rational point on Wa′,b′, and vice versa. Finally, we say that a Weierstrassian
curve Wa,b is normalised if at least one of its inflection points has x-coordinate
equal to 1.

Before we show that every Weierstrassian curve Wa,b with an inflection point in R2

is equivalent to a normalised Weierstrassian curve, we recall the following

Fact 2.1. The x-coordinate of an inflection point in R2 of a Weierstrassian curve
Wa,b is always a positive root of the polynomial

3x4 + 4ax3 + 6bx2 − b2 .

Proof. Let P = (x̃, ỹ) ∈ R2 be an inflection point of the Weierstrassian curve Wa,b.
First we show that x̃ is a root of 3x4 + 4ax3 + 6bx2 − b2. We have the following
equations:

y2 = x3 + ax2 + bx

(y2)′ = 2yy′ = 3x2 + 2ax+ b

(y2)′′ = 2y′2 + 2yy′′ = 6x+ 2a

Since y′′ at P is zero, we obtain 2y′2 = 6x+ 2a. Furthermore, we have

(2yy′)2 = 2 · (2y′2) · y2,

which gives us

(3x2 + 2ax+ b)2 = 2(6x+ 2a)(x3 + ax2 + bx) ,
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and therefore we obtain

3x4 + 4ax3 + 6bx2 − b2 = 0 .

Now, we show that x̃ > 0. Let p(x) := x(x2 + ax+ b) and notice that y2 = p(x). In
the case when a2 ≥ 4b, the roots of p(x) are x0 = 0 and

x± = 1
2

(
−a±

√
a2 − 4b

)
.

In the case when a2 < 4b, the only root of p(x) is x0 = 0. In the latter case, p(x) ≥ 0
implies x ≥ 0, and therefore, all points in R2 on the Weierstrassian curve Wa,b, in
particular points of inflection, have a non-negative x-coordinate. In the former case,
notice that x− ≤ x+. We consider the following sub-cases.

(a) 0 ≤ x−. The curve y
2 = p(x) is defined just on the intervals [x0, x−] and [x+,∞).

In particular, points of inflection have a non-negative x-coordinate.

(b) x− < 0. We know that the x-coordinate of the inflection point P is a root of

s(x) := 3x4 + 4ax3 + 6bx2 − b2 .

Notice that

• s(x)′ = 12p(x),

• s(0) = −b2 ≤ 0, and

• s(x+) = −1
2

(
a2 − a

√
a2 − 4b− 2b

︸ ︷︷ ︸

=: r(a,b)

)(
a2 − 4b
︸ ︷︷ ︸

≥ 0

)
,

Furthermore, r(a, b) ≥ 0 and r(a, b) = 0 if and only if b = 0 and a ≥ 0. To see this,
notice first that r(a, b) = 0 implies 4b2 = 0, and therefore b = 0. Now, for b = 0,
r(a, b) = 0 implies a2 = a

√
a2, and therefore a ≥ 0. Finally,

0 ≤
(
a−

√
a2 − 4b

)2
= 2 · r(a, b) .

We consider the following cases:

(i) x− < 0 ≤ x+. Since p(x) ≤ 0 for every x ∈ (−∞, x−], we have p(x), s(x)′ ≥ 0
for all x ∈ [x−, 0]. So, s(x) is increasing on the interval [x−, 0], and since s(0) =
−b2 ≤ 0, s has no root in the interval [x−, 0). Hence, the Weierstrassian curve Wa,b

(i.e., y2 = p(x)) has no point of inflection with negative x-coordinate.

(ii) x− < x+ < 0. This implies that for all x ∈ [x−, x+], p(x), s(x)
′ ≥ 0. Fur-

thermore, since x+ < 0, we get a2 − 4b < a2 which implies b > 0, and therefore
r(a, b) > 0. Furthermore, since x− < x+, we have a2 − 4b > 0. Thus, since
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s(x+) = −1
2
· r(a, b) · (a2 − 4b) < 0 and s is increasing on [x−, x+], s has no root in

the interval [x−, x+]. Hence, the Weierstrassian curve Wa,b (i.e., y
2 = p(x)) has no

point of inflection with negative x-coordinate.

(iii) x− = x+ < 0. This implies a2 = 4b, and since x+ < 0, we have a > 0. Now,
for all x < 0 we have p(x) ≤ 0, where p(x) = 0 implies x = x+. Thus, (x+, 0)
is a singular point on the Weierstrassian curve Wa,b and no point with negative
x-coordinate can be a point of inflection of Wa,b, which completes the proof.

q.e.d.

Now, we are ready to prove the following

Fact 2.2. For each Weierstrassian curve with an inflection point in R2 there exists
a unique normalised Weierstrassian curve which is equivalent to the given curve.

Proof. Let Wa,b be a Weierstrassian curve with an inflection point (x0, y0) ∈ R2.
By Fact 2.1, x0 > 0, and we can choose α := 1√

x0
. Then the point (α2x0, α

3y0) =

(1, α3y0) is an inflection point of Wa′,b′ where a
′ := α2a and b′ := α4b. Obviously,

Wa′,b′ is normalised, the curves Wa,b and Wa′,b′ are equivalent, and no other nor-
malised curve is equivalent to Wa,b.

q.e.d.

The following result characterizes normalised curves.

Fact 2.3. A Weierstrassian curve Wa,b is normalised if and only if

b 6= 1 and a =
b2 − 6b− 3

4
.

Proof. If x = 1 is a root of 3x4 + 4ax3 + 6bx2 − b2, then

3 + 4a + 6b− b2 = 0,

which implies that a = b2−6b−3
4

. On the other hand, if a = b2−6b−3
4

, then 3 + 4a +
6b − b2 = 0 and x = 1 is a root of 3x4 + 4ax3 + 6bx2 − b2. Now, if b = 1, then
a = −2 and x3 − 2x2 + x = x(x− 1)2, which shows that W−2,1 has a singularity at
x = 1, and it is easy to check directly that W−2,1 does not have an inflection point
in R2. q.e.d.

By Fact 2.3 we obtain that a normalised Weierstrassian curve is determined by the
value of b. So, we shall denote normalised Weierstrassian curves by Wb instead of
Wa,b. The following figures show a few normalised Weierstrassian curves together
with the curve for b = 1:
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It is straightforward to compute the y-coordinate of an inflection point of a nor-
malised Weierstrassian curve.

Fact 2.4. If Wb is a normalised Weierstrassian curve (in particular, b 6= 1), then
the inflection points in R2 of Wb are

(

1,±b− 1

2

)

.

Proof. Let Wb be a normalised Weierstrassian curve with b 6= 1 and let (1, w) be an
inflection point of Wb. Then, since (1, w) is a point on Wb, w = ±

√
a+ b+ 1. Now,

by Fact 2.3, a = b2−6b−3
4

, and therefore

w = ±
√

b2 − 6b− 3 + 4b+ 4

4
=

±
√
b2 − 2b+ 1

2
= ±b− 1

2
.

q.e.d.

In order to prove Mordell’s Theorem for elliptic curves one defines for every
Weierstrassian curve Wa,b a dual curve Wa′,b′ by stipulating a′ := −2a and b′ :=
a2 − 4b. Since the dual of a normalised curve is in general no longer normalised,
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and since we are mainly interested in normalised Weierstrassian curves, we have to
modify this dualization in order to get normalised dual curves.

LetWa0,b0 be a normalised Weierstrassian curve. Then the normalised dual curve

Wa1,b1 is defined by stipulating

b1 :=
b0 − 9

b0 − 1
and a1 :=

b21 − 6b1 − 3

4
.

By definition, Wa1,b1 is a normalised Weierstrassian curve. Moreover, we get the
following

Fact 2.5. If Wa0,b0 is a normalised Weierstrassian curve. Then the dual Wa′
0
,b′

0
is

equivalent to the normalised dual Wa1,b1.

Proof. It is enough to find an α ∈ R such that a1 = α2a′0 and b1 = α4b′0. First
notice that since Wa0,b0 is normalised,

a0 =
b20 − 6b0 − 3

4
.

Let

α :=
2

b0 − 1
.

On the one hand we have

α2 · a′0 = α2 · (−2a0) =
4

(b0 − 1)2
· −2b20 + 12b0 + 6

4
=

−2b20 + 12b0 + 6

(b0 − 1)2
,

and on the other hand we have

a1 =
b21 − 6b1 − 3

4
=

(b0 − 9)2 − 6(b0 − 9)(b0 − 1)− 3(b0 − 1)2

4(b0 − 1)2
=

−2b20 + 12b0 + 6

(b0 − 1)2
,

which shows that a1 = α2a′0.

Similarly, we have

α4 · b′0 = α4 · (a20 − 4b0) =
16

(b0 − 1)4
·
((b20 − 6b0 − 3)2

16
− 4b0

)

=

(b20 − 6b0 − 3)2 − 64b0
(b0 − 1)4

=
b40 − 12b30 + 30b20 − 28b0 + 9

(b0 − 1)4
=

(b0 − 1)3 · (b0 − 9)

(b0 − 1)4
=
b0 − 9

b0 − 1
= b1.

q.e.d.

It is easy to verify that the bidual curve Wa′′,b′′ of a Weierstrassian curve Wa,b is
equivalent to Wa,b. With respect to the normalised dual we get slightly more.
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Fact 2.6. If Wb0 is a normalised Weierstrassian curve and Wb2 is the normalised
bidual of Wb0, then b2 = b0.

Proof. We have that

b2 =
b1 − 9

b1 − 1
=

b0−9
b0−1

− 9
b0−9
b0−1

− 1
=

b0−9−9b0+9
b0−1

b0−9−b0+1
b0−1

=
−8b0
−8

= b0,

which completes the proof. q.e.d.

As a further fact, we would like to mention that for every Weierstrassian curve Wa,b,
there is a homomorphism φ fromWa,b to its dualWa′,b′, i.e., φ(P+Q) = φ(P )+′φ(Q),
where +′ denotes addition on Wa′.b′. If φ

′ is the corresponding homomorphism from
the dual Wa′,b′ of Wa,b to its bidual (which is equivalent to Wa,b, but in general not
identical with Wa,b) then φ

′
◦φ is essentially doubling points. The homomorphism φ

is given by

φ(x, y) :=

(

y2

x2
, y · x

2 − b

x2

)

.

To get homomorphisms between a normalised Weierstrassian curve and its dual, we
have to slightly modify φ:

Proposition 2.7. For x 6= 0, let

φi(x, y) :=

(

α2
i ·
y2

x2
, α3

i y ·
x2 − bi
x2

)

, where αi :=
2

bi − 1
.

If we extend φi by φi(0, 0) := O and φi(O) := (0, 0), then φ0 : Wb0 → Wb1 and
φ1 : Wb1 → Wb0 are homomorphisms between the dual normalised Weierstrassian
curves Wb0 and Wb1. There holds

φ1◦φ0 : Wb0 → Wb0

P 7→ P#P.

Proof. The proof is an easy calculation. q.e.d.

We conclude this section with points of order 6 on a normalised Weierstrassian curve
Wb. For this, let T := (0, 0), which is a point of order 2 on Wb. Now, by Fact 2.4,
for w = b−1

2
, the points W± := (1,±w) are inflection points, i.e., W± is a point of

order 3. Hence, S± := T#W± is a point of order 6. It is straightforward to compute
the coordinates of S±.

Fact 2.8. The two points
(

b, ±b(b− 1)

2

)

on the normalised Weierstrassian curve Wb are both points of order 6.
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Proof. Let T and W± be as above. Then the line through T and W± is given by
y = ±w · x, and the x-coordinates of the intersection points of the line TW± with
the curve Wb are the zeros of the polynomial x3+ax2+bx−w2x2. Since a = b2−6b−3

4
,

and w2 = (b−1)2

4
we get the factorisation

x3 + ax2 + bx− w2x2 = x(x− 1)(x− b).

Hence, we obtain S± = (b,±bw), as claimed. q.e.d.

3 From Weierstrass to Hesse and back

In this section, we transform normalised Weierstrassian curves intoHessian curves,
which are, in homogeneous coordinates, cubic curves of the form

Hc : X
3 + Y 3 + Z3 + cXY Z = 0 for some c ∈ R.

Notice that if (X, Y, Z) is a point on Hc, then also (X, Y, Z), (Y,X, Z), (Z, Y,X), . . .
are points on Hc.

1 2 3−1−2−3
−1

−2

−3

1

2

3

c = 5

1 2 3−1−2−3
−1

−2

−3

1

2

3

b

c = −3

1 2 3−1−2−3
−1

−2

−3

1

2

3

c = −5

We now construct a projective transformation ΦWH which maps a normalised Weier-
strassian curve Wb to a Hessian curve Hc. In order to construct this transformation,
we first map four points on Wb to four points in the projective plane, and then
modify the transformation so that the four points in the projective plane belong to
the same Hessian curve.

Let Wb be a normalised Weierstrassian curve, i.e., b 6= 1 and a = b2−6b−3
4

. In the
projective plane, Wb has three points of inflection, namely O := (0, 1, 0) (at infinity)
and (1,±w, 1), where w = b−1

2
. Furthermore, Wb has a point of order 2, namely

(0, 0, 1), and at least two points of order 6, namely (b,±bw, 1). Now, the four points
on Wb which we map are

A = (1, w, 1), B = (0, 1, 0), C = (0, 0, 1), D = (b,−bw, 1).
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These points are not collinear and can therefore be projectively mapped to the four
points

A′ = (−1, 0, 1), B′ = (−1, 1, 0), C ′ = (q, q, 1), D′ = (1, 1
q
, 1)

for some q ∈ R \ {0,−1
2
, 1}. Notice that A′ and B′ are on every Hessian curve, and

by Fact 4.4 we know that if C ′ is a point on some Hessian curve Hc, then so is D′.
The projective transformation ΦWH is illustrated by the following figure:

1 2 3−1

−1

−2

1

2

bC

b
A

b
D

b = 2

2 4−2−4

−2

−4

2

4

bA′
b

D′

bC ′

q = −3

The projective transformation which maps A 7→ A′, B 7→ B′, C 7→ C ′, D 7→ D′, can
be given by the matrix

ΦWH :=







1
2

(
b− 1 + q(b+ 1)

)
1− q −bq

1
2

(
b− 1 + q(b+ 1)

)
−(1− q) −bq

1 + q(b− 1) 0 −b






.

Let Γ be the image of Wb under the projective transformation ΦWH. Then Γ goes
through the points A′, B′, C ′, D′. The following figure shows the curve Γ (black)
together with the Hessian curve (red) through the same points:
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2 4−2−4

−2

−4

2

4

bA′
b

D′

b
C ′

In order to obtain the equation for Γ, we have to compute Φ−1
WH, which corresponds

to the matrix

ΦHW :=







b b −2bq

1
2
b(b− 1)(1 + 2q) −1

2
b(b− 1)(1 + 2q) 0

1 + q(b− 1) 1 + q(b− 1) −(b− 1)− q(b+ 1)






.

Now, a point (X, Y, Z) is on Γ if and only if the point (x, y, z)⊤ := ΦHW · (X, Y, Z)⊤
is on Wb, or in other words, if x, y, z satisfy the equation

y2z = x3 + ax2z + bxz2

where a = b2−6b−3
4

. This is equivalent to saying that X, Y, Z satisfy the following
equation:

0 =
(
X3 + Y 3 + Z3

)

·
(

−2q + (1− b)q2 + (1− b)q3
)

+ XY Z ·
(

(3− b)− (3 + 3b)q + (6− 6b)q2 − (6 + 2b)q3
)

+
(

X2Y + Y 2Z + Z2X +X2Z + Y 2X + Z2Y
)

·
(

1 + (b− 3)q + (b+ 3)q2 + (b− 1)q3
)

Thus, Γ is a Hessian curve if and only if

1 + (b− 3)q + (b+ 3)q2 + (b− 1)q3 = 0,

which is satisfied if and only if

b =
(q − 1)3

q + q2 + q3
.
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Now, starting with a Hessian curve Hc, we get that (q, q, 1) is on Hc, if and only if

1 + cq2 + 2q3 = 0,

i.e., if and only if

c = −2q3 + 1

q2
.

So, the parameter b of the normalised Weierstrassian curve Wb which corresponds

to Hc is given by b = (q−1)3

q+q2+q3
. We summarise the result as follows:

Theorem 3.1. For q ∈ R \ {0,−1
2
, 1} let b = (q−1)3

q+q2+q3
and c = −2q3+1

q2
. Then

Φbc :Wb → Hc,





x
y
z



 7→





X
Y
Z



 =







1
2

(
b− 1 + q(b+ 1)

)
1− q −bq

1
2

(
b− 1 + q(b+ 1)

)
−(1 − q) −bq

1 + q(b− 1) 0 −b











x
y
z





is an isomorphism between the normalised Weierstrassian curve

Wb : y
2z = x3 + ax2z + bxz2 with a =

b2 − 6b− 3

4

and the corresponding Hessian curve

Hc : X
3 + Y 3 + Z3 + cXY Z = 0.

In particular, if q is rational, then both b and c are rational.

The following figures show some Hessian curves (red) together with the correspond-
ing normalised Weierstrassian curves (blue):

2 4−2−4

−2

−4

2

4

q = 1
3 b = − 8

13

2 4−2−4

−2

−4

2

4

b

b

q = 1 b = 0

2 4−2−4

−2

−4

2

4

q = 7
2 b = 125

469
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2 4−2−4

−2

−4

2

4

q = −7
2 b = 243

91

2 4−2−4

−2

−4

2

4

b

b

q = −1
2 b = 9

2 4−2−4

−2

−4

2

4

q = − 7
18 b = 15625

1729

4 The dual of a Hessian curve

We now want to define the dual of a Hessian curve Hc0. First, observe that the

equation c0 = −2q3
0
+1

q2
0

has

one solution q0 and q0 < 0 ⇐⇒ c0 > −3,

two solutions q0, namely q0 = 1 and q0 = −1

2
⇐⇒ c0 = −3,

a negative and two positive solutions ⇐⇒ c0 < −3.

The relation between q0 and c0 is illustrated by the following figure:

1 2 3−1−2 −1

−2

−3

−4

−5

−6

1

2

3
c0

q0

Later, in Lemma 5.1, we shall see that if c0 < −3 is rational, then at most one of
the three possible solutions for q0 is rational.

Now, we fix one of the possible values q0 in the cases where we have a choice (i.e.,

when c0 ≤ −3). Then we consider for b0 = (q0−1)3

q0+q20+q
3

0

the normalised Weierstrassian

curve Wb0 . LetWb1 be the normalised dual ofWb0 . Recall that b1 =
b0−9
b0−1

. This value
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defines a unique q1 via the equation b1 = (q1−1)3

q1+q21+q
3

1

, which in turn yields a Hessian

curve Hc1 for c1 = −2q3
1
+1

q2
1

. We call Hc1 a dual of Hc0. The following lemma relates

the values q0 and q1.

Lemma 4.1. If Hc1 is a dual of a Hessian curve Hc0 and c0 = −2q3
0
+1

q2
0

, then

q1 = − 1

2q0
and c1 =

1− 4q30
q0

.

Proof. We know that b0 = (q0−1)3

q0+q20+q
3

0

and that b1 = b0−9
b0−1

. Further we infer from the

previous section that

1 + (b1 − 3)q1 + (b1 + 3)q21 + (b1 − 1)q31 = 0.

The combination of these three equations yields

(
1 + 2q0q1

)(

1− 2q1 + 4q21 + 4q20(1 + q1 + q21) + 2q0
(
q1(5 + 2q1)− 1

))

= 0 .

This is the case when 1 + 2q0q1 = 0, or when

1− 2q1 + 4q21 + 4q20(1 + q1 + q21) + 2q0
(
q1(5 + 2q1)− 1

)
= 0.

If 1 + 2q0q1 = 0, then

q1 = − 1

2q0
.

In the other case, we have

(1− 2q0 + 4q20) + (−2 + 10q0 + 4q20)q1 + (4 + 4q0 + 4q20)q
2
1 = 0,

and the discriminant of this quadratic equation for q1 is Dq0 := −3(1+q0−2q20)
2 ≤ 0.

Dq0 = 0 if and only if q0 = −1
2
or q0 = 0. So, the only real solutions for q1 are when

q0 = −1
2
, which gives us q1 = 1, and when q0 = 1, which gives us q1 = −1

2
, and in

both cases we get again

q1 = − 1

2q0
.

Finally, since c1 = −2q3
1
+1

q2
1

, we obtain

c1 =
1− 4q30
q0

.

q.e.d.

Now, for q0 ∈ R \ {0,−1
2
, 1} and q1 = − 1

2q0
let

bi =
(qi − 1)3

qi + q2i + q3i
, ai =

b2i − 6bi − 3

4
, ci = −2q3i + 1

q2i

14



for i ∈ {0, 1}. Hence, Wbi : y2z = x3 + aix
2z + bixz

2 are normalised Weier-
strassian curves and Wb1 is the normalised dual of Wb0 and vice versa. Moreover,
Hci : X

3 + Y 3 + Z3 + ciXY Z = 0 are the Hessian curves which are isomorphic to
the curves Wbi in the sense of Theorem 3.1 via projective maps Φbici. We consider
the homomorphisms φ0 : Wb0 → Wb1 and φ1 : Wb1 → Wb0 from Section 2 which are
in homogeneous coordinates given by

φi :






x

y

z




 7→






α2
i y

2z

α3
i y(x

2 − biz
2)

x2z






where αi =
2

bi−1
. We can now push the homomorphisms between the normalised

Weierstrassian curves to the Hessian curves by letting the following diagram com-
mute:

Wb0

Φb0c0

��

φ0
//Wb1

Φb1c1

��

φ1
//Wb0

Φb0c0

��

Hc0

ψ0
// Hc1

ψ1
// Hc0

Observe that by construction ψ1◦ψ0 : P 7→ P#P .

For (X0, Y0, Z0) on the Hessian curve Hc0 we can explicitly compute (X1, Y1, Z1) :=
ψ0(X0, Y0, Z0). Reducing the occurring polynomials by X3

0 + Y 3
0 + Z3

0 + c0X0Y0Z0

one finds:

Theorem 4.2. If Hc1 is the dual of the Hessian curve Hc0, then the map

Hc0 → Hc1





X0

Y0

Z0




 7→






X1

Y1

Z1




 =






2q20X0(X0 + Y0)Z0 +X0Z
2
0 − q0

(
Y0(X0 + Y0)

2 + Z3
0

)

2q20Y0(X0 + Y0)Z0 + Y0Z
2
0 − q0

(
X0(X0 + Y0)

2 + Z3
0

)

Z0(X0 + Y0 − 2q0Z0)(X0 + Y0 + q0Z0)






is an homomorphism.

The resulting exression for (X2, Y2, Z2) := ψ1◦ψ0(X0, Y0, Z0) is rather long, but






X2

Y2

Z2




×






X0(Y
3
0 − Z3

0 )

Y0(Z
3
0 −X3

0 )

Z0(X
3
0 − Y 3

0




 =






0

0

0




 mod (X3

0 + Y 3
0 + Z3

0 + c0X0Y0Z0)

which shows:

Proposition 4.3 ([8, Chapter 10]). On a Hessian curve Hc0 there holds

(X0, Y0, Z0)#(X0, Y0, Z0) =
(
X0(Y

3
0 − Z3

0) , Y0(Z
3
0 −X3

0 ) , Z0(X
3
0 − Y 3

0 )
)
.
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If c 6= −3, then the Hessian curve Hc has the three points of inflection O :=
(−1, 1, 0), (0,−1, 1), (−1, 0, 1), which are points of order 3. Notice that O#(X, Y, Z) =
(Y,X, Z). Furthermore, Hc has either 1 or 3 points of order 2, which are all of the
form (q, q, 1) for some q ∈ R \ {0}. Concerning points of order 6, we have the
following

Lemma 4.4. If (q, q, 1) is a point on a Hessian curve Hc, i.e., c = −2q3+1
q

2
, then

(1, 1
q
, 1) and (1

q
, 1, 1) are points on Hc of order 6.

Proof. First notice that if (q, q, 1) is a point on Hc, then also 1
q
(q, q, 1) = (1, 1, 1

q
) is

a point on Hc, and consequently also (1, 1
q
, 1) and (1

q
, 1, 1) are points on Hc. To see

that S = (1, 1
q
, 1) is a point of order 6, notice that

S#S =
( 1

q3
− 1 , 0 , 1− 1

q3

)

which is the same point (in the projective plane) as (−1, 0, 1). So, S#S is a point of
order 3, and since S + S = O#(S#S) = (0,−1, 1), which is also a point of order 3,
we obtain that S is of order 6. The proof for (1

q
, 1, 1) is similar. q.e.d.

5 Rational Hessian curves

If c0 is rational, then Hc0 is called a rational Hessian curve.

Notice that for example for q0 = −
(
1 + 3

√
2 + 1

3
√
2

)
, c0 = −2q3

0
+1

q2
0

= 6 is rational,

which shows that a rational Hessian curve Hc0 does not necessarily come from a

rational q0. However, if c0 < −3 is rational (where c0 = −2q3
0
+1

q2
0

), then at most one

of the three possible values for q0 is rational. In order to show this, we first prove
the following

Lemma 5.1. If x0, y0 ∈ Q are rational solutions of

1 + 8x3 = y2,

then x0 = 0 and y0 = 1, x0 = −1
2
and y0 = 0, or x0 = 1 and y0 = ±3.

Proof. Let x0 = r
s
and y0 = u

v
be rational solutions, where r, s, u, v ∈ Z, s, v > 0,

r, u 6= 0, and (r, s) = 1 = (u, v). In the case when u = 0 we obtain x0 = −1
2
and

y0 = 0, and in the case when r = 0 we obtain x0 = 0 and y0 = 1. So, we have to
show that the only other solution is x0 = 1 and y0 = ±3. Now,

1 +
8r3

s3
=
u2

v2

16



and we obtain

1− u2

v2
=

(v − u)(v + u)

v2
=

−(2r)3

s3
. (3)

We conclude that v2 = s3, which implies that there exists a positive integer t such
that v = t3 and s̄ = t2, where (t, u) = 1. This gives us

−(2r)3 = t6 − u2 = (t3 − u)(t3 + u).

Since 2r is even, at least one of the factors t3 ± u is even, which implies that t3 and
u are both even or both odd, and since (t, u) = 1, we obtain that both t3 and u are
odd. Now, let d := (t3 − u, t3 + u). Then d ≥ 2 and d | 2u, and since (t3, u) = 1,
we have d ∤ u (otherwise, d | t3), and therefore, d = 2. Since t3 − u is even, we have
either t3 − u ≡ 0 mod 4, in which case t3 + u ≡ 2 mod 4, or t3 − u ≡ 2 mod 4,
in which case t3 + u ≡ 0 mod 4. This shows that one of the factors t3 ± u is four
times a cube and the other is twice a cube. So, we find non-zero integers a, b such
that (a, b) = 1 and

4a3 + 2b3 = (t3 − u) + (t3 + u) = 2t3,

or in other words,
t3 + (−b)3 = 2a3.

So, we arrive at an equation of the form

C3 +B3 = 2A3,

which has only the trivial integral solutions C = B = A and C = −B, A = 0 (see
Euler [4, p. 520, §247]).
If A = 0, then t3 = ±u, which is impossible since (t3, u) = 1. So, assume C = B
(i.e., t = −b), and that t3 − u = 2b3 (the case when t3 + u = 2b3 is similar). This
gives us t3 − u = −2t3, and since (t, u) = 1, we finally obtain t = ±1 and u = ±3.
Thus, y0 = ±3 and x0 = 1, which completes the proof. q.e.d.

Now we are ready to prove the following

Proposition 5.2. If Hc0 is a rational Hessian curve and c0 6= −3, then there exists

at most one rational q0 ∈ Q such that c0 = −2q3
0
+1

q2
0

. In the case when c0 = −3, we

get two rational values for q0, namely q0 = 1 and q0 = −1
2
.

Proof. Let q0 ∈ Q be a solution of

2x3 + c0x
2 + 1 = 0. (4)

(2x3 + c0x
2 + 1) : (x− q0) = 2x2 + x(c0 + 2q0) + q0(c0 + 2q0).

17



Hence, the other two solutions of (4) are

q1,2 = −1

4

(

c0 + 2q0 ±
√

c20 − 4c0q0 − 12q20

)

=
1

4q0

(

1±
√

1 + 8q30

)

where we have used that c0 = −2q3
0
+1

q2
0

. Therefore, q1,2 ∈ Q if and only if 1 + 8q30 =
(
u
v

)2
where u, v ∈ Z, v > 0, and (u, v) = 1. Now, by Lemma 5.1, we obtain

q0 ∈ {−1
2
, 0, 1}. The case when q0 = 0 is impossible, and q0 = −1

2
or q0 = 1 both

imply c0 = −3. q.e.d.

With Lemma 5.1 we can show that the cubic curve y2 = x3 + 1 contains only six
rational projective points.

Proposition 5.3. The cubic curve y2z = x3 + z3 contains only the following six
rational projective points: (0, 1, 0), (−1, 0, 1), (0,±1, 1), (2,±3, 1).

Proof. It is easy to verify that the six projective points given above belong to the
curve y2z = x3+ z3. Furthermore, by replacing x with 2x, it is enough to show that
(0, 1, 0), (−1

2
, 0, 1), (0,±1, 1), (1,±3, 1) are the only rational points on the curve

C : y2z = 8x3 + z3.

For this, assume that (x0, y0) is a rational point on the curve y2 = x3 + 1, or
equivalently, (x0, y0) is a solution of

1 + (2x0)
3 = y20.

Now, in the proof of Lemma 5.1 we have seen that the only rational solutions of this
equations are when x0 ∈ {−1

2
, 0, 1}, which gives us the six rational projective points

(0, 1, 0), (−1
2
, 0, 1), (0,±1, 1), (1,±3, 1) on the cubic curve y2z = x3 + z3. q.e.d.

By replacing x with x − 1, the curve y2 = x3 + 1 becomes the normalised Weier-
strassian curve

y2 = x3 − 3x2 + 3x ,

which corresponds to the Hessian curve Hc0 with c0 = 6 and q0 = −
(
1 + 3

√
2 + 1

3
√
2

)
.

Notice that by Hurwitz [5] (see also Mordell [8, Chapter 10]), the Hessian curve Hc0

with c0 = 6 has either exactly three or infinitely many rational points. The two
curves together with a point of order 6 are illustrated by the following figures:
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2 4

−2

2

4

bc

bc

bc

b

b0 = 3

2 4−2−4

−2

−4

2

4

b

bc

bc

bc

c0 = 6

6 Pairs of dual rational Hessian curves

If, for some non-zero real q0, c0 = −2q3
0
+1

q2
0

and c1 =
1−4q3

0

q0
, then Hc0 and Hc1 are dual

Hessian curves (see Lemma 4.1). If Hc0 and Hc1 is a pair of dual Hessian curves
and both c0 and c1 are rational, then the pair Hc0 and Hc1 is called a pair of dual

rational Hessian curves. If a curve Hc belongs to a pair of dual rational Hessian
curves, then we say that Hc is a dual rational Hessian curve.

We have seen that for q0 = −
(
1 + 3

√
2 + 1

3
√
2

)
, c0 = −2q3

0
+1

q2
0

= 6 is rational, which

shows that a rational Hessian curve Hc0 does not necessarily come from a rational q0.
However, for dual rational Hessian curves, this is always the case; but before we show
this, we give a parametrisation of the quartic curve

x2y2 + x3 + y3 − 9xy + 54 = 0, (5)

which is illustrated in the following figure:

5−5−10−15

−5

−10

−15

5

bc
Q

y

x
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Proposition 6.1. The map

γ : R \
{
0, 1,−1

2

}
→

{

(x, y) ∈ R2 \
{
(−3,−3)

}
: x2y2 + x3 + y3 − 9xy + 54 = 0

}

q 7→
(

−2q3 + 1

q2
,
1− 4q3

q

)

is bijective. The point γ(1) = γ(−1
2
) = (−3,−3) corresponds to the double point Q

on the quartic (5).

Proof. First of all, it is easy to check that each point (x, y) = γ(q) satisfies (5).

γ is injective: Let (x, y) := γ(q) for some q ∈ R \
{
0, 1,−1

2

}
. i.e., (x, y) 6= (−3,−3).

We need to show that only one q can have this property. By eliminating q3 from

2q3 + xq2 + 1 = 0 and 4q3 + yq − 1 = 0

we obtain 2xq2 − yq + 3 = 0. For x = 0 it follows that q = 3/y and we are done.
For x 6= 0 only two values

q± =
y ±

√

y2 − 24x

4x
(6)

are possible for q. Observe that y2 − 24x = (5+4q3)2

q2
≥ 0 and y2 − 24x = 0 iff

q = − 3

√
5
4
, corresponding to the point P =

(
3 3

√
2
52
,−6 3

√
22

5

)
on the quartic. So, for

(x, y) = P we are done. The following figure shows the quartic (5) together with
the parabola y2 − 24x = 0 (blue) and the point P .

5−5−10−15

−5

−10

−15

5

bc

Pbc

Otherwise, we have

γ(q+)− γ(q−) =

√

y2 − 24x

3x

(xy − 9

3
,−x

2 + 3y

x

)

which vanishes only for (x, y) = (−3,−3). In particular, this means that for only
one value q = q± we have (x, y) = γ(q).
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It is instructive to determine the sign of the root in (6): For a concrete point γ(q) on
the quartic, one can just check which sign is the correct one. Then, by continuity,
this sign is valid for all points on the corresponding branch of the curve until one
reaches P (see the figure above).

γ is surjective: Let (x, y) 6= (−3,−3) be a point on the quartic (5). If x > −3 there

is a unique q such that x = −2q3+1
q2

, and q < −1
2
. If we replace x in (5) with this

expression, we are left with an equation in y and q which has, for q < −1
2
, only one

real solution, namely y = 1−4q3

q
, and hence, (x, y) = γ(q). If x < −3, there are three

different values qi /∈ {−1
2
, 1} for q such that x = −2q3+1

q2
. In this case, the resulting

equation in y and q has three real solutions y in terms of q. On the other hand, each
of the three different points γ(qi) is a point on (5). Hence, γ(q) = (x, y) for one of
the three values q = qi. q.e.d.

We get a somewhat nicer picture when we transform the quartic (5) projectively to
an “8-shaped” curve and the parabola to a hyperbola:

Φ :





x
y
z



 7→





X
Y
Z



 =





−3 0 0
0 −3 0
1 1 −3









x
y
z



 .

The following figure shows the transformed quartic (in the plane Z = 1)

54 + 72X + 36X2 + 9X3 +X4 + 72Y + 63XY

+ 18X2Y + 2X3Y + 36Y 2 + 18XY 2 + 3X2Y 2 + 9Y 3 + 2XY 3 + Y 4 = 0

which is parametrised by

(

− 3(1 + 2q3)

(1 + q + q2)(1− 2q + 4q2)
,

3q(1− 4q3)

(1 + q + q2)(1− 2q + 4q2)

)

,

together with the hyperbola, where the red part of the quartic shows where we have
to take the negative root to compute the original q:
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1−1−2−3−4

−1

−2

−3

−4

1

With the parametrisation given in Proposition 6.1 of the quartic (5), we obtain
that for each q ∈ Q \ {0}, γ(q) is a rational point on (5). As a consequence of the
following result, which characterises dual rational Hessian curves, we get that each
rational point on (5) is the image under γ of some q ∈ Q.

Theorem 6.2. If Hc0 and Hc1 is a pair of dual rational Hessian curves, i.e., if c0
and c1 are both rational, then there exists a unique rational q0 ∈ Q such that

c0 = −2q30 + 1

q20
and c1 =

1− 4q30
q0

.

Proof. Since Hc0 and Hc1 is a pair of dual rational Hessian curves, c0 and c1 are both

rational, say c0 = r
s
and c1 = u

v
, and there is a q ∈ R such that c0 = −2q3+1

q2
and

c1 = 1−4q3

q
. Notice that by Lemma 5.1, if q ∈ Q, then q is unique. By eliminating

q3 from the two equations

c0 = −2q3 + 1

q2
=
r

s
c1 =

1− 4q3

q
=
u

v

we get
2q2rv − qsu+ 3sv = 0 .

Since q is a root of 2q2rv − qsu + 3sv, the minimal polynomial of q over Q must
divide this polynomial. Let

mq := q2 − su
2rv
q + 3s

2r
.

Then mq is the minimal polynomial of q over Q if and only if q /∈ Q. So, in order to
show that q is rational, it is enough to prove that mq is not the minimal polynomial
of q over Q.
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So, assume that mq is the minimal polynomial of q over Q. Then, from the equation

c0 = −2q3+1
q2

we obtain

2q3 + c0q
2 + 1 = 0,

and since mq is the minimal polynomial of q, there exists a polynomial p(x) = kx+ l
with rational coefficients such that

p(q) ·mq = 2q3 + c0q
2 + 1.

Since c0 =
r
s
, we have

p(q) ·mq = (kq + l)(q2 − su
2rv
q + 3s

2r
) = (2q3 + r

s
q2 + 1)

and equating the coefficients yields k = 2, l = 2r
3s

and

3s

r
− u

3v
= 0 .

Hence, since c0 =
r
s
and c1 =

u
v
, we get from this

− 3q2

2q3 + 1
=

1− 4q3

3q
,

which is equivalent to 8q6 − 7q3 − 1 = 0. Thus, we have either q3 = 1 or q3 = −1
8

and, in both cases, q ∈ Q. This shows that mq is not the minimal polynomial of q
over Q which completes the proof. q.e.d.

As a consequence we get the following

Corollary 6.3. A point (x0, y0) on the quartic curve

x2y2 + x3 + y3 − 9xy + 54 = 0

is rational if and only if there is a q ∈ Q such that

x0 = −2q3 + 1

q2
and y0 =

1− 4q3

q
.

7 Pairs of dual integral Hessian curves

Let Hc0 be a dual rational Hessian curve with c0 ∈ Z. What are the possible values
for c0? The answer to this question is given by the following

Theorem 7.1. If Hc0 is a dual rational Hessian curve and c0 ∈ Z, then c0 ∈
{1,−3,−5}.
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Proof. Let c0 = k for some integer k. Then

k = −2q3 + 1

q2

for some rational q = u
v
, where u > 0 (since q 6= 0), v 6= 0, and (u, v) = 1. We

therefore have

2q3 + kq2 + 1 = 0,

2
u3

v3
+ k

u2

v2
+ 1 = 0,

2u+ kv +
v3

u2
= 0.

Since 2u + kv ∈ Z, u > 0, and (u, v) = 1, we must have u = 1. Hence, q = 1
v
for

some v ∈ Z with v 6= 0 and v3 + kv + 2 = 0. We consider the following cases:

v > 0: In this case, we have v3 ≥ 1 and v3 + 2 = −kv for some k < 0. The
only possible values for v are v = 1 and v = 2, which give us k = −3 and k = −5,
respectively.

v < 0: In this case, the only possible values for v are v = −1 and v = −2, which
give us k = 1 and k = −3, respectively.

So, the only possible values for k (i.e., for c0) are 1,−3,−5. q.e.d.

8 The torsion group of dual rational Hessian curves

In this section, we give a characterization of rational Hessian curves. For this, we
first prove the following

Theorem 8.1. A Hessian curve Hc with c 6= −3 is a dual rational Hessian curve if
and only if Hc has a rational point of order 6.

Proof. (⇒) Let Hc be a dual rational Hessian curve. Then c = −2q3+1
q2

for some

q ∈ Q. We already have seen that the rational point (1
q
, 1, 1) is a point of order 6

on Hc, hence, every dual rational Hessian curve has a rational point of order 6.

(⇐) Let P = (X0, Y0, Z0) be a rational point of order 6 on the Hessian curve Hc.
Then 2P is a rational point on Hc of order 3, i.e., 2P is a point of inflection.
Therefore, either 2P or P#P is the point (0,−1, 1). Without loss of generality, let
us assume that P#P = (0,−1, 1), i.e.,

P#P =
(

X0(Y
3
0 − Z3

0) , Y0(Z
3
0 −X3

0 ) , Z0(X
3
0 − Y 3

0 )
)

=
(
0,−1, 1

)
.
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Since X0(Y
3
0 −Z3

0 ) = 0, we have either X0 = 0 or Y0 = Z0 6= 0. If X0 = 0, then P is
a point of inflection which contradicts the fact that P is a point of order 6. So, we
must have Y0 = Z0 6= 0, but then,

P =
(X0

Z0
, 1 , 1

)

.

Now, since 1
q
:= X0

Z0

is rational and (1
q
, 1, 1) is on Hc, we have 1

q3
+ 2 + c

q
= 0, which

implies that

c = −2q3 + 1

q2
,

hence, Hc is a dual rational Hessian curve. q.e.d.

The question is now, whether a rational Hessian curve Hc with c = −2q3+1
q2

can

have rational points beside the six points (−1, 1, 0), (0,−1, 1), (−1, 0, 1), (q, q, 1),
(1
q
, 1, 1), (1, 1

q
, 1). We will see that this is not the case, but before we have to recall

some facts: As mentioned above, Mordell’s Theorem states that the rational
points of an elliptic curve form a finitely generated abelian group (see Mordell [8,
Ch. 16]). Therefore, by the Fundamental Theorem of Finitely Generated

Abelian Groups, the group of rational points on an elliptic curve is isomorphic
to some group of the form

Z/n1Z× . . .×Z/nkZ
︸ ︷︷ ︸

torsion group

×Zr,

where n1, . . . , nk are positive integers with ni | ni+1, and r is a non-negative integer.
The group Z/Zn1

× . . . × Z/Znk
, which is generated by rational points of finite

order, is the so-called torsion group, and r is called the rank of the curve. Now,
by Mazur’s Theorem (see Mazur [6]) the torsion group of an elliptic curve is
isomorphic to one of the following fifteen groups:

Z/mZ for m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} , Z/2Z×Z/2nZ for n ∈ {1, 2, 3, 4}.

By Theorem 8.1 we know that every dual rational Hessian curve Hc with c 6= −3
has a rational point of order 6. Hence, the torsion group of a dual rational Hessian
curve is isomorphic to one of the following three groups:

Z/6Z , Z/12Z , Z/2Z×Z/6Z .

With the method at hand we are now able to give a short proof for the following
Theorem. See Papadopoulos [9] and Rubin and Silverberg [10] for similar results.

Theorem 8.2. If Hc is a dual rational Hessian curve with c 6= −3, then the torsion
group of Hc is isomorphic to Z/6Z.
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Proof. Let Hc0 be a dual rational Hessian curve with c0 = −2q3
0
+1

q2
0

for some q0 ∈ Q.

By Mazur’s Theorem it is enough to show that the torsion group of Hc0 is neither
Z/2Z× Z/6Z nor Z/12Z.

Assume towards a contradiction that the torsion group of Hc0 is Z/2Z × Z/6Z.
Then, since Z/2Z× Z/6Z is isomorphic to Z/2Z×Z/2Z× Z/3Z, there are three
rational points on Hc0 of order 2, where one of these rational points is (q0, q0, 1).
Now, the existence of three rational points on Hc0 is equivalent to the existence of
three rational solutions of 2q3+c0q

2+1 = 0, which, by Proposition 5.2 (and since
c0 6= −3), is impossible.

Now, assume towards a contradiction that the torsion group of Hc0 is Z/12Z. Then
there is a rational point Q0 on Hc0 of order 12, which implies that P0 := Q0#Q0 is a
rational point on Hc0 of order 6. In particular, the line through P0 and Q0 is tangent
to the curve Hc0 at Q0, and since the tangent to the curve Hc0 at P0 meets Hc0 at an
inflection point, this implies that q0 < 0 (i.e., Hc0 is connected), and since Hc0 has
just two points of order 6, P0 = (1, 1

q0
, 1) or P0 = ( 1

q0
, 1, 1). Without loss of generality,

we may assume that P0 = (1, 1
q0
, 1); the case when P0 = ( 1

q0
, 1, 1) is similar. We now

apply the homomorphisms ψ0 : Hc0 → Hc1 and ψ1 : Hc1 → Hc0 given in Section 4,
where Hc1 is the dual of Hc0. Let Q1 := ψ0(Q0). By the properties of ψ0 and ψ1,
we obtain P0 = ψ1(Q1) and ψ0(P0) = Q1#Q1. Now, an easy calculation shows that
ψ0(P0) = (−1, 0, 1), which implies that Q1#Q1 = (−1, 0, 1). If Q1 = (−1, 0, 1),
then ψ1(Q1) = (−1, 0, 1), which contradicts the fact that ψ1(Q1) = P0. Therefore,
Q1 is a rational point of order 6 such that Q1#Q1 = (−1, 0, 1). If Q1 = (1, 1

q1
, 1)

(where q1 = − 1
2q0

), then ψ1(Q1) = (−1, 0, 1), which contradicts again the fact that

P0 = ψ1(Q1). Hence, Q1 is a rational point of order 6, Q1#Q1 = (−1, 0, 1), but Q1

is neither (1, 1
q1
, 1) nor ( 1

q1
, 1, 1); notice that ( 1

q1
, 1, 1)#( 1

q1
, 1, 1) = (0,−1, 1). So, we

find at least three points of order 6 on Hc0, which shows that the torsion group of
Hc0 cannot be Z/12Z. q.e.d.

Transforming the dual rational Hessian curve Hc0 to the corresponding Weier-
strassian curve Wb0 , we obtain the following

Corollary 8.3. The rational solutions (x0, y0) of the equation

1 + 2x+ x2 + x3 + 2x4 + x5 = y2

are (−1, 0), (0, 1), (2, 9).

Proof. Let Wb0 be a normalized Weierstrassian curve where b0 = (q0−1)3

q0+q20+q
3

0

for some

rational q0 6= 0, and let Wb1 be its dual (i.e., b1 = b0−9
b0−1

). We apply the homomor-
phisms φ0 : Wb0 → Wb1 and φ1 : Wb1 → Hb0 given in Section 2. Let (x0, y0, 1) with
y0 6= 0 be a rational point on Wb0 and let

x2 :=
(b0 − x20)

2

4y20
.
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Then, for some rational y2,

φ1◦φ0(x0, y0, 1) = (x2, y2, 1).

Now, since y20 = x30+a0x
2
0+b0x0, where a0 =

b2
0
−6b0−3

4
, x2 depends only on x0 and b0.

Let us assume that (x2, y2, 1) is an inflection point, then x2 = 1. Hence, x2 − 1 = 0,
and the solutions for x0 are

x0 ∈
{
1, b0,

1
2

(
3− b0 ±

√

(b0 − 9)(b0 − 1)
)}
.

If x0 = 1, then (x0, y0) is an inflection point, and if x0 = b0, then (x0, y0) is a point
of order 6. As a consequence of Theorem 8.2 we know that there are no other
rational values for x0 such that x2 − 1 = 0. Let us consider

√

(b0 − 9) (b0 − 1): By

replacing b0 with (q0−1)3

q0+q20+q
3

0

we get

√

(b0 − 9) (b0 − 1) =

√

(1 + 2q0)3(1− 2q0 + 4q20)

q20(1 + q0 + q20)
2

=

√

(1 + 2q0)3(1− 2q0 + 4q20)

q0(1 + q0 + q20)
,

which shows that
√

(b0 − 9) (b0 − 1) ∈ Q if and only if

√

(1 + 2q0)3(1− 2q0 + 4q
2
0) ∈

Q. In other words,
√

(b0 − 9) (b0 − 1) ∈ Q if and only if

1 + 4q0 + 4q20 + 8q30 + 32q40 + 32q50 = p2 for some p ∈ Q, (7)

and since x0 can take no other rational values than 1 and b0, we obtain that the
only possible values for the rational q0 are when the corresponding b0 is not defined
or the corresponding curve is singular. So, the only rational solutions (q0, p) of (7)
are (−1

2
, 0), (0, 1),(1, 9), and multiplying q0 by 2 leads to the equation

1 + 2x+ x2 + x3 + 2x4 + x5 = y2,

which has no other solutions than (−1, 0), (0, 1), and (2, 9). q.e.d.

9 The rank of Hc0 for c0 = 1,−5

Hurwitz showed in [5] (see also Mordell [8, Chapter 10]) that for every integer c 6=
1,−5, the Hessian curve Hc has either exactly three or infinitely many rational
points. Now, since the only dual integral Hessian curvesHc0 are when c0 = 1,−5,−3,
and since c0 = −3 corresponds to the line x + y + z = 0 together with the point
(1, 1, 1), Hurwitz’ result does not tell us something new about dual rational Hessian
curves. However, Mordell showed in [7] that for c0 = 1,−5, the dual integral Hessian
curve Hc0 has exactly six rational points. Therefore, all rational points on Hc0 (for
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c0 = 1,−5) have finite order, which implies that the rank of both curves is zero—
recall that the rank of an elliptic curve is the number of generators of rational points
of infinite order and notice that the rank of Hc0 is the same as the rank of its dual
Hc1.

In order to compute the rank of a dual rational Hessian curve Hc0, we first transform
Hc0 to the corresponding normalised Weierstrassian curve Wa0,b0 , and then multiply
the coefficients a0 and b0 by α

2 and α4, respectively, in order to get integer coefficients
a and b, respectively. Then, we apply the technique described in Silverman and
Tate [11, Chapter III.6.] to “compute” the rank. To illustrate this procedure, we
consider the case when c0 = 1, i.e., when q0 = −1.

First we get b0 = 8 and a0 =
13
4
. For α = 2, we obtain a = 13 and b = 128, so,

Wa,b : y2 = x3 + 13x2 + 128x .

In order to compute the rank of Wa,b, which is the same as the rank of Hc0 (for
c0 = 1), we have to find out how many of the following equations have solutions in
positive integers:

n2 = m4 + 13m2e2 + 128 e4 (1)

n2 = −m4 + 13m2e2 − 128 e4 (2)

n2 = 2m4 + 13m2e2 + 64 e4 (3)

n2 = −2m4 + 13m2e2 − 64 e4 (4)

n2 = m4 − 26m2e2 − 343 e4 (1′)

n2 = −m4 − 26m2e2 + 343 e4 (2′)

n2 = 7m4 − 26m2e2 − 49 e4 (3′)

n2 = −7m4 − 26m2e2 + 49 e4 (4′)

The first four equations (1)–(4) are obtained from the curve Wa,b, and the second
four equations (1′)–(4′) are obtained from the dual curve Wa′,b′ , where a

′ = −2a and
b′ = a2 − 4b. The equations (1)–(4) are of the form

n2 = b1m
4 + am2e2 + b2 e

4

where b1 and b2 are integers, b1b2 = b, and b1 is square-free. The equations (1′)–(4′)
are obtained similarly by a′ and b′. So, for b = 128, b1 ∈ {1,−1, 2,−2}, and for
b′ = −343, b′1 ∈ {1,−1, 7,−7}.
Let k be the number of equations (1)–(4) for which we find solutions in positive
integers, let k′ be the corresponding number with respect to equations (1′)–(4′), and
let r be the rank of Wa,b (i.e., of Hc0). Then, if r > 0,

2r =
k · k′
4

.
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Now, since by Mordell’s result the rank of Hc0 for c0 = 1,−5 is zero, we must have
k · k′ ≤ 4. In fact, k = k′ = 2, i.e., exactly four equations have solutions in positive
integers. These four equations are:

(1) with solution n = 14 , m = 2 , e = 1 .

(3) with solution n = 28 , m = 4 , e = 1 .

(1′) with solution n = 28 , m = 7 , e = 1 .

(4′) with solution n = 24 , m = 1 , e = 1 .

In particular, we obtain that the other four equations do not have solutions in
positive integers:

Proposition 9.1. None of the four equations (2), (4), (2′), (3′) has a solution in
positive integers.

We may ask whether the rank of a dual rational Hessian curve is always zero. This
is not the case. For example (8, 31,−14) is a point of infinite order on the curve
Hc0, where c0 =

127
16

with corresponding q0 = −4, and for q0 = 4 we have c0 = −129
16

with the points of infinite order (8, 5, 2) and (8,−13, 2) on Hc0 .
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