
Geometric Properties and Iterates of Hesse
Derivatives of Cubic Curves

Sayan Dutta

Department of Mathematics and Statistics, IISER Kolkata, Mohanpur, West Bengal 741246, India

sd19ms148@iiserkol.ac.in

Lorenz Halbeisen

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract

The Hesse curve or Hesse derivative Γf of a cubic curve Γf given by a homogeneous
polynomial f is the set of points P such that det (Hf (P )) = 0, where Hf (P ) is the Hesse
matrix of f evaluated at P . Then Γf is again a cubic curve. We show that for any point
P ∈ Γf , all contact points of tangents from P to both curves Γf and Γf are intersection
points of two straight lines ℓP1 and ℓP2 (meeting on Γf ) with Γf and Γf , where the product
of ℓP1 and ℓP2 is the degenerate polar conic of Γf at P . Furthermore, the operator defines
an iterative discrete dynamical system on the set of cubic curves. We identify the two fixed
points of this system, investigate orbits that end in the fixed points, and discuss the closed
orbits of the dynamical system.

1 Introduction

We will work with cubic curves in the real projective planeRP2. PointsX = (x1, x2, x3)
T ∈ R3\{0}

will be denoted by capital letters, the components with small letters, and the equivalence class by
[X ] := {λX | λ ∈ R \ {0}}. However, since we mostly work with representatives, we often omit
the square brackets in the notation.

Let f be a homogeneous polynomial in the variables x1, x2, x3 of degree 3. Then f defines the
projective cubic curve

Γf :=
{
[X ] ∈ RP2 | f(X) = 0

}
.

The Hesse matrix of f is the symmetric 3× 3 matrix Hf =
( ∂2f

∂xi∂xj

)

.

Observe that det(Hf ) is again a homogeneous cubic polynomial. Therefore, we can define the
Hesse derivative of Γf , denoted Γf

1, as the cubic curve

Γf := Γdet(Hf ) =
{
[X ] ∈ RP2 | det(Hf (X)) = 0

}
.

1In an extraordinary twist of mathematical fate, we find ourselves compelled to introduce the Bengali alphabet
(pronounced “Haw”) as a notation in this paper to denote the Hesse derivative. In a desperate search for suitable

symbols beyond the scope of English, Greek and Latin, we have been left with no choice but to embark on this
linguistic expedition. Fun Fact: “Hesse” in Bengali means “to laugh”!
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The polar conic of Γf with respect to the pole P is given by the equation

Cf (P ) : 〈X,Hf (P )X〉 = 0. (1)

Here Hf (P )X denotes the product of the Hesse matrix of f evaluated at P with the vector X ,
and 〈 · , · 〉 denotes the Euclidean inner product. An equivalent formulation is given by

Cf (P ) : 〈∇f(X), P 〉 = 0, (2)

where ∇ denotes the gradient operator. Indeed, a simple but somewhat tedious calculation shows
that 〈X,Hf (P )X〉 = 2〈∇f(X), P 〉 (see [4] for details and a general formula of this type for homo-
geneous polynomials of any degree). It is clear from (2) that the contact points of the tangents
from P to Γf are precisely the intersection points of Cf (P ) with Γf (see Figure 1).

If there is no danger of confusion, we will omit the index and briefly write Γ instead of Γf . Moreover,
we will use the notation HΓ instead of Hf , and CΓ(P ) instead of Cf (P ) if the polynomial f is
determined by the context or if a general but unique polynomial is meant. We would like to
mention that the Hesse derivative Γ is also known as Hessian curve, denoted Hess(Γ) (see, e.g.,[5,
§ 4.12 , p. 111]). However, we prefer the notation Γ because we want to interpret as an operator
whose iterations we want to study. Whenever convenient, we will use x, y, z instead of x1, x2, x3

for the coordinates. The figures below of the various projective curves show images of the curves
in the affine plane x3 = 1 embedded in RP2.

bc

P

Γf

Cf (P )

bc

bc

bc

bc

Figure 1: A cubic curve Γf , its polar conic Cf (P ) with respect to the pole P , and the
tangents from P to the curve Γf .

It is well known that the polar conic is the product of two projective lines ℓP1 and ℓP2 , if and only
if the determinant of the Hesse matrix evaluated at P is equal to 0, i.e.,

CΓ(P ) = 〈X, ℓP1 〉〈X, ℓP2 〉 ⇐⇒ det (HΓ(P )) = 0.

In particular, we obtain the following well-known result (see Figure 2):

Fact 1. For any point P ∈ Γ, the polar conic is the product of the two lines ℓP1 and ℓP2 , and the
tangents from P to Γ touch Γ precisely at the points Γ ∩ ℓP1 and Γ ∩ ℓP2 .

In the next section we compute the contact points of the tangents from a point P ∈ Γ to the
curve Γ. In Section 3 we show that these contact points lie also on the degenerate polar conic
Cf (P ) and that the intersection point of the two lines of the conic Cf (P ) lies on the curve Γ (see
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Figure 2: A cubic curve Γf , its degenerate polar conic Cf (P ) with respect to the pole P
on the Hesse derivative Γf , and the tangents from P to the curve Γf .

Figure 3). In Section 4 and 5 we investigate iterated Hesse derivatives of cubic curves in Hesse
form, and then compute in Section 6 the number of chains and loops of given length of iterated
Hesse derivatives. Finally, in Section 7 it is shown how the results from Section 6 for cubic curves
in Hesse form can be transformed into curves in other normal forms.

bc

bc

bc

bc

bc

bc

bc

bc

P ΓfCf (P )

Γf Γf

Figure 3: A cubic curve Γf , its degenerate polar conic Cf (P ) with respect to the pole P
on the Hesse derivative Γf , and the tangents from P to the curves Γf and Γf .
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2 Halving formulae for points on Γ

In this section, we compute the contact points of the tangents from a point P ∈ Γ to the curve
Γ. By a suitable projective transformation, we may assume that the curve is of the form Ea,b

defined by
Ea,b : y2 = x3 + a x2 + b x (3)

in the affine plane, where a, b ∈ R.

Proposition 2. Let Ea,b be a non-singular elliptic curve over C defined by

Ea,b : y2 = x3 + a x2 + b x

where a, b ∈ C, and let P = (x0, y0) be a point on Ea,b.

Let

e1 =
−a+

√
a2 − 4b

2
, e2 =

−a−
√
a2 − 4b

2
,

and let
γ =

√
x0, α =

√
x0 − e1, β =

√
x0 − e2.

Then, Ea,b is of the form
y2 = x(x− e1)(x − e2)

and the x-coordinates of the contact points of the tangents of P with Ea,b are

x11 = (α + γ)(β + γ),

x12 = (α − γ)(β − γ),

x21 = (α + γ)(−β + γ),

x22 = (α − γ)(−β − γ).

Proof. Since −e1 − e2 = a and e1e2 = b, the curve Ea,b is of the form y2 = x(x − e1)(x − e2). In
order to show that x11, x12, x21, x22 are the x-coordinates of the contact points of the tangents of
P with Ea,b, it is enough to show that the x-coordinate of the points 2 ∗Qij , where i, j ∈ {1, 2},
Qij := (xij , yij) and y2ij = x3

ij + a x2
ij + b xij , is equal to x0. In other words, for the four points Qij

we have 2 ∗Qi = −P , i.e., P
2 = −Qij. Here 2 ∗Qij = Qij +Qij is the usual elliptic curve operation

on Ea,b (see, e.g., [3]). Now, the x-coordinate x2ij of the point 2 ∗Qij is given by the formula

x2ij =
x4
ij − 2b x2

ij + b2

4(x3
ij + a x2

ij + b xij)
=

(x2
ij − b)2

4xij(x2
ij + a xij + b)

.

Furthermore, we have a = α2 + β2 − 2γ2 and b = (α2 − γ2)(β2 − γ2), and if we write xij , a, b in
terms of γ, α, β, it is not hard to verify that

(x2
ij − b)2 = 4xijγ

2(x2
ij + a xij + b),

which shows that x2ij = x0. q.e.d.

3 Intersection of CΓ(P ) with Γ for P ∈ Γ

In this section, we combine the results from Section 2 with the property that for every point
P ∈ Γ, the polar conic of Γ with respect to the pole P is the product of two lines, ℓP1 and ℓP2 (see
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Fact 1). In particular, we will show that the intersection of the two lines ℓP1 and ℓP2 lies on the
curve Γ and that the points xij , i, j = 1, 2 correspond to the other intersection points of ℓP1 and
ℓP2 with Γ (see Figure 4).

For this, we consider the projective cubic curve

Γa,b : ax3 + 3xy2 + 3bx2z − b2z3 = 0

with a, b ∈ R, b 6= 0. We first show that every regular cubic curve Γ can be transformed to
the curve Γa,b. By a suitable projective transformation, we may assume that Γ is of the form
EA,B : y2 = x3 +Ax2 +B x. Then, the projective transformation given by the matrix





A 0 −(A2 − 3B)2

0 1 0
−3 0 0





transforms the curve EA,B to the curve Γa,b with a = −2A3 + 9AB and b = (A2 − 3B)3.

Now, for Γa,b, we get

HΓa,b
:=





6ax+ 6bz 6y 6bx
6y 6x 0
6bx 0 −6b2z





and hence
Γa,b : y2z = x3 + ax2z + bxz2.

In other words, Γa,b = Ea,b, as introduced in (3) in the previous section.

By definition, if P = (x0, y0, z0) ∈ Γa,b, then det
(
HΓa,b

(P )
)
= 0, which implies that the conic

section
CΓa,b

(P ) : (ax0 + bz0)x
2 + x0y

2 + 2y0xy + 2bx0xz − b2z0z
2= 0

can be written as the product of two lines ℓP1 and ℓP2 . In the following lemma, we will compute
these two lines in terms of e1 and e2 defined in the previous section.

Lemma 3. The lines ℓP1 and ℓP2 are given by

ℓP1 : ux+ vy + wz = 0

ℓP2 : rx + sy + tz = 0

where

u = −x0 −
√

(e1 − x0)(e2 − x0)

v = −√
x0

w = e1e2

r = −x0 +
√

(e1 − x0)(e2 − x0)

s =
√
x0

t = e1e2 .

Proof. If we replace y0 by
√

x3
0 + ax2

0 + bx0, and a, b by −e1 − e2 and e1e2, respectively, then we
have

CΓa,b
: (e1e2 − e1x0 − e2x0) x

2 + x0 y2 + 2
√

x3
0 − e1x2

0 − e2x2
0 + e1e2x0 xy + 2e1e2x0 x− e21e

2
2.
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Now, in order to show that CΓa,b
= ℓP1 · ℓP2 , we just have to check that

ur = −e1e2 + e1x0 + e2x0

us+ vr = −2
√

x3
0 − e1x2

0 − e2x2
0 + e1e2x0

vs = −x2
0

ut+ wr = −2e1e2x0

wt = e21e
2
2

vt+ ws = 0

which is easy to see. q.e.d.

Before we compute the intersection points of ℓP1 and ℓP2 with the curve Ea,b, we show that the two
lines intersect on the curve Ea,b.

Lemma 4. Let P = (x0, y0, z0) be a point on Γa,b. Then the point ℓP1 ∩ ℓP2 =: S = (xS , yS , zS)
lies on the same curve Γa,b = Ea,b.

Proof. First, let us assume x0 6= 0 and rewrite the lines as

ℓP1 : y =
−u

v
x+

−w

v

ℓP2 : y =
−r

s
x+

−t

s
.

Then the intersection S = (xS , yS, 1) of the two lines is given by

xS =
tv − ws

us− rv
=

e1e2
x0

=
b

x0

yS =
−u

v
xS +

−w

v
= −by0

x2
0

.

Now, we use the fact that
y20 = x3

0 + ax2
0 + bx0

to show that
( b

x0

)3

+ a
( b

x0

)2

+ b
( b

x0

)

=
(−by0

x2
0

)2

which means that S ∈ Ea,b, as claimed.

On the other hand, if x0 = 0, then P = (0, 0, 1) or P = (0, 1, 0). In the first case, we have
CΓa,b

: x2 − bz2 = (x +
√
bz)(x−

√
bz) = 0, and the two lines intersect in S = (0, 1, 0) on Ea,b. In

the second case, we have CΓa,b
: xy = 0, and the two lines intersect in S = (0, 0, 1) on Ea,b.

q.e.d.

Lemma 5. The map Γa,b → Γa,b, P = (x0, y0, z0) 7→ S = (xS , yS , zS), is an involution.

Proof. For x0 6= 0, we just have to check that

b
b
x0

= x0 and
−b · −by0

x2

0

b2

x2

0

= y0,

which is easy to see. For the case x0 = 0 see the end of the proof of Lemma 4. q.e.d.

Now, we show that the other intersection points of ℓP1 and ℓP2 with Ea,b are exactly the points xij ,
i, j = 1, 2 from Proposition 2.
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Lemma 6. Besides the point S, the intersection points of ℓP1 and ℓP2 with Ea,b are exactly the
points Qi, i = 1, 2, 3, 4, with 2 ∗Qi = −P . More precisely, the points x11 and x12 are on the line
ℓP1 and the points x21 and x22 are on ℓP2 .

Proof. To find the x-coordinate of the intersection points of ℓPi with Ea,b we eliminate y form the
equations for Ea,b and ℓP1 , and ℓP2 , respectively. The resulting equations are of degree 3 in x, but
since we already know the root b

x0

, the problem reduces to a quadratic equation

x2 − 2 (x0 ± αβ)x+ e1e2 = 0.

The solutions are

x0 + αβ ±
√

(x0 + αβ)
2 − e1e2 and x0 − αβ ±

√

(x0 − αβ)
2 − e1e2

and one checks easily that these expressions agree with the formulas for xij from Proposition 2.

It remains to show that the y-coordinates match as well. To see that, let us denote by A and B
the points at which the tangents from P to Ea,b meet Ea,b. So, for our claim to be true, we have

A+B = −S

2 ∗A = −P

2 ∗B = −P

which implies
2 ∗ P = 2 ∗ S

and hence it is enough to show that this is indeed the case. To do so, we note that a formula for
doubling the point P = (x0, y0) on Ea,b is given by

2 ∗ P =

((
x2
0 − e1e2

)2

4y20
,

(
x2
0 − e1e2

) (
e1e2 − 2e1x0 + x2

0

) (
e1e2 − 2e2x0 + x2

0

)

8y30

)

.

On the other hand, since S =
(

e1e2
x0

, −e1e2y0

x2

0

)

, we have

2 ∗ S =






(
e2
1
e2
2

x2

0

− e1e2

)2

4 · e2
1
e2
2
y2

0

x4

0

,

(
e2
1
e2
2

x2

0

− e1e2

)(

e1e2 − 2e1 · e1e2
x0

+
e2
1
e2
2

x2

0

)(

e1e2 − 2e2 · e1e2
x0

+
e2
1
e2
2

x2

0

)

−8 · e3
1
e3
2
y3

0

x6

0




 .

These two expressions for 2 ∗ P and 2 ∗ S obviously coincide. q.e.d.

Theorem 7. Let Γ be a cubic curve and let P ∈ Γ. Then, all the contact points of tangents from
P to the curves Γ and Γ are intersection points of ℓP1 and ℓP2 with Γ and Γ. In addition, the
intersection Q of ℓP1 and ℓP2 lies on Γ (see Figure 4).

4 Hesse Form of Cubic Curves

In this section, we consider a cubic curve in its Hesse form

Γc : x3 + y3 + z3 + c xyz = 0

with c ∈ R. Notice Γ−3 is a degenerate curve. Formally, we put

Γ∞ : xyz = 0.
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Q
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ℓP2

Γ

Γf Γ

Figure 4: Illustration for Theorem 7 for a cubic curve Γ with the symmetry group of an
equilateral triangle (see [1]). The Hesse derivative Γ has the same symmetry. The curve
Γ is given by 2

√
3x3+9(

√
3+1)(x2+ y2)z− 6

√
3xy2− 9z3 = 0 and has the property that

2
Γ = Γ (see Section 6).

Lemma 8. Let c0 6= 0. Then the Hesse derivative of Γc0 is Γc0 = Γc1 where

c1 = −108 + c30
3c20

.

The Hesse derivative of Γ0 is Γ0 = Γ∞, and the Hesse derivative of Γ∞ is Γ∞ = Γ∞.

Proof. We have

HΓc0
(x, y, z) :=





6x c0z c0y
c0z 6y c0x
c0y c0x 6z



 .

This yields detHΓc0
(x, y, z) = −6c2(x3 + y3 + z3) + 2(108 + c3)xyz, and the claim follows for

c0 ∈ R \ {0}. The cases Γ0 and Γ∞ are also easily checked. q.e.d.

An immediate corollary is

Corollary 9. Let c0 6= 0. Then, the (n+ 1)-th Hesse derivative of Γc0 is given by

n+1
Γc0 : x3 + y3 + z3 + cn+1xyz = 0

where cn+1 = − 108+c3n
3c2n

for every n ≥ 0, as long as cn 6= 0.

5 Analysis of iterates

Motivated by Lemma 8, we consider the function

h(x) =
a+ x3

bx2
(4)
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for a ∈ R and b ∈ R \ {0}.
Fact 10. The function h defined in (4) has a pole at x = 0, and an oblique asymptote y = x

b . For
b 6= −1

ϕ := 3

√
a

b− 1

is the unique real fixed point of h. The function h has the unique critical point κ := 3
√
2a with

critical value

h(κ) =
3a1/3

22/3b
.

The proof is elementary.

Remark: In our case, b = −3, we have

h(ϕ) = ϕ = − 3

√
a

4
= − 3

√

a3

4a2
= h(κ).

This case also gives us the crucial property for the partition of R \ {ϕ} into the intervals N =
(−∞, ϕ) and P = (ϕ,∞). Namely, we have x ∈ P \ {0} iff h(x) ∈ N , and x ∈ N iff h(x) ∈ P . For
the next propositions, we will assume b = −3 and a 6= 0, and hence ϕ 6= 0. For now, we refrain
from imposing a specific value of a, since, as we will see below, most of the results are independent
of the value of a. We will specify a = 108 in the next section.

Proposition 11. Let b = −3 and a 6= 0. If we define

h(n) := h ◦ h ◦ . . . h
︸ ︷︷ ︸

n times

then, y = x
bn is an oblique asymptote of h(n). Furthermore, if κn is a critical point of h(n), we

have

h(n)(κn) = ϕ = − 3

√
a

4
.

Conversely, if h(n)(x) = ϕ, then either x = ϕ or d
dxh

(n)(x) = 0.

Proof. Since we already know the oblique asymptote of h from Fact 10, we can now inductively
argue that

lim
x→±∞

∣
∣
∣h(n+1)(x)− x

bn+1

∣
∣
∣ = lim

x→±∞

∣
∣
∣
∣
∣

a+
(
h(n)(x)

)3

b
(
h(n)(x)

)2 −
x
bn

b

∣
∣
∣
∣
∣

= lim
x→±∞

∣
∣
∣
∣
∣

a

b
(
h(n)(x)

)2 +
h(n)(x)− x

bn

b

∣
∣
∣
∣
∣
= 0

using the fact that
(
h(n)(x)

)2 → ∞ for x → ±∞. Note that in this part we did not need the
assumption b = −3.

For the next part, observe first that we have

h(x) = ϕ ⇐⇒ (x− ϕ)(x − κ)2 = 0.

This equation has only two solutions, namely x1 = ϕ and x2 = κ. By chain rule we obtain

d

dx
h(n)(x) =

n−1∏

r=0

h′
(

h(r)(x)
)

= 0 (5)

⇐⇒ h′
(

h(r)(x)
)

= 0 for some r ∈ {0, 1, . . . , n− 1}

⇐⇒ h(r)(x) = κ for some r ∈ {0, 1, . . . , n− 1}.

9



So, it follows immediately that d
dxh

(n)(x) = 0 implies h(n)(x) = ϕ.

Now we prove the converse, as stated in the lemma. For n = 0, the statement is trivially true.
Assume that for some n ≥ 1 we have that h(n)(x) = ϕ implies that either x = ϕ or d

dxh
(n)(x) = 0.

Then we have for h(n+1)(x) = ϕ that h(n)(x) = κ or h(n)(x) = ϕ. On the other hand, d
dxh

(n+1)(x) =

h′(h(n)(x)) d
dxh

(n)(x). If h(n)(x) = κ, then the first factor in this product is zero and the derivative

of d
dxh

(n+1)(x) vanishes. If h(n)(x) = ϕ, then, by induction, x = ϕ or d
dxh

(n)(x) = 0, and again

the derivative of d
dxh

(n+1)(x) is zero. q.e.d.

Proposition 12. Let χn be the number of critical points of h(n). Then, the sequence {χn} is given
by

χ2r+1 = 2× 3r − 1 and χ2r = 3r − 1

for all integers r ≥ 0. This corresponds to OEIS A062318.

Proof. We only carry out the case ϕ < 0. The proof for ϕ > 0 is essentially the same.

Let N = (−∞, ϕ) and P = (ϕ,∞). Observe first that for given y ∈ N the equation

y = h(x) or equivalently x3 + 3yx2 − 4ϕ3 = 0

has three distinct real roots. Indeed, the discriminant ∆ = 27× 16ϕ3
(
y3 − ϕ3

)
is strictly positive

for y ∈ N . Moreover, if x, y ∈ N then the expression x3 + 3yx2 − 4ϕ3 is strictly negative, hence
the three solutions of y = h(x) must lie in P . Thus, the preimage h−1(y) of a point y ∈ N has
cardinality 3, and lies in P . Similarly, the preimage h−1(y) of a point y ∈ P has cardinality 1, and
lies in N .

Now, for n = 1, the set of critical points of h is C1 = {κ} ⊂ P . Let S1 := h−1(C1), and
Sk := h−1(Sk−1) for k > 1. In other words, Sk is the preimage of {κ} under h(k). Observe
that Sn ⊂ N if n is odd, and Sn ⊂ P if n is even. Also note that two sets Sk and Sj , k > j
are disjoint. Indeed, if x ∈ Sj , then h(j)(x) = κ, and hence h(k)(x) = ϕ 6= κ. It follows that
cardS2n = cardS2n+1 = 3n. For n > 1 we can read off from equation (5) that the set of critical
points of h(n) is the set Cn = Cn−1 ∪ Sn−1. In particular, the sets Cn and Sn are disjoint
for all n since the sets Sn are disjoint. Hence, we have cardC2n = cardC2n−1 + 3n−1, and
cardC2n+1 = cardC2n + 3n. This corresponds to the sequence OEIS A062318. q.e.d.

Proposition 13. Let Φn be the number of fixed points of h(n). Then, the sequence {Φn} is given
by

Φ2r+1 = 1 and Φ2r = 2χ2r − 1 = 2× 3r − 3

for all integers r ≥ 0.

Proof. Since h maps N to P and vice versa, the only fixed point of h(2r+1) is ϕ.

For the fixed points of h(2r), we begin by assuming without loss of generality that a > 0, ϕ < 0, and
recalling that h has a pole at x = 0, it is decreasing in the intervals (−∞, 0), (κ,∞) and increasing
in (0, κ). We also know that the only critical point of h is at κ and it has a local maximum there.
So, for convenience, we define

h̃(x) := h(x+ ϕ)− ϕ

i.e., we shift the point (ϕ, ϕ) to the origin. The number of fixed points of h(n) is the same as the
number of fixed points of h̃(n). Consider the sets Ñ = (−∞, 0), P̃ = (0,∞), and A = (0,−ϕ), B =
(−ϕ,−ϕ+κ), C = (−ϕ+κ,∞). Then, h̃ maps Ñ bijectively to P̃ , and A,B and C each bijectively
to Ñ . Hence h̃ maps Ñ , P̃ to P̃ and tree copies of Ñ . So after 2r iterations, the range of h̃(2r)

10
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Figure 5: Schematic profile of the function h̃(2r): We have (3r−1)/2 spikes on the positive
x-axis and (3r − 1)/2 on the negative x-axis.

consists of 3r copies of Ñ and 3r copies of P̃ . Figure 5 shows schematically the behaviour of h̃(2r).

Observe that the oblique asymptote of h̃(2r) is given by y = x/32r, hence the line y = x does not
intersect the leftmost and the rightmost branch of the graph of h̃(2r). Hence the number of fixed
points of h̃(2r) is 2(3r − 1)− 1 = 2× 3r − 3. q.e.d.

The number of zeros of h(n) is now calculated in the same way as the number of fixed points.

Proposition 14. Let ρn be the number of zeros of h(n). Then, the sequence {ρn} is given by

ρ2r = ρ2r+1 = 3r

for all integers r ≥ 0.

Proof. We still assume ϕ < 0, the case ϕ > 0 is similar. The number of zeros of h(n) equals the
number of solutions of the equation h̃(n) = −ϕ. Let us first assume that n = 2r is even. Then,
as in the proof of Proposition 13, h̃(2r) maps Ñ , P̃ to 3r copies of Ñ and 3r copies of P̃ . Since
−ϕ ∈ P̃ , the number of solutions of h̃(n) = −ϕ is 3r.

If n = 2r + 1 is odd, then, h̃(2r+1) maps Ñ , P̃ to 3r+1 copies of Ñ and 3r copies of P̃ . Hence, we
have again 3r solutions of h̃(n) = −ϕ. q.e.d.

6 Loops and chains of Hesse derivatives

We return to considering the curves in Hesse form, i.e.,

Γc : x3 + y3 + z3 + c xyz = 0, Γ∞ : xyz = 0 (6)

for c ∈ R. Depending on the value of c, the curve Γc has either one or two components in the affine
plane z = 1 (see Figure 6). Notice that Γc is unchanged under the transformation (x, y) 7→ (y, x),

11
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bc

y = xΓ
−9

bc

bc

bc

Figure 6: Hesse curves Γ5 and Γ−9.

and hence it is symmetric with respect to the line y = x. For c = −3 the curve degenerates to
the line x + y + 1 = 0 and the point (1, 1), otherwise it is smoothly embedded. If the curve has
one component, it intersects the line y = x in one point, if it has two components we have three
intersection points.

In this section, while referring to the function h from the previous section, we will assume a = 108,
b = −3, ϕ = −3, κ = 6 (see Lemma 8 and Fact 10).

We will begin with the following observation.

Lemma 15. Let c ∈ R. Then the curve Γc has two components in the affine plane z = 1 if c < −3
and only one component if c > −3. Moreover, for c 6= 0, if Γc has one component, then Γc has
two components, and if Γc has two components, then Γc has one component.

Proof. As explained above, we can determine the number of components of Γc by computing the
number of intersections with the line y = x, i.e., by counting the zeros of the equation

2x3 + cx2 + 1 = 0.

The discriminant of this cubic equation is

−27 · 4− 4c3

and hence the equation has three real roots if c < −3, and one if c > −3.

Recall that Γc = Γh(c) if c 6= 0 (see Lemma 8), and that h maps N = (−∞,−3) to P = (−3,∞)
and P to N (see the proof of Proposition 12). Hence, if Γc has two components, we have c ∈ N
and hence h(c) ∈ P , which means that Γc = Γh(c) has one component—and the same applies the
other way around. q.e.d.

The operator defines via Γ 7→ Γ an iterative discrete dynamical system on the set of the cubic
curves (6) in Hesse form. The dynamics is given by Lemma 8. The system has exactly two fixed
points, namely Γ−3 and Γ∞. We are now interested in orbits of a given length which end in one of
the fixed points, and in closed orbits of a given length. We call the former Hesse chains and the
latter Hesse loops. So, a Hesse chain is given by

n
Γc0 = Γcn = Γ−3 or

n
Γc0 = Γcn = Γ∞

12



where we call the minimal n with this property the length of the chain. Similarly, a Hesse loop is
given by

n
Γc0 = Γcn = Γc0

where the minimal n > 0 with this property is the length of the loop.

The number of Hesse chains ending in Γ−3 of length n is easy to calculate as shown in the following
Lemma.

Lemma 16. If 2
(−3)
n denotes the number 2 of Hesse chains ending in Γ−3 of length n, then

2
(−3)
2r = 2

(−3)
2r−1 = 3r−1

for integers r ≥ 1.

Proof. Notice that
n
Γc0 = Γcn = Γ−3 implies h(n)(c0) = ϕ = −3. By Proposition 11 it follows

that either c0 = −3 or that c0 is a critical point of h(n). Recall that the set of critical points of
h(n) contains the set of critical points of h(n−1) (see the proof of Proposition 12). Hence, by the
minimality of n, it follows from Proposition 12 that

2
(−3)
2r = χ2r − χ2r−1 = 3r−1

and

2
(−3)
2r−1 = χ2r−1 − χ2r−2 = 3r−1.

q.e.d.

Lemma 17. For any positive B ∈ R, there exists a c > B and a d < −B and an n ∈ N such that
n
Γc = Γ−3 and

n
Γd = Γ−3.

Proof. Observe first that Γ6 = Γ−3. Also note that for c ≥ 6 the solution c̄ of the equation h(c̄) = c
satisfies c̄ < −3c. On the other hand, for c ≤ −6, the largest of the three solutions c̄ of the equation
h(c̄) = c satisfies c̄ > −3c− 1. Hence by backward iteration and choosing always the solution with
the largest absolute value, we can construct an orbit ending in Γ−3 and starting at some Γc or Γd
with c > B or d < −B. q.e.d.

Similarly as before, we consider the Hesse chains ending in Γ∞.

Lemma 18. If 2
∞
n denotes the number of Hesse chains of length n ending in Γ∞, then

2
∞
2r = 2

∞
2r−1 = 3r−1

for integers r ≥ 1.

Proof. Since Γ0 = Γ∞, the number of Hesse chains ending in Γ∞ of length n is the number of
zeros of h(n−1). Therefore the claim follows from Lemma 14. q.e.d.

Now we turn our attention towards Hesse loops.

Proposition 19. The only Hesse loop of odd length is the trivial loop Γ−3 = Γ−3.

2We again find ourselves at a loss of expressions to notate the “ch” sound used in “chain” as such an alphabet
is not present in English, Latin or Greek script. We will use this excuse to use another Bengali alphabet, namely 2,
pronounced as “chaw”.

13



Proof. This follows immediately from Lemma 15. q.e.d.

Now, we want to determine the number of Hesse loops of length n for even n. We start with the
following observation.

Proposition 20. For every even n, there is at least one Hesse loop of length n.

Proof. Recall that Φn denotes the number of fixed points of h(n) (see Proposition 13). Now, note
that the value of Φn already includes the trivial fixed point −3. So let Φ′

n := Φn − 1 denote the
number of non-trivial fixed points of h(n). Furthermore, for any r, a fixed point of h(r) is also a
fixed point of h(mr) for any m. Also, any loop of length r consists of r elements and contributes
this number to Φ′

n. It is enough to show that the quantity

Φ′
2r −

r−1∑

k=1

Φ′
2k

is strictly positive. This follows from the fact that for r > 1, we have

r−1∑

k=1

Φ′
2k =

r−1∑

k=1

(
2× 3k − 4

)
= 3r − 4r + 1,

and this is indeed strictly smaller than Φ′
2r = 2× 3r − 4. q.e.d.

Remark. The above calculation also shows that we must at least have
⌈

1

2r

(

Φ′
2r −

r−1∑

k=1

Φ′
2k

)
⌉

=

⌈
3r − 5

2r

⌉

+ 2

loops of length 2r.

Proposition 21. If Λn denotes the number of Hesse loops of length n, then the sequence {Λ2r}
is strictly increasing.

Proof. Since Φ′
2r includes the two elements of the only 2-loop, the value of Λ2r can be at most

⌊
Φ′

2r − 2

2r

⌋

=

⌊
3r − 3

r

⌋

and hence ⌈
3r − 5

2r

⌉

+ 2 ≤ Λ2r ≤
⌊
3r − 3

r

⌋

for r > 1. So, to prove that the sequence {Λ2r} is strictly increasing, it is enough to show that
⌈
3r − 5

2r

⌉

>

⌊
3r−1 − 3

r − 1

⌋

.

This follows from
3x − 5

2x
>

3x−1 − 3

x− 1
which is true for x ≥ 3 as then we have

3x−1 · x+ 5 + x > 3x

which completes the proof for r ≥ 3.

The cases r = 1, 2 can be checked by hand. q.e.d.

We close this discussion by an explicit formula for the number of loops of length n = 2r.
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Theorem 22. The number of loops of length 2r is

Λ2r =
1

2r

∑

d|r
µ
( r

d

)

Φ′
2d

where Φ′
2d = 2× 3d − 4, and µ is the Möbius function.

Proof. Let the even divisors of 2r be d1 = 2, d2, . . . , dk = 2r. Since each loop of length dm contains
exactly dm elements, the total number of fixed points 6= −3 of h(2r) is given by

Φ′
2r =

∑

d|2r
d even

d · Λd.

The even divisors of 2r are twice the divisors of r. Hence we may write

Φ′
2r =

∑

d|r
2d · Λ2d.

Using the Möbius inversion formula, we obtain

2r · Λ2r =
∑

d|r
µ
( r

d

)

Φ′
2d

hence completing the proof. q.e.d.

The sequence (Λ2r) starts as follows:

Λ2 = 1, Λ4 = 3, Λ6 = 8, Λ8 = 18, Λ10 = 48, Λ12 = 116, Λ14 = 312, Λ16 = 810, . . .

The Hesse loop of length 2 is shown in Figure 4.

Remark. Let λr := Λ2r. Then we have for r ≥ 1

λr =
1

2r

∑

d|r
µ
( r

d

)

(2 · 3d − 4) =
1

r

∑

d|r
µ
( r

d

)

· 3d

︸ ︷︷ ︸
=:ar

−2 · 1
r

∑

d|r
µ
( r

d

)

︸ ︷︷ ︸

=δ1,r

,

where δ1,r = 1 if r = 1 and δ1,r = 0 for all other values of r. Notice that the sequence ar represents
the number of aperiodic necklaces with r beads of 3 colors, see OEIS A027376. Another sequence
that agrees with λr for r ≥ 2 is OEIS A185171.

7 Hesse derivatives of other normal forms

So far, we just considered Hesse derivatives of cubic curves in Hesse form, i.e., of curves Γc. The
reason was that the Hesse derivative of a curve in Hesse form is again a curve in Hesse form, which
is in general not the case for curves, for example, in Weierstrass normal form (WNF).

Below, we first provide examples of curves in WNF such that their Hesse derivatives are not
in WNF, and then we provide cubic curves with a D3-symmetry, whose Hesse derivatives have the
same symmetry— like the cubics in Figure 4.
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Curves in Weierstrass normal form

Let Γc : x3 + y3 + z3 + c xyz = 0 be a cubic curve in Hesse form. Then, as described in [2, Sec. 3],
by a projective transformation, for

c = −2q3 + 1

q2
,

the curve Γc can be transformed to the curve

Ea,b : y
2 = x3 + a x2 + b x

where

b =
(q − 1)3

q + q2 + q3
and a =

b2 − 6b− 3

4
.

For example, for c0 = −3(
√
3 + 1) we obtain

q0 =

√
3− 1

2
, b0 = 3− 2

√
3, a0 = 0 .

As a matter of fact we would like to mention that over the quadratic field Q(
√
3), the torsion group

of Ea0,b0 is Z/6Z with the generating point (−2
√
3 + 3, 5

√
3− 9). Furthermore, we have

Ea0,b0 = 7− 4
√
3 + (−3 + 2

√
3)x2 − xy2 = 0

and
2
Ea0,b0 = Ea0,b0 .

Curves in D3-symmetric form

In [1, Sec. 2], a D3-symmetric form of cubic curves was introduced. With a suitable projective
transformation, every regular cubic curve can be brought into the form

Γb : x
3 − 3xy2 + b(x2 + y2)z + z3 = 0, (7)

with b ∈ R, b 6= − 3
3
√
4
. The corresponding curve in the affine plane z = 1 has the symmetry of an

equilateral triangle, like the curves in Figure 4. For b = − 3
3
√
4
the curve degenerates to three lines:

x3 − 3xy2 − 3
3
√
4
(x2 + y2)z + z3 =

1

6
(2x+

3
√
2)(

√
3x+ 3y − 3

√
2
√
3)(

√
3x− 3y − 3

√
2
√
3).

This class of cubic curves shows a very similar behaviour under the operator as the class of Hesse
curves which we investigated before.

Proposition 23. The class of cubic curves (7) is invariant under the operator . We have

Γb = Γ̃b, with b̃ = −27 + b3

3b2
.

Proof. For f(x, y, z) = x3 − 3xy2 + b(x2 + y2)z + z3, we have

Hf =
1

2





3x+ bz −3y bx
−3y −3x+ bz by
bx by 3z



 .

Taking the determinant gives the desired result. q.e.d.
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In order to find a Hesse loop of length 2 in D3-symmetric form, we have to find b0 and b1, such
that

b1 = −27 + b30
3b20

and b0 = −27 + b31
3b21

,

which holds for

b0 = −3
3

√

3
√
3 + 5

2
and b1 = 3

3

√

3
√
3− 5

2
.

Figure 7 shows the two cubics Γb0 and Γb1 of the Hesse loop of length 2 in D3-symmetric form
together with degenerate polar conics at point P = (0, 1, 0), which is one of the three real inter-
secting points of the two cubics. Notice that since the intersecting points of the curves are also the
points of inflection of the curves, the two polar conics share a line which meets the two conics in
four points, and the other two lines of the two conics are the tangent lines at the inflection point
at Γb0 and Γb1 , respectively, and are tangent to Γb1 and Γb0 , respectively.

ℓP1,b0 = ℓP1,b1

ℓP2,b1 ℓP2,b0

Γb1

Γb0

Figure 7: The Hesse loop of length 2 of two curves in D3-symmetric form, together with
the two degenerate polar conics at the intersection point P = (0, 1, 0).
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