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Abstract

First, we consider Hilbert’s program, focusing on the three different aspect of mathe-
matics called actual mathematics , formal mathematics, and metamathematics. Then,
we investigate the relationship between metamathematics and actual mathematics ,
describe what shall be achieved with metamathematics, and propose a framework for
metamathematics.
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1 Hilbert’s Program revisited

Motivated by prior work of Frege and Russell, Hilbert describes in [3] what he calls “ax-
iomatic thinking”. He concludes his article with the following words:

Ich glaube: Alles, was Gegenstand des wissenschaftlichen Denkens überhaupt

sein kann, verfällt, sobald es zur Bildung einer Theorie reif ist, der axioma-

tischen Methode und damit mittelbar der Mathematik. Durch Vordringen zu

immer tieferliegenden Schichten von Axiomen [. . .] gewinnen wir auch in das

Wesen des wissenschaftlichen Denkens selbst immer tiefere Einblicke und wer-

den uns der Einheit unseres Wissens immer mehr bewußt. In dem Zeichen der

axiomatischen Methode erscheint die Mathematik berufen zu einer führenden

Rolle in der Wissenschaft überhaupt.1

At this early stage of Hilbert’s program, the focus is on the “objects of scientific thought”
which become dependent on the axiomatic method. When these “objects of scientific
thought” are mathematical objects, one can think of these objects as being part of the
real mathematical world .

1I believe: anything at all that can be the object of scientific thought becomes dependent on the
axiomatic method, and thereby indirectly on mathematics, as soon as it is ripe for the formation of a
theory. By pushing ahead to ever deeper layers of axioms [. . .] we also win ever-deeper insights into the
essence of scientific thought itself, and we become ever more conscious of the unity of our knowledge. In
the sign of the axiomatic method, mathematics is summoned to a leading role in science. (Translation
taken from [2].)
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Later in 1922, Hilbert went a step further. The focus is now not on the “objects of scientific
thought” which shall be axiomatised, but on the consistency of the axiomatic systems.
In [4, p. 174], Hilbert summarizes his program as follows:

Erstens: Alles, was bisher die eigentliche Mathematik ausmacht, wird nun-

mehr streng formalisiert, so daß die eigentliche Mathematik oder die Math-

ematik im engeren Sinne zu einem Bestande an beweisbaren Formeln wird. [. . .]
Zweitens: Zu dieser eigentlichen Mathematik kommt eine gewissermaßen neue

Mathematik, eine Metamathematik, hinzu, die zur Sicherung jener dient, in-

dem sie sie vor dem Terror der unnötigen Verbote sowie der Not der Paradoxien

schützt. In dieser Metamathematik kommt – im Gegensatz zu den rein formalen

Schlußweisen der eigentlichen Mathematik – das inhaltliche Schließen zur An-

wendung, und zwar zum Nachweis der Widerspruchsfreiheit der Axiome.

Die Entwicklung der mathematischen Wissenschaft geschieht hiernach be-

ständig wechselnd auf zweierlei Art: durch Gewinnung neuer “beweisbarer”

Formeln aus den Axiomen mittels formalen Schließens und durch Hinzufügung

neuer Axiome nebst dem Nachweis ihrer Widerspruchsfreiheit mittels in-

haltlichen Schließens.2

What we see here is the beginning of a paradigm shift: In classical mathematics, axioms
were statement that were taken to be true. Axioms served as premises or starting points
for further reasoning and arguments. Therefore, it would have been absurd to consider
different contradicting axiom systems, since at most one of these systems can be true in
an absolute sense, and all the others systems must be false or meaningless. Now, focusing
on the consistency of axiom systems rather than on their inherent truth, we do not need
to restrict ourselves to axiom systems which are relevant for actual mathematics (i.e., for
the investigation of objects in the, to some extend, real mathematical world), but could
investigate any consistent axiomatic system, no matter whether it is relevant for actual

mathematics or not.

However, since the ultimate goal of Hilbert’s program was to give a firm (i.e., provably
consistent) foundation of actual mathematics, there are still some axiomatic systems which
are more relevant for mathematics, and some which are less relevant for mathematics. This
situation is similar to geometry, where one could argue that the only geometric system
which is relevant, is the one which describes the space in which we live. Even though
from a physical point of view this argument makes sense, from a mathematical point

2First: everything that hitherto made up [actual mathematics] is now to be strictly formalized, so that
actual mathematics, or mathematics in the strict sense, becomes a stock of provable formulae. [. . .]

Secondly: in addition to actual mathematics, there appears a mathematics that is to some extent
new, a metamathematics which serves to safeguard it by protecting it from the terror of unnecessary
prohibitions as well as from the difficulty of paradoxes. In this metamathematics – in contrast to the purely
formal modes of inference in actual mathematics –we apply contentual inference; in particular, to the proof
of the consistency of the axioms.

The development of mathematical science accordingly takes place in two ways that constantly alter-
nate: the derivation of new “provable” formulae from the axioms by means of formal inference; and the
adjunctionn of new axioms together with a proof of their consistency by means of contentual inference.
(Translation taken from [2], except that we translated “eigentliche Mathematik” as “actual mathematics”
and not as “mathematics proper”.)
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of view it is immaterial. For example, it is very unlikely that our space satisfies the
axioms of projective geometry, but nevertheless, projective geometry is the key tool in the
investigation of conic sections in Euclidian geometry.

To sum up, we can say that Hilbert’s program was the beginning of a paradigm shift from
“axioms as obviously true statements” towards “axioms as mutually non-contradictory
statements”. However, since there is still a presupposed actual mathematics, this paradigm
shift was not carried out thoroughly. For example, let us consider the axiomatic system
ZFC, which is Zermelo-Fraenkel Set Theory ZF with the Axiom of Choice AC. One of the
earliest problems in set theory was the question whether the Continuum Hypothesis CH

holds (which is the first of the twenty-three problems Hilbert presented at the ICM 1900

in Paris). On the one hand, it is known that CH is independent from ZFC (i.e., within ZFC

we can neither prove nor disprove CH), and on the other hand, ZFC serves as a foundation
of mathematics. Now, if one believes in a unique actual mathematics, then CH should be
either true or false, which implies that ZFC is not strong enough to serve as foundation of
actual mathematics. So, we have to extend ZFC by adding new axioms in such a way that
the extended systems decide CH. However, by Gödel’s Second Incompleteness Theorem,
this does not really help, since no matter how we extend ZFC, we always obtain a sentence
which is undecidable within the extended system. In other words, having Gödel’s Second

Incompleteness Theorem in mind, it is not possible to axiomatise actual mathematics in
such a way that the axiomatic system obtained fully represents actual mathematics, which
also shows that Hilbert’s program must fail.

Let us turn back to the paradigm shift from “axioms as true statements” towards “axioms
as mutually non-contradictory statements”, which was initiated by Hilbert’s program:
The above explanations show that in order to make the paradigm shift complete, we have
to give up the idea of actual mathematics as the unique real mathematical world , since
strictly formalising actual mathematics in 1st order logic yields a formal axiomatic system
of which actual mathematics is just one of numerous models. However, we can conceive
actual mathematics as the collection of all models of axiomatic systems which form a
foundation for mathematics. Such systems are consistent extensions of ZF, whose models
are proper models for mathematics, i.e., models in which we can carry out essentially all
mathematics.

In order to see how and where we build these models, we have to combine Gödel’s Com-

pleteness Theorem for 1st order logic with Hilbert’s metamathematics: Gödel’s Complete-

ness Theorem together with the Soundness Theorem states that a sentence φ is provable
from an axiomatic system S, denoted S ⊢ φ, if and only if φ is valid in each model of S. In
particular, we obtain that an axiomatic system S has a model if and only if S is consistent.
So, for any axiomatic system S, Hilbert’s metamathematics has the task to decide whether
S is consistent, or equivalently, to decide whether S has a model. By Gödel’s Incomplete-

ness Theorems we know that this task cannot be carried out in a formal system. In other
words, Hilbert’s metamathematics can not be formalized, and therefore, does not belong
to actual mathematics –which is indicated by the prefix “meta”, which means “behind”
(i.e., metamathematics is a kind of “background-mathematics”). Moreover, even in the
case when we know that some axiomatic system S is consistent, and therefore has a model,
in general, the construction of a model of S cannot be carry out in a formalized system,
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i.e., the construction of a model must in general be carried out in metamathematics.

Since metamathematics plays an important role in the investigation of axiomatic systems
and in the construction of models, and since metamathematics cannot be formalized, it is
natural to ask what kind of principles we have in metamathematics. An answer to this
question is given in the next section.

2 Non-Constructive Principles of Metamathematics

The previous section can be summarised as follows: In mathematics we investigate formal
axiomatic systems. In particular, we investigate which sentences can be derived from a
given axiomatic system S, which sentences are consistent with S, and which sentences
are independent of S, where the investigations themselves are based on the construction
of various models of axiomatic systems. In particular, we have to construct models of
variations of ZF (i.e., models of extensions of ZF). The construction of models is carried
out in a moderate constructive way, which we are going to circumscribe now.

2.1 What we need

The construction of a model for an axiomatic system is carried out by following Henkin’s
proof of Gödel’s Completeness Theorem for 1st order logic. Now, beside the constructive
parts of Henkin’s proof, which are described explicitly or by algorithms, there are also
some non-constructive parts using principles which are usually tacitly assumed. The goal
is now to make these principles explicit.

The most important principle we need in metamathematics is the notion of Finiteness.
Hilbert writes in [5, p. 154]:

Die beweisbaren Formeln [. . .] haben sämtlich den Charakter des Finiten, d.h.

die Gedanken, deren Abbilder sie sind, können [. . .] mittels Betrachung endlicher

Gesamtheiten erhalten werden.3

The notion of Finiteness plays a crucial role not only in the investigation of provable
formulae, but also in the proof ofGödel’s Incompleteness Theorems. In fact, if the notion of
Finiteness could be formalised (i.e., if Finiteness were a notion of formal mathematics),
then Gödel’s Incompleteness Theorems would disappear and Hilbert’s program would
succeed.

What we also need to construct models is the notion of a Potentially Infinite Set,
like the natural numbers 0, 1, 2, . . . Notice that we do not require to have the entire set N
of natural numbers, which would be an actual infinite set. In fact, a closer look at Henkin’s
proof of Gödel’s Completeness Theorem shows that in order to construct non-finite models
(e.g., models of Peano Arithmetic PA or models of ZFC), a Potentially Infinite Set

is sufficient – but also necessary.

3The provable formulae [. . .] all have the character of the finite; that is, the thoughts whose images they
are can also be obtained [. . .] from the examination of finite totalities. (Translation taken from [2].)
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Finally, we need a kind of Law of Excluded Middle. This law is crucial in the
completion of axiomatic systems S, since in each step of the completion of S, for some φ

we have to decide whether or not φ is consistent with the extension of S we already have
constructed. In other words, for every axiomatic systems S and each sentence φ, we must
be able to decide whether φ is provable from S (i.e., S ⊢ φ), and since a formal proof
is just a special finite sequence of formulae, either there is such a sequence or there is
no such sequence. The difficulty is, that we probably cannot decide in finitely many
steps, whether or not S ⊢ φ. Now, this non-constructive part in the proof of Gödel’s

Completeness Theorem is handled by the Law of Excluded Middle. If we would
formalise this law, we would obtain what is known as the Weak König’s Lemma, which
is just König’s Lemma for infinite, binary 0-1–trees.

2.2 What we obtain

In the framework described above, we can construct models of all kind of axiomatic sys-
tems. For example, we can construct models of ZFC, or models of ZF in which the Axiom
of Choice fails, and we can carry out Forcing constructions in order to obtain models of
ZFC (or of ZF) in which certain statements become valid. In particular, we can construct
models of ZFC in which CH holds or in which CH fails. This way, we obtain different mod-
els of the standard real numbers. On the other hand, we can also construct non-standard
models of the real numbers, for example the hyperreal numbers or the surreal numbers,
which give us also non-standard models of Peano Arithmetic. In fact, even non-standard
approaches to mathematics, like intuitionism, can be modelled. There is a lot of freedom
we have, and it might be this freedom, which Cantor meant when he writes ([1, p. 564])

. . . das Wesen der Mathematik liegt [. . .] in ihrer Freiheit.4

3 Conclusion

The view of mathematics we proposed can be described as follows:

• In mathematics we investigate formal axiomatic systems. In particular, we investi-
gate which sentences we can derive from a given axiomatic system S, which sentences
are consistent with S, and which sentences are independent of S.

• The investigations are based on the construction of various models of axiomatic
systems, in particular, on the construction of models of variations of ZFC.

• The construction of models is carried out in metamathematics, where metamath-
ematics consists of all we can describe explicitly or by algorithms, together with
the notions of Finiteness and Potentially Infinite Set, and the Law of Ex-

cluded Middle.

4
. . . the essence of mathematics lies [. . .] in its freedom.
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On the one hand, this view of mathematics is quite formal in the sense that there is no
unique real mathematical world any more, but on the other hand, we have a realm of
models of various axiomatic systems, which distinguishes this view from pure formalism.
Moreover, one of the features of this view is that we do not have any kind of “ideology” like
constructivism, platonism, or intuitionism, which would lead us to the “right” mathemati-
cal world: No matter which approach we take, with Hilbert’s axiomatic thinking – enriched
by Gödel’s work –we are able to create various mathematical worlds. With respect to this
kind of mathematics, we would like to say:

From the realm of mathematics, which Hilbert and Gödel created for us,

no-one shall expel us.
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