Pairing Pythagorean Pairs

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
lorenz.halbeisen@math.ethz.ch
Norbert Hungerbühler
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
norbert.hungerbuehler@math.ethz.ch

key-words: pythagorean pair, elliptic curve
2020 Mathematics Subject Classification: 11D72 11G05

Abstract

A pair (a, b) of positive integers is a pythagorean pair if $a^{2}+b^{2}=\square$ (i.e., $a^{2}+b^{2}$ is a square). A pythagorean pair (a, b) is called a double-pythapotent pair if there is another pythagorean pair (k, l) such that $(a k, b l)$ is a pythagorean pair, and it is called a quadratic pythapotent pair if there is another pythagorean pair (k, l) which is not a multiple of (a, b), such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair. To each pythagorean pair (a, b) we assign an elliptic curve $\Gamma_{a, b}$ with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$, such that $\Gamma_{a, b}$ has positive rank over \mathbb{Q} if and only if (a, b) is a double-pythapotent pair. Similarly, to each pythagorean pair (a, b) we assign an elliptic curve $\Gamma_{a^{2}, b^{2}}$ with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$, such that $\Gamma_{a^{2}, b^{2}}$ has positive rank over \mathbb{Q} if and only if (a, b) is a quadratic pythapotent pair. Moreover, in the later case we obtain that every elliptic curve Γ with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$ is isomorphic to a curve of the form $\Gamma_{a^{2}, b^{2}}$, where (a, b) is a pythagorean pair. As a side-result we get that if (a, b) is a double-pythapotent pair, then there are infinitely many pythagorean pairs (k, l), not multiples of each other, such that $(a k, b l)$ is a pythagorean pair; the analogous result holds for quadratic pythapotent pairs.

1 Introduction

A pair (a, b) of positive integers is a pythagorean pair if $a^{2}+b^{2}$ is a square, denoted $a^{2}+b^{2}=\square$. A pythagorean pair (a, b) is called a double-pythapotent pair if there is another pythagorean pair (k, l) such that $(a k, b l)$ is a pythagorean pair, i.e.,

$$
a^{2}+b^{2}=\square, \quad k^{2}+l^{2}=\square, \quad \text { and } \quad(a k)^{2}+(b l)^{2}=\square .
$$

Notice that for positive integers a, b, the sum $a^{4}+b^{4}$ is never a square (see [7, Oeuvres, I, p. 327; III, p. 264], and hence $\left(a^{2}, b^{2}\right)$ is never a pythagorean pair. Furthermore, a
pythagorean pair (a, b) is called a quadratic pythapotent pair if there is another pythagorean pair (k, l) which is not a multiple of (a, b), such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair, i.e.,

$$
a^{2}+b^{2}=\square, \quad k^{2}+l^{2}=\square, \quad \text { and } \quad\left(a^{2} k\right)^{2}+\left(b^{2} l\right)^{2}=\square .
$$

To each pythagorean pair (a, b) we assign the elliptic curve

$$
\Gamma_{a, b}: \quad y^{2}=x^{3}+\left(a^{2}+b^{2}\right) x^{2}+a^{2} b^{2} x,
$$

and show that the curve $\Gamma_{a, b}$ has torsion group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ and that (a, b) is a double-pythapotent pair if and only if $\Gamma_{a, b}$ has positive rank over \mathbb{Q}. With the points of infinite order on the curve $\Gamma_{a, b}$, we can generate infinitely many pythagorean pairs (k, l), not multiples of each other, such that $(a k, b l)$ are pythagorean pairs.

Similarly, for each pythagorean pair (a, b), the elliptic curve

$$
\Gamma_{a^{2}, b^{2}}: \quad y^{2}=x^{3}+\left(a^{4}+b^{4}\right) x^{2}+a^{4} b^{4} x,
$$

has torsion group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$ and (a, b) is a quadratic pythapotent pair if and only if $\Gamma_{a^{2}, b^{2}}$ has positive rank over \mathbb{Q}. Moreover, we can show that every elliptic curve Γ with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$ is isomorphic to a curve of the form $\Gamma_{a^{2}, b^{2}}$ for some pythagorean pair (a, b). Similar as above, with the points of infinite order on the curve $\Gamma_{a^{2}, b^{2}}$, we can generate infinitely many pythagorean pairs (k, l), not multiples of each other, such that $\left(a^{2} k, b^{2} l\right)$ are pythagorean pairs.

Remark 1. In a landmark article, Heegner [6] discovered the deep and far-reaching connection between congruent numbers and elliptic curves: A given number is congruent if and only if a certain elliptic curve has positive rank over \mathbb{Q}. More precisely, to any positive integer A, the elliptic curve

$$
\Gamma_{A}: \quad y^{2}=x^{3}-A^{2} x
$$

with torsion group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is associated, and A is a congruent number if and only if Γ_{A} has positive rank over \mathbb{Q}. Moreover, with the points of infinite order on the curve Γ_{A}, one can generate infinitely many rational triples (r, s, t) such that $r^{2}+s^{2}=t^{2}$ and $\frac{r s}{2}=A$ (an elementary proof of this result is given in [2]). It became a common theme to relate properties of pythagorean or heronian triples with elliptic curves and to use their arithmetic to gain insight in the diophantine solutions of the problem (see also [3]). Since the pair of squares $\left(a^{2}, b^{2}\right)$ of a pythagorean pair (a, b) is never a pythagorean pair, it was natural to ask whether the Hadamard-Schur products $(a k, b l)$ or $\left(a^{2} k, b^{2} l\right)$ of two pairs $(a, b),(k, l)$ of pythagorean pairs can be a pythagorean pair or not. These questions lead, indeed, again in a natural way to associated elliptic curves of positive rank over \mathbb{Q}.

Examples. We give some examples of double-pythapotent pairs and of quadratic pythapotent pairs.

1. For $m=5$ and $n=2$, let $a=m^{2}-n^{2}$ and $b=2 m n$. Then $(a, b)=(21,20)$ is a pythagorean pair. Furthermore, let $k=96$ and let $l=110$. Then $96^{2}+110^{2}=146^{2}$ and

$$
(21 \cdot 96)^{2}+(20 \cdot 110)^{2}=2984^{2}
$$

which shows that $(21,20)$ is a double-pythapotent pair.
2. Let a, b as above and let $k=805$ and $l=6588$. Then $805^{2}+6588^{2}=6637^{2}$ and

$$
\left(21^{2} \cdot 805\right)^{2}+\left(20^{2} \cdot 6588\right)^{2}=2659005^{2}
$$

which shows that $(21,20)$ is also a quadratic pythapotent pair. However, as the following examples show, it is not the case that double-pythapotent pairs are also quadratic pythapotent pairs, or vice versa.
3. For $m=4$ and $n=3$, let $a=m^{2}-n^{2}$ and $b=2 m n$. Then $(a, b)=(7,24)$ is a pythagorean pair. Furthermore, let $k=320$ and $l=462$. Then $320^{2}+462^{2}=562^{2}$ and

$$
(7 \cdot 320)^{2}+(24 \cdot 462)^{2}=11312^{2}
$$

which shows that $(7,24)$ is a double-pythapotent pair. On the other hand, since the rank of the elliptic curve $\Gamma_{7^{2}, 24^{2}}$ is $0,(7,24)$ is not a quadratic pythapotent pair.
4. For $m=4$ and $n=1$, let $a=m^{2}-n^{2}$ and $b=2 m n$. Then $(a, b)=(15,8)$ is a pythagorean pair. Furthermore, let $k=608$ and $l=594$. Then $608^{2}+594^{2}=850^{2}$ and

$$
\left(15^{2} \cdot 608\right)^{2}+\left(8^{2} \cdot 594\right)^{2}=141984^{2}
$$

which shows that $(15,8)$ is a quadratic pythapotent pair. On the other hand, since the rank of the elliptic curve $\Gamma_{15,8}$ is $0,(15,8)$ is not a double-pythapotent pair.

Remark 2. Our parametrization $\Gamma_{a^{2}, b^{2}}$ for elliptic curves with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times$ $\mathbb{Z} / 8 \mathbb{Z}$, where (a, b) is a pythagorean pair, we obtained by Schroeter's construction of cubic curves with line involutions (see [4]). Other new parametrizations obtained by Schroeter's construction for elliptic curves with torsion groups $\mathbb{Z} / 10 \mathbb{Z}, \mathbb{Z} / 12 \mathbb{Z}$, and $\mathbb{Z} / 14 \mathbb{Z}$ can be found in [5]. Furthermore, the curves $\Gamma_{a, b}$, where (a, b) is a pythagorean pair, were obtained by replacing the 4 th powers in the parametrization $\Gamma_{a^{2}, b^{2}}$ by squares.

2 Quadratic Pythapotent Pairs

In this section we consider quadratic pythapotent pairs - this case is slightly easier than the case with double-pythapotent pairs. First we show that the curve $\Gamma_{a^{2}, b^{2}}$ has torsion group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$, and then we show how we obtain pythagorean pairs (k, l) from a point on $\Gamma_{a^{2}, b^{2}}$ whose x-coordinate is a square such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair.

Proposition 1. If (a, b) is a pythagorean pair, then the elliptic curve $\Gamma_{a^{2}, b^{2}}$ has torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$. Vice versa, if an elliptic curve Γ has torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$, then there exists a pythagorean pair (a, b) such that Γ is isomorphic to $\Gamma_{a^{2}, b^{2}}$.

Proof. Kubert [8, p. 217] gives the following parametrization for elliptic curves with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$ (see also Rabarison [9, 3.14]):

$$
y^{2}+(1-c) x y-e y=x^{3}-e x^{2}
$$

for

$$
\tau=\frac{\tilde{m}}{\tilde{n}}, \quad d=\frac{\tau(8 \tau+2)}{8 \tau^{2}-1}, \quad c=\frac{(2 d-1)(d-1)}{d}, \quad e=(2 d-1)(d-1) .
$$

After a rational transformation we obtain the curve

$$
y^{2}=x^{3}+\tilde{a} x^{2}+\tilde{b} x
$$

with

$$
\tilde{a}=256 \tilde{m}^{4}(2 \tilde{m}+\tilde{n})^{4}+\left(4 \tilde{m}^{2}-(2 \tilde{m}+\tilde{n})^{2}\right)^{4} \quad \text { and } \quad \tilde{b}=256 \tilde{m}^{4} \tilde{n}^{4}(2 \tilde{m}+\tilde{n})^{4}(4 \tilde{m}+\tilde{n})^{4} .
$$

Let $m:=\tilde{m}$ and $n:=\frac{2 \tilde{m}+\tilde{n}}{2}$. Then we obtain the curve

$$
\left.y^{2}=x^{3}+2^{8}\left((2 m n)^{4}+\left(m^{2}-n^{2}\right)^{4}\right)\right) x^{2}+2^{16}\left((2 m n)^{4} \cdot\left(m^{2}-n^{2}\right)^{4}\right) x,
$$

which is, for $a:=m^{2}-n^{2}$ and $b:=2 m n$, equivalent to the curve

$$
\Gamma_{a^{2}, b^{2}}: \quad y^{2}=x^{3}+\left(a^{4}+b^{4}\right) x^{2}+a^{4} b^{4} x .
$$

Notice that by definition of a and $b,(a, b)$ is a pythagorean pair.
For the other direction, recall that for every pythagorean pair (a, b) we find positive integers λ, m, n such that m and n are relatively prime and $\{a, b\}=\left\{\lambda\left(m^{2}-n^{2}\right), \lambda(2 m n)\right\}$. So, by the substitutions $\tilde{m}:=m$ and $\tilde{n}:=2(n-m)$, we see that every elliptic curve Γ with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$ is isomorphic to a curve of the form $\Gamma_{a^{2}, b^{2}}$ for some pythagorean pair (a, b).

Remark 3. Let $a:=m^{2}-n^{2}$ and $b:=2 m n$. If we replace m and n by $\bar{m}:=m+n$ and $\bar{n}:=m-n$, respectively, even though we obtain another pythagorean pair (a^{\prime}, b^{\prime}), the corresponding elliptic curves $\Gamma_{a^{2}, b^{2}}$ and $\Gamma_{\bar{a}^{2}, \bar{b}^{2}}$ are equivalent.

Theorem 2. The pythagorean pair (a, b) is a quadratic pythapotent pair if and only if the elliptic curve $\Gamma_{a^{2}, b^{2}}$ has positive rank over \mathbb{Q}.

In order to prove Theorem 2, we first transform the curve $\Gamma_{a^{2}, b^{2}}$ to a another curve on which we carry out our calculations.

Lemma 3. If x_{2} is the x-coordinate of a rational point on $\Gamma_{a^{2}, b^{2}}$, then

$$
x_{0}:=\frac{a^{2} b^{2}}{x_{2}}
$$

is the x-coordinate of a rational point on the curve

$$
y^{2} x=a^{2} b^{2}+\left(a^{4}+b^{4}\right) x+a^{2} b^{2} x^{2} .
$$

Proof. We work with homogeneous coordinates (x, y, z). Consider the following transformation:

$$
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right):=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
\frac{1}{a^{2} b^{2}} & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

The the point (x, y, z) belongs to the homogenized curve $\Gamma_{a^{2}, b^{2}}$ if and only if the point (X, Y, Z) belongs to the curve $Y^{2} X=a^{2} b^{2} Z^{3}+\left(a^{4}+b^{4}\right) X Z^{2}+a^{2} b^{2} X^{2} Z$. Hence, by dehomogenizing, we obtain the curve $y^{2} x=a^{2} b^{2}+\left(a^{4}+b^{4}\right) x+a^{2} b^{2} x^{2}$, which is equivalent to $\Gamma_{a^{2}, b^{2}}$, where the rational point $\left(x_{2}, y_{2}\right)$ belongs to $\Gamma_{a^{2}, b^{2}}$ if and only if there is a rational y^{\prime} such that $\left(x_{0}, y^{\prime}\right)$ belongs to $y^{2} x=a^{2} b^{2}+\left(a^{4}+b^{4}\right) x+a^{2} b^{2} x^{2}$.
q.e.d.

Let $x_{0}=\frac{p^{2}}{q^{2}}$ be a rational square and assume that x_{0} is the x-coordinate of a rational point on $y^{2} x=a^{2} b^{2}+\left(a^{4}+b^{4}\right) x+a^{2} b^{2} x^{2}$. Then, by dividing through x_{0} and clearing square denominators we obtain

$$
a^{2} b^{2} \cdot q^{4}+\left(a^{4}+b^{4}\right) \cdot p^{2} \cdot q^{2}+a^{2} b^{2} \cdot p^{4}=\square,
$$

and since

$$
a^{2} b^{2} \cdot q^{4}+\left(a^{4}+b^{4}\right) \cdot p^{2} \cdot q^{2}+a^{2} b^{2} \cdot p^{4}=\left(a^{2} q^{2}+b^{2} p^{2}\right) \cdot\left(a^{2} p^{2}+b^{2} q^{2}\right),
$$

this is surely the case when

$$
\begin{equation*}
a^{2} q^{2}+b^{2} p^{2}=\square \quad \text { and } \quad a^{2} p^{2}+b^{2} q^{2}=\square . \tag{1}
\end{equation*}
$$

Lemma 4. Let $P=\left(x_{1}, y_{1}\right)$ be a rational point on $\Gamma_{a^{2}, b^{2}}$ and let x_{2} be the x-coordinate of the point $2 * P$. Then $x_{0}:=\frac{a^{2} b^{2}}{x_{2}}=\frac{p^{2}}{q^{2}}$, where p and q satisfy (1).

Proof. By Silverman and Tate [10, p.27],

$$
x_{2}=\frac{\left(x_{1}^{2}-B\right)^{2}}{\left(2 y_{1}\right)^{2}} \quad \text { for } B:=a^{4} b^{4},
$$

and therefore

$$
x_{0}=\frac{a^{2} b^{2}}{x_{2}}=\frac{a^{2} b^{2}\left(2 y_{1}\right)^{2}}{\left(x_{1}^{2}-B\right)^{2}}=\frac{a^{2} b^{2}\left(4 x_{1}^{3}+4 A x_{1}^{2}+4 B x_{1}\right)}{\left(x_{1}^{2}-B\right)^{2}}=\frac{p^{2}}{q^{2}} \quad \text { for } A:=a^{4}+b^{4} .
$$

Now, for p and q (with $a=m^{2}-n^{2}$ and $b=2 m n$) we obtain

$$
a^{2} q^{2}+b^{2} p^{2}=a^{2}\left(a^{4} b^{4}+2 b^{4} x_{1}+x_{1}^{2}\right)^{2}=
$$

and

$$
a^{2} p^{2}+b^{2} q^{2}=b^{2}\left(a^{4} b^{4}+2 a^{4} x_{1}+x_{1}^{2}\right)^{2}=
$$

which completes the proof.
q.e.d.

The next result gives a relation between rational points on $\Gamma_{a^{2}, b^{2}}$ with square x-coordinates and pythagorean pairs (k, l) such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair.

Lemma 5. Every pythagorean pair (k, l) such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair corresponds to a rational point on $\Gamma_{a^{2}, b^{2}}$ whose x-coordinate is a square, and vice versa.

Proof. Let $x_{2}=\square$ be the x-coordinate of a rational point on $\Gamma_{a^{2}, b^{2}}$. Then, by Lemma 4, $\frac{a^{2} b^{2}}{x_{2}}=\frac{p^{2}}{q^{2}}$, where p and q satisfy (1), i.e., $a^{2} q^{2}+b^{2} p^{2}=\square$. So, $\frac{a^{2}}{b^{2}}+\frac{p^{2}}{q^{2}}=\rho^{2}$ for some $\rho \in \mathbb{Q}$. In other words, we have

$$
\left(\frac{a}{b}\right)^{2}+\left(\frac{p}{q}\right)^{2}=\rho^{2}
$$

which implies that

$$
\frac{a}{b}=\frac{2 \rho t}{t^{2}+1} \quad \text { and } \quad \frac{p}{q}=\frac{\rho\left(t^{2}-1\right)}{t^{2}+1} \quad \text { for some } t \in \mathbb{Q} .
$$

In particular, we have

$$
\rho=\frac{a \cdot\left(t^{2}+1\right)}{b \cdot(2 t)} .
$$

Now, since $a^{2} p^{2}+b^{2} q^{2}=\square$, we have $\left(\frac{a}{b}\right)^{2}+\left(\frac{q}{p}\right)^{2}=\square$, hence, $\frac{a^{2}}{b^{2}}+\frac{\left(t^{2}+1\right)^{2}}{\rho^{2}\left(t^{2}-1\right)^{2}}=\square$, which implies that

$$
a^{4} \cdot\left(t^{2}-1\right)^{2}+b^{4} \cdot(2 t)^{2}=\square .
$$

For $t=\frac{r}{s}$, we obtain

$$
\frac{a^{4} \cdot\left(r^{2}-s^{2}\right)^{2}}{s^{4}}+\frac{b^{4} \cdot 4 r^{2}}{s^{2}}=\square,
$$

which implies that

$$
a^{4} \cdot\left(r^{2}-s^{2}\right)^{2}+b^{4} \cdot(2 r s)^{2}=
$$

\qquad
and for $k:=r^{2}-s^{2}, l:=2 r s$, we finally obtain

$$
\left(a^{2} k\right)^{2}+\left(b^{2} l\right)^{2}=\square \quad \text { where } k^{2}+l^{2}=\square,
$$

which shows that (a, b) is a quadratic pythapotent pair.
Assume now that we find a pythagorean pair (k, l) such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair. Without loss of generality we may assume that k and l are relatively prime. Thus, we find relatively prime positive integers r and s such that $k=r^{2}-s^{2}$ and $l=2 r s$. With $t:=\frac{r}{s}, a$, and b, we can compute p and q, and finally obtain a rational point on $\Gamma_{a^{2}, b^{2}}$ whose x-coordinate is a square.

We are now ready for the

Proof of Theorem 2. For every rational point P on $\Gamma_{a^{2}, b^{2}}$ whose x-coordinate is a square, let $\left(k_{P}, l_{P}\right)$ be the corresponding pythagorean pair. By Lemma 5 it is enough to show that $\left(k_{P}, l_{P}\right)$ is a multiple of (a, b) if and only if P is a torsion point. Notice that if P is a point of infinite order, then for every integer $i, 2 i * P$ is a rational point on $\Gamma_{a^{2}, b^{2}}$ with square x-coordinate, and not all of the corresponding pythagorean pairs ($k_{2 i * P}, l_{2 i * P}$) can be multiples of (a, b).

Let us consider the x-coordinates of the torsion points on the curve $\Gamma_{a^{2}, b^{2}}$. For simplicity, we consider the 16 torsion points on the equivalent curve

$$
y^{2}=\frac{a^{2} b^{2}}{x}+\left(a^{4}+b^{4}\right)+a^{2} b^{2} x .
$$

The two torsion points at infinity are $(0,1,0)$ (which is the neutral element of the group) and $(1,0,0)$ (which is a point of order 2). The other two points of order 2 are $\left(-\frac{a^{2}}{b^{2}}, 0\right)$ and $\left(-\frac{b^{2}}{a^{2}}, 0\right)$, and the two points of order 4 are $\left(1, \pm\left(a^{2}+b^{2}\right)\right)$. The x-coordinates of the other 10 torsion points are $\frac{m(m+n)}{n(m-n)}, \frac{n(m-n)}{m(m+n)},-\frac{m(m-n)}{n(m+n},-\frac{n(m+n)}{m(m-n)}$, and -1 . Obviously, -1 , $-\frac{a^{2}}{b^{2}}$, and $-\frac{b^{2}}{a^{2}}$ are not squares of rational numbers. Furthermore, 0 would lead to $p=0$, $q=1, t=1, r=1, s=0, k=1$ and $l=0$, and therefore, (k, l) is not a pythagorean pair. If $\frac{m(m+n)}{n(m-n)}=\square$, then, by multiplying with $n^{2}(m-n)^{2}$, also $m n\left(m^{2}-n^{2}\right)=\square$, which would imply that $A:=m n\left(m^{2}-n^{2}\right)$ is a congruent number with $A=\square$. But this is impossible, since otherwise 1 would be a congruent number, which is not the case (see also [7, Oeuvres, I, p. 340] or [11, p. 163] for an annotated version of Fermat's proof). Similarly, one can show that also $\frac{n(m-n)}{m(m+n)},-\frac{m(m-n)}{n(m+n}$ and $-\frac{n(m+n)}{m(m-n)}$ cannot be squares. Thus, the only value of x-coordinates of torsion points on the curve $\Gamma_{a^{2}, b^{2}}$ which is a square is $x=1$. This leads to $k=2 b$ and $l=2 a$, i.e., to the pythagorean pair $(2 b, 2 a)$, which is a multiple of (a, b) —notice that for $c:=a^{2}+b^{2},\left(2 a^{2} b\right)^{2}+\left(2 a b^{2}\right)^{2}=(2 a b c)^{2}$. q.e.d.

Corollary 6. If (a, b) is a quadratic pythapotent pair, then there are infinitely many pythagorean pairs (k, l), not multiples of each other, such that $(a k, b l)$ is a pythagorean pair.

Proof. By Theorem 2, there exists a point P on $\Gamma_{a^{2}, b^{2}}$ of infinite order. Now, for every integer $i, 2 i * P$ is a rational point on $\Gamma_{a^{2}, b^{2}}$ with square x-coordinate, and each of the corresponding pythagorean pairs $\left(k_{2 i * P}, l_{2 i * P}\right)$ can be a multiple of just finitely many other such pythagorean pair. Thus, there are infinitely many integers j, such that the pythagorean pairs $\left(k_{2 j * P}, l_{2 j * P}\right)$ are not multiples of each other.
q.e.d.

Algorithm 1. The following algorithm decribes how to construct pythagorean pairs (k, l) from rational points on $\Gamma_{a^{2}, b^{2}}$ of infinite order.

- Let P be a rational point on $\Gamma_{a^{2}, b^{2}}$ of infinite order and let x_{2} be the x-coordinate of $2 * P$.
- Let p and q be relatively prime positive integers such that

$$
\frac{q}{p}=\frac{\sqrt{x_{2}}}{a b}
$$

- Let r and s be relatively prime positive integers such that

$$
\frac{r}{s}=\frac{b p+\sqrt{a^{2} q^{2}+b^{2} p^{2}}}{a q} .
$$

- Let $k:=r^{2}-s^{2}$ and let $l:=2 r s$.

Then $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair.

Example. For $m=17$ and $n=1$, let $a=m^{2}-n^{2}$ and $b=2 m n$. Then $(a, b)=(288,34)$ is a pythagorean pair. Now, the curve $\Gamma_{a^{2}, b^{2}}$, with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$, has rank 2 with generators

$$
P=(248223744,21013140234240) \quad \text { and } \quad P^{\prime}=(2105708544,-199666455920640) .
$$

The x-coordinate of $2 * P$ is $\frac{845105135616}{543169}$ which leads to $(k, l)=(212993,229824)$ with

$$
\left(288^{2} \cdot 212993\right)^{2}+\left(34^{2} \cdot 229824\right)^{2}=17668488960^{2}
$$

and x-coordinate of $2 * P^{\prime}$ is $\frac{10707037334317433880576}{87206592371809}$ which leads to

$$
\left(k^{\prime}, l^{\prime}\right)=(2698811183,25868703744)
$$

with

$$
\left(288^{2} \cdot 2698811183\right)^{2}+\left(34^{2} \cdot 25868703744\right)^{2}=225838818984960^{2}
$$

Of course, we can also start with any other rational point on $\Gamma_{288^{2}, 34^{2}}$, e.g., we can start with the point $Q=P+P^{\prime}$. The x-coordinate of $2 * Q$ is $\frac{40012254488836306304}{79121251225}$ which leads to

$$
(k, l)=(81291365,1581381012)
$$

with

$$
\left(288^{2} \cdot 81291365\right)^{2}+\left(34^{2} \cdot 1581381012\right)^{2}=6986052964272^{2} .
$$

3 Double-Pythapotent Pairs

Below we consider double-pythapotent pairs. As above, we first show that the curve $\Gamma_{a, b}$ has torsion group isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$, and then we show how we obtain pythagorean pairs (k, l) from a point on $\Gamma_{a, b}$ with square x-coordinate such that $(a k, b l)$ is a pythagorean pair. Since the calculations are similar, we shall omit the details.

Proposition 7. If (a, b) is a pythagorean pair, then the elliptic curve

$$
\Gamma_{a, b}: \quad y^{2}=x^{3}+\left(a^{2}+b^{2}\right) x^{2}+a^{2} b^{2} x,
$$

has torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.

Proof. Kubert [8, p. 217] gives the following parametrization for elliptic curves with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$:

$$
y^{2}+x y-e y=x^{3}-e x^{2}
$$

for

$$
e=v^{2}-\frac{1}{16} \quad \text { where } v \neq 0, \pm \frac{1}{4} .
$$

After a rational transformation we obtain the curve

$$
y^{2}=x^{3}+\tilde{a} x^{2}+\tilde{b} x
$$

with

$$
\tilde{a}=2 \cdot\left(16 v^{2}+1\right) \quad \text { and } \quad \tilde{b}=\left(16 v^{2}-1\right)^{2} .
$$

For $v=\frac{p}{q}, a=m^{2}-n^{2}, b=2 m n$, let $p:=\frac{1}{8}(a-b)$ and $q:=\frac{1}{2}(a+b)$. Then the curve $y^{2}+x y-e y=x^{3}-e x^{2}$ is equivalent to the curve

$$
\Gamma_{a, b}: \quad y^{2}=x^{3}+\left(a^{2}+b^{2}\right) x^{2}+a^{2} b^{2} x .
$$

q.e.d.

Remark 4. Notice that there are p and q which are not of the above form, which implies that there are curves with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ which are not equivalent to some curve $\Gamma_{a, b}$.

Theorem 8. The pythagorean pair (a, b) is a double-pythapotent pair if and only if the elliptic curve $\Gamma_{a, b}$ has positive rank over \mathbb{Q}.

In order to prove Theorem 8, we again transform the curve $\Gamma_{a, b}$ to a another curve on which we carry out our calculations.

Lemma 9. If x_{2} is the x-coordinate of a rational point on $\Gamma_{a, b}$, then

$$
x_{0}:=\frac{a b}{x_{2}}
$$

is the x-coordinate of a rational point on the curve

$$
y^{2} x=a b+\left(a^{2}+b^{2}\right) x+a b x^{2} .
$$

Proof. We can just follow the proof of Lemma 3, using the transformation

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
\frac{1}{a b} & 0 & 0
\end{array}\right) .
$$

q.e.d.

Let $x_{0}=\frac{p}{q}$ be the x-coordinate of a rational point on $y^{2} x=a b+\left(a^{2}+b^{2}\right) x+a b x^{2}$, where $q=\tilde{q}^{2}$ and $p=a b \cdot \tilde{p}^{2}$ for some integers \tilde{q}, \tilde{p}. Then

$$
a b \cdot y^{2} \cdot \frac{p}{q}=a b \cdot y^{2} \cdot \frac{a b \tilde{p}^{2}}{\tilde{q}^{2}}=y^{2} \cdot\left(\frac{a b \cdot \tilde{p}}{\tilde{q}}\right)^{2}=\square
$$

Therefore,

$$
a b \cdot\left(a b+\left(a^{2}+b^{2}\right) \cdot \frac{p}{q}+a b \cdot \frac{p^{2}}{q^{2}}\right)=\square,
$$

and by clearing square denominators we obtain

$$
a b \cdot(a q+b p) \cdot(a p+b q)=\square,
$$

which is surely the case when

$$
\begin{equation*}
a \cdot(a q+b p)=\square \quad \text { and } \quad b \cdot(a p+b q)=\square . \tag{2}
\end{equation*}
$$

Lemma 10. Let $P=\left(x_{1}, y_{1}\right)$ be a rational point on $\Gamma_{a, b}$ and let x_{2} be the x-coordinate of the point $2 * P$. Then $x_{0}:=\frac{a b}{x_{2}}=\frac{p}{q}$, where $q=\tilde{q}^{2}$ and $p=a b \cdot \tilde{p}^{2}$ for some integers \tilde{q}, \tilde{p} and p and q satisfy (2).

Proof. By Silverman and Tate [10, p.27],

$$
x_{2}=\frac{\left(x_{1}^{2}-B\right)^{2}}{\left(2 y_{1}\right)^{2}} \quad \text { for } B:=a^{4} b^{4},
$$

and therefore

$$
x_{0}=\frac{a b}{x_{2}}=\frac{a b\left(4 x_{1}^{3}+4 A x_{1}^{2}+4 B x_{1}\right)}{\left(x_{1}^{2}-B\right)^{2}}=\frac{p}{q} \quad \text { for } A:=a^{4}+b^{4} .
$$

So, $q=\square$ and $p=a b \cdot \tilde{p}^{2}$ for some integer \tilde{p}.
Now, for $x_{1}=\frac{u}{v}$ and $x_{0}=\frac{p}{q}$ (with $a=m^{2}-n^{2}$ and $b=2 m n$) we obtain

$$
a \cdot(a q+b p)=\frac{1}{v^{4}}\left(a^{2} \cdot\left(a^{2} b^{2} v^{2}+u\left(u+2 b^{2} v\right)\right)\right)^{2}=
$$

and

$$
b \cdot(a p+b q)=\frac{1}{v^{4}}\left(b^{2} \cdot\left(a^{2} b^{2} v^{2}+u\left(u+2 a^{2} v\right)\right)\right)^{2}=
$$

which completes the proof.
q.e.d.

The next result gives a relation between rational points on $\Gamma_{a, b}$ with square x-coordinate and pythagorean pairs (k, l) such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair.

Lemma 11. Every pythagorean pair (k, l) such that $\left(a^{2} k, b^{2} l\right)$ is a pythagorean pair corresponds to a rational point on $\Gamma_{a, b}$ whose x-coordinate is a square, and vice versa.

Proof. Let $x_{2}=\square$ be the x-coordinate of a rational point on $\Gamma_{a, b}$. Then, by Lemma 10, $\frac{a b}{x_{2}}=\frac{a b \cdot f^{2}}{g^{2}}$, where $p=a b \cdot f^{2}$ and $q=g^{2}$ satisfy (2), i.e., $a^{2} g^{2}+a^{2} b^{2} f^{2}=\square$. So, $\left(\frac{g}{f}\right)^{2}+b^{2}=\rho^{2}$ for some $\rho \in \mathbb{Q}$ and $\left(\frac{g}{f}\right)^{2}+a^{2}=\square$. Let $\frac{g}{f}=\frac{2 \rho t}{t^{2}+1}$ and $b=\frac{\rho\left(t^{2}-1\right)}{t^{2}+1}$. Then $\rho=\frac{b\left(t^{2}+1\right)}{t^{2}-1}$ and $\frac{g}{f}=\frac{2 b t}{t^{2}-1}$, which gives us

$$
t=\frac{b f \pm \sqrt{g^{2}+b^{2} f^{2}}}{g}
$$

Since

$$
g^{2}+b^{2} f^{2}=q+\frac{b^{2} p}{a b}=q+\frac{b p}{a},
$$

by multiplying with a^{2} we get

$$
a^{2} \cdot\left(g^{2}+b^{2} f^{2}\right)=a^{2} \cdot q+a b \cdot p=a(a q+b p) .
$$

Hence, by Lemma 10, $g^{2}+b^{2} f^{2}=$and therefore t is rational, say $t=\frac{r}{s}$. Finally, since $\left(\frac{g}{f}\right)^{2}+a^{2}=\square$, we obtain

$$
a^{2} \cdot\left(r^{2}-s^{2}\right)^{2}+b^{2} \cdot(2 r s)^{2}=\square,
$$

and for $k:=r^{2}-s^{2}, l:=2 r s$, we finally get

$$
(a k)^{2}+(b l)^{2}=\square \quad \text { where } k^{2}+l^{2}=\square
$$

which shows that (a, b) is a double-pythapotent pair.
Assume now that we find a pythagorean pair (k, l) such that $(a k, b l)$ is a pythagorean pair. Without loss of generality we may assume that k and l are relatively prime. Thus, we find relatively prime positive integers r and s such that $k=r^{2}-s^{2}$ and $l=2 r s$. With $t:=\frac{r}{s}, a$, and b, we can compute p and q, and finally obtain a rational point on $\Gamma_{a, b}$ whose x-coordinate is a square.
q.e.d.

We are now ready for the

Proof of Theorem 8. For every rational point P on $\Gamma_{a, b}$ with square x-coordinate let $\left(k_{P}, l_{P}\right)$ be the corresponding pythagorean pair. By Lemma 11 it is enough to show that no rational point with square x-coordinate has finite order.

Let us consider the x-coordinates of the torsion points on the curve $\Gamma_{a, b}$. For simplicity, we consider the 8 torsion points on the equivalent curve

$$
y^{2}=\frac{a b}{x}+\left(a^{2}+b^{2}\right)+a b x
$$

The two torsion points at infinity are $(0,1,0)$ (which is the neutral element of the group) and $(1,0,0)$ (which is a point of order 2). The other two points of order 2 are $\left(-\frac{a}{b}, 0\right)$ and $\left(-\frac{b}{a}, 0\right)$, and the four points of order 4 are $(1, \pm(a+b))$ and $(-1, \pm(a-b))$. Now, we have that none of the values

$$
\frac{1}{a b}, \quad \frac{-1}{a b}, \quad \frac{-\frac{a}{b}}{a b}=-\frac{1}{b^{2}}, \quad \frac{-\frac{b}{a}}{a b}=-\frac{1}{a^{2}}
$$

is a rational square. For example, if $\frac{1}{a b}=\square$, then $a b=\square$, and since $b=2 m n$, this implies that $a b=4 \cdot \square$. So, we have $\frac{a b}{2}=2 \cdot \square$, which is impossible (see [1, p. 175]). Thus, there is no pythagorean pair (k, l) such that $(a k, b l)$ is a pythagorean pair. q.e.d.

Similar as above, we get the following
Corollary 12. If (a, b) is a double-pythapotent pair, then there are infinitely many pythagorean pairs (k, l), not multiples of each other, such that $(a k, b l)$ is a pythagorean pair.

Remark 5. Let (a, b) be a double-pythapotent pair and let $\left(k_{1}, l_{1}\right)$ be a pythagorean pair such that $\left(a k_{1}, b l_{1}\right)$ is a pythagorean pair. Then $\left(k_{1}, l_{1}\right)$ is a double-pythapotent pair and we find a pythagorean pair $\left(k_{2}, l_{2}\right)$, which is not a multiple of (a, b) such that $\left(k_{1} k_{2}, l_{1} l_{2}\right)$ is a pythagorean pair, which implies that $\left(k_{2}, l_{2}\right)$ is a double-pythapotent pair. Proceeding this way, we can construct an infinite family of double-pythapotent pairs which are not multiples of each other.

Algorithm 2. The following algorithm decribes how to construct pythagorean pairs (k, l) from rational points on $\Gamma_{a, b}$ of infinite order.

- Let P be a rational point on $\Gamma_{a, b}$ of infinite order and let x_{2} be the x-coordinate of $2 * P$.
- Let f and g be relatively prime positive integers such that

$$
\frac{g}{f}=\sqrt{x_{2}} .
$$

- Let r and s be relatively prime positive integers such that

$$
\frac{r}{s}=\frac{b f+\sqrt{g^{2}+b^{2} f^{2}}}{g} .
$$

- Let $k:=r^{2}-s^{2}$ and let $l:=2 r s$.

Then $(a k, b l)$ is a pythagorean pair.

Example. Let again $m=17, n=1, a=m^{2}-n^{2}$, and $b=2 m n$, hence, $(a, b)=(288,34)$. Now, the curve $\Gamma_{a, b}$, with torsion group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$, has rank 2 with generators

$$
P=(-81600,2970240) \quad \text { and } \quad P^{\prime}=(-58752,9047808) .
$$

The x-coordinate of $2 * P$ is $\frac{5156388864}{4225}$ which leads to $(k, l)=(65,2112)$ with

$$
(288 \cdot 65)^{2}+(34 \cdot 2112)^{2}=74208^{2}
$$

and x-coordinate of $2 * P^{\prime}$ is $\frac{4161600}{121}$ which leads to $\left(k^{\prime}, l^{\prime}\right)=(11,60)$ with

$$
(288 \cdot 11)^{2}+(34 \cdot 60)^{2}=3768^{2} .
$$

Acknowledgment

We would like to thank the referee for his or her careful reading and useful comments and suggestions, which helped to improve the quality of the article.

References

[1] Bernhard Frénicle de Bessy. Memoires de l'Academie royale des sciences, volume tome V. La compagnie des libraires, Paris, 1729.
[2] Lorenz Halbeisen and Norbert Hungerbühler. A theorem of Fermat on congruent number curves. Hardy-Ramanujan Journal, 41:15-21, 2018.
[3] Lorenz Halbeisen and Norbert Hungerbühler. Heron triangles and their elliptic curves. Journal of Number Theory, 213:232-253, 2020.
[4] Lorenz Halbeisen and Norbert Hungerbühler. Constructing cubic curves with involutions (submitted). arxiv.org/abs/2106.08154
[5] Lorenz Halbeisen, Norbert Hungerbühler, and Arman Shamsi Zargar. New parametrisations of elliptic curves with torsion groups $\mathbb{Z} / 10 \mathbb{Z}, \mathbb{Z} / 12 \mathbb{Z}$, and $\mathbb{Z} / 14 \mathbb{Z}$ (submitted). arxiv.org/abs/2106.06861
[6] Kurt Heegner. Diophantische Analysis und Modulfunktionen. Mathematische Zeitschrift, 56:227-253, 1952.
[7] Charles Henry and Paul Tannery. Euvres de Fermat, volume I-III. Gauthier-Villars et Fils, Paris, 1891.
[8] Daniel Sion Kubert. Universal bounds on the torsion of elliptic curves. Proceedings of the London Mathematical Society (3), 33(2):193-237, 1976.
[9] F. Patrick Rabarison. Structure de torsion des courbes elliptiques sur les corps quadratiques. Acta Arith., 144(1):17-52, 2010.
[10] Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves. SpringerVerlag, New York, 2nd edition, 2015.
[11] Hieronymus Georg Zeuthen and Raphael Meyer. Geschichte der Mathematik im XVI. und XVII. Jahrhundert. B.G. Teubner, Leipzig, 1903.

