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lorenz.halbeisen@math.ethz.ch

Norbert Hungerbühler

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract

We provide explicit formulae for primitive, integral solutions to the Diophantine equa-
tion x2 + y2 = M , where M is a product of powers of Pythagorean primes, i.e., of
primes of the form 4n+ 1. It turns out that this is a nice application of the theory of
Gaussian integers.

1 Introduction

The history of the Diophantine equation x2 + y2 = M has its roots in the study of
Pythagorean triples. The oldest known source is Plimpton 322, a Babylonian clay tablet
from around 1800 BC: This table lists two of the three numbers of Pythagorean triples,
i.e., integers x, y, z which satisfy x2 + y2 = z2. Euclid’s formula a = m2 − n2, y = 2mn,
z = m2 + n2, where m and n are coprime and not both odd, generates all primitive
Pythagorean triples, i.e., triples where x, y, z are coprime.

In 1625 Albert Girard, a French-born mathematician working in Leiden, The Netherlands,
who coined the abbreviations sin, cos, and tan for the trigonometric functions and who was
one of the first to use brackets in formulas, stated that every prime of the form 4n+1 is the
sum of two squares (see [24]). Pierre de Fermat [19, tome premier, p. 293, tome troisième,
p. 243–246] claimed that each such Pythagorean prime and its square is the sums of two
squares in a single way, its cube and biquadratic in two ways, its fifth and sixth powers in
three ways, and so on. It is easy to see that, if an odd prime is a sum of two squares, it
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must be of the form 4n + 1. The reverse implication, called Fermat’s Theorem on sums
of two squares, or Girard’s Theorem, is much more difficult to prove. However, Fermat
stated in a letter to Carcavi, communicated to Huygens (August 14, 1659, see [19, tome
deuxième, p. 432]) that he had a proof by the method of infinite descent for the fact that
each Pythagorean prime is the sum of two squares, but he gave no details. Recall that by
the Dirichlet Prime Number Theorem (see [11]), there are infinitely many Pythagorean
primes.

Bernard Frénicle de Bessy who lived 1604–1674 was an advocate of experimental math-
ematics: By his Méthode des exclusions he concluded from looking at numerical tables
that, if p1, p2, . . . are distinct Pythagorean primes, then the number N = pk11 p

k2
2 · · · pknn is

the hypotenuse of exactly 2n−1 primitive right triangles (see [9, p. 22–34,156–163]). The
theory was finally put on a solid footing by Leonhard Euler who proved Girard’s Theorem
in two papers (see [14] and [13]). In the sequel, 1775, Joseph-Louis Lagrange gave a proof
based on his general theory of integral quadratic forms (see [21, p. 351]). The theory of
quadratic forms came to a full understanding with Gauss’ Disquisitiones arithmeticae [16].
Gauss showed that for odd integers M > 2 of the form M = P · Q, where P and Q are
products of powers of primes of the form 4n+ 1 and 4n+ 3, respectively, the Diophantine
equation x2+y2 = M is solvable in positive integers if and only if Q is a perfect square (see
Gauss [17, p. 149 f]). Richard Dedekind contributed two more proofs for Girard’s Theorem:
see [10, §27, p. 240] and [12, Supplement XI, Ueber die Theorie der ganzen algebraischen
Zahlen, p. 444]. Another beautiful proof uses Minkowski’s Theorem on convex sets and
lattices (see, e.g., [25, §7.2]). The shortest argument is Don Zagier’s famous one-sentence
proof [27] of Girard’s Theorem.

For a Pythagorean prime p, Gauss provided an explicit formula for the unique primitive
solution {x, y} of the Diophantine equation x2 + y2 = p. Namely, with

z :=
∣∣∣〈1

2

(
2n

n

)〉∣∣∣
we have

{x, y} = {z, |〈z(2n)!〉|},

where 〈u〉 ∈ (−p
2 ,

p
2) denotes the residue of u mod p (see [8, Chapter 5] for a proof).

Another explicit formula was found by Jacobsthal in his dissertation [20]: The odd number
in {x, y} is given by ∣∣∣1

2

p∑
n=1

(x
p

)(x2 − 1

p

)∣∣∣,
where (ap ) denotes the Legendre symbol. Both formulae are of more theoretical interest.
For an efficient algorithm to compute the primitive solution we refer to [26].

The purpose of this paper is to provide explicit formulae for primitive, integral solutions
to the Diophantine equation x2+y2 = M , where M is a product of powers of Pythagorean
primes.
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2 Combining solutions

A recurring phenomenon in the theory of Diophantine equations is that solutions may be
combined to generate new solutions of a given equation. For the equation

a2 + b2 = M, (1)

this is shown in Lemma 1. To keep the notation short we write (a, b)M for an interger
solution of (1). Trivially, we have (a, b)M =⇒ (b, a)M and (a, b)M =⇒ (−a, b)M . Now,
for two pairs of integers (a, b) and (c, d), we define

(a, b) ∗ (c, d) := (ac− bd, ad+ bc). (2)

The following result is similar to [18, Lemma 4].

Lemma 1. Let a, b, ã, b̃ be integers and let M,N be positive integers such that (a, b)M
and (ã, b̃)N . Then (

(a, b) ∗ (ã, b̃)
)
M ·N ,

in other words, we have
(aã− bb̃, ab̃+ bã)M ·N .

Proof. We have to verify that (aã− bb̃)2 + (ab̃+ bã)2 = M ·N . Indeed, we have

(aã− bb̃)2 + (ab̃+ bã)2 = (a2 + b2)︸ ︷︷ ︸
=M

· (ã2 + b̃2)︸ ︷︷ ︸
=N

= M ·N.

q.e.d.

The operation (2) reminds of the product of complex numbers. Indeed, as we shall see
below, the Gaussian integers Z[i] are the adequate language to discuss equation (1).

3 Primitive solutions for M = pk

The formulae of Gauss and Jacobsthal yield explicit primitive solutions of (1) if M is a
Pythagorean prime p. Now we want to see how solutions for M = pk, k a positive integer,
can be generated from this.

As mentioned above, the product (2) from Section 2 corresponds to the complex multipli-
cation if we consider the first and second entry as real and imaginary part, respectively.
In particular, Lemma 1 can be formulated as follows:

Fact 2. Let a, b, ã, b̃ be integers and let M,N be positive integers such that (a, b)M and
(ã, b̃)N . Then, for z := (a+ ib)(ã+ ib̃), we have(

Re(z), Im(z)
)
M ·N .
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So, from now on we will work with Gaussian integers Z[i] = {a + ib : a, b ∈ Z} (see,
e.g., [15] as a general reference): Gaussian integers are a factorial ring, i.e., each element
in Z[i] has a unique factorisation up to the units ±1,±i. Every Pythagorean prime p can
be decomposed by two Gaussian primes, which are the complex conjugate of each other,
i.e., Pythagorean primes are of the form p = αα for some α ∈ Z[i], and this represents
the corresponding unique primitive solution of (1). As an example, 5 can be factorised by
1+2i, 1−2i. This is also true for 2 = (1+i)(1−i). On the other hand, all non-Pythagorean
primes in Z, different from 2, are also primes in Z[i].

Proposition 3. Let p = αα be a Pythagorean prime and let k be a positive integer. Then{
|Re(αk)|, |Im(αk)|

}
is the primitive solution to x2 + y2 = pk.

Proof. By observing that pk = αkαk, we see that the above equation is satisfied by
|Re(αk)|, |Im(αk)|. Thus, it only remains to show that these numbers are relatively prime.
Assume not, then there exist integers u, v, λ where λ > 1 such that αk = λ(u + iv). By
the uniqueness of prime factorisation in Z[i] we get λ = αl for some positive integer l. In

particular, arg(α)
π ∈ Q which is a contradiction to Niven’s Theorem. q.e.d.

Although the formula in Proposition 3 is practically trivial in the context of Gaussian
integers, it does not seem to be very widely known. Indeed, the formulas we now have at
hand are missing for the corresponding sequences in the On-Line Encyclopedia of Integer
Sequences OEIS. A few examples: Let p = αα be a factorised Pythagorean prime, ak =
|Re(αk)| and bk = |Im(αk)|. Then we have:

p = 5: xk = min{ak, bk} and yk = max{ak, bk} for M = 5k are explicit formulas for
the integer sequences [1, A230710] and [2, A230711], respectively.

p = 13: xk = min{ak, bk} and yk = max{ak, bk} for M = 13k are explicit formulas for
the integer sequences [22, A188948], and [23, A188949], respectively.

p = 17: xk = min{ak, bk} and yk = max{ak, bk} for M = 17k are explicit formulas for
the integer sequences [3, A230622], and [4, A230623], respectively.

p = 73: xk = min{ak, bk} and yk = max{ak, bk} for M = 73k are explicit formulas for
the integer sequences [5, A230962] and [6, A230963], respectively.

4 Primitive solutions for M =
∏n

l=1 p
kl
l

In this section we show how one can find the primitive solution to the Diophantine equation
x2+y2 = M , where M is a product of powers of Pythagorean primes. Also strongly related
with the following part is [7, Lemma 3.30].

Theorem 4. Let n and kl be positive integers, pl = αlαl be pairwise distinct Pythagorean
primes for 1 ≤ l ≤ n and let M =

∏n
l=1 p

kl
l . Then{∣∣∣Re

( n∏
l=1

αkll

)∣∣∣, ∣∣∣Im( n∏
l=1

αkll

)∣∣∣}
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is a primitive solution for x2 + y2 = M .

Proof. Obviously, we have M =
∏n
l=1 α

kl
l

∏n
l=1 α

kl
l . Therefore, x2 + y2 = M is clearly

satisfied by
∣∣∣Re
(∏n

l=1 α
kl
l

)∣∣∣, ∣∣∣Im(∏n
l=1 α

kl
l

)∣∣∣.
It remains to show that our solution is relatively prime. If not, then there exists integers

u, v, λ where λ > 1 such that
∏n
l=1 α

kl
l = λ(u+iv). In this case we must have λ =

∏n
l=1 α

k′l
l

with 0 ≤ k′l ≤ kl. Additionally, it holds true λ = λ =
∏n
l=1 αl

k′l . Observe that all prime
factors of λ are different from ±1± i. Thus, we have a contradiction to the unique prime
factorisation in Z[i]. q.e.d.

The following proposition was stated by Frénicle without a proof, as we mentioned in the
introduction.

Proposition 5. Let p1, . . . , pn, k1, . . . , kn, and M be as in Theorem 4. Then there are
2n−1 primitive solutions to x2 + y2 = M .

Proof. Let I, I ′ be a partition of the set {1, 2, . . . , n} and

M =

n∏
l=1

pkll =
( n∏
l=1

αkll

)( n∏
l=1

αkll

)
=
(∏
l∈I

αkll

∏
l∈I′

αkll

)
︸ ︷︷ ︸

=:αI

(∏
l∈I

αkll

∏
l∈I′

αkll

)
︸ ︷︷ ︸

=:αI

be factorised in Z[i]. Then each I gives us a primitive solution of M = Re(αI)
2 +Im(αI)

2.

Conversely, if {x, y} is a primitive solution to the equation x2 + y2 = M , then M =
(x+ iy)(x− iy). So, both of these factors can be factorised by the Gaussian primes of M
multiplied by a unit of Z[i]. Since these factorisations must be the complex conjugates
of each other and (x, y) = 1, there exists I ⊂ {1, 2, . . . , n} and k ∈ {0, 1, 2, 3} such that
x + iy = ikαI . This shows that each primitive solution to the equation above can be
constructed by the right choice of I.

It remains to show that x2 + y2 = M has exactly 2n−1 solutions. For this let I1 and I2 be
subsets of {1, 2, . . . , n} and assume that αI1 and αI2 represent the same solution, i.e., we
have {

|Re(αI1)|, |Im(αI1)|
}

=
{
|Re(αI2)|, |Im(αI2)|

}
. (∗∗)

Then we find θ, θ′ in R such that

arg(αI1) = θ + θ′ and arg(αI2) = θ − θ′

and it must hold either

θ + θ′ ≡ θ − θ′ (mod π
2 ) or θ + θ′ ≡ −(θ − θ′) (mod π

2 )
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which implies θ ≡ 0 mod π
4 or θ′ ≡ 0 mod π

4 . However, since θ and θ′ are either argu-
ments of primitive solutions for equations of the form x2 + y2 = M ′, where M ′ divides M ,
or I1, I2 must be disjoint or equal, we conclude the latter. Furthermore, if I1 and I2 are
disjoint or equal, then (∗∗) is clearly satisfied, so we get the same primitive solution. Thus,
there are exactly 2n−1 different choices for I such that the resulting primitive solutions
are different from each other. q.e.d.
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