Four Cardinals and Their Relations in ZF

Lorenz Halbeisen, Riccardo Plati, Salome Schumacher, and Saharon Shelah ${ }^{1}$

Abstract

For a set $M, \operatorname{fin}(M)$ denotes the set of all finite subsets of M, M^{2} denotes the Cartesian product $M \times M,[M]^{2}$ denotes the set of all 2-element subsets of M, and $\operatorname{seq}^{1-1}(M)$ denotes the set of all finite sequences without repetition which can be formed with elements of M. Furthermore, for a set S, let $|S|$ denote the cardinality of S. Under the assumption that the four cardinalities $\left|[M]^{2}\right|,\left|M^{2}\right|$, $|\operatorname{fin}(M)|,\left|\operatorname{seq}^{1-1}(M)\right|$ are pairwise distinct and pairwise comparable in ZF, there are six possible linear orderings between these four cardinalities. We show that at least five of the six possible linear orderings are consistent with ZF.

key-words: permutation models, cardinals in ZF, consistency results
2010 Mathematics Subject Classification: 03E35 03E10 03E25

1 Introduction

Let M be a set. Then $\operatorname{fin}(M)$ denotes the set of all finite subsets of M, M^{2} denotes the Cartesian product $M \times M,[M]^{2}$ denotes the set of all 2-element subsets of M, $\operatorname{seq}^{1-1}(M)$ denotes the set of all finite sequences without repetitions which can be formed with elements of M, and $\operatorname{seq}(M)$ denotes the set of all finite sequences which can be formed with elements of M (where repetitions are allowed).
Furthermore, for a set A, let $|A|$ denote the cardinality of A. We write $|A|=|B|$, if there exists a bijection between A and B, and we write $|A| \leq|B|$, if there exists a bijection between A and a subset $B^{\prime} \subseteq B$ (i.e., $|A| \leq|B|$ if and only if there exists an injection from A into B). Finally, we write $|A|<|B|$ if $|A| \leq|B|$ and $|A| \neq|B|$. By the Cantor-Bernstein Theorem, which is provable in ZF only (i.e., without using the Axiom of Choice), we get that $|A| \leq|B|$ and $|A| \geq|B|$ implies $|A|=|B|$.

Let $\mathfrak{m}:=|M|$, and let $[\mathfrak{m}]^{2}:=\left|[M]^{2}\right|, \mathfrak{m}^{2}:=\left|M^{2}\right|$, $\operatorname{fin}(\mathfrak{m}):=|\operatorname{fin}(M)|$, $\operatorname{seq}^{1-1}(\mathfrak{m}):=$ $\left|\operatorname{seq}^{1-1}(M)\right|$, and $\operatorname{seq}(\mathfrak{m}):=|\operatorname{seq}(M)|$. Concerning these cardinalities, in ZF we obviously have $\operatorname{seq}^{1-1}(\mathfrak{m}) \leq \operatorname{seq}(\mathfrak{m}),[\mathfrak{m}]^{2} \leq \operatorname{fin}(\mathfrak{m})$ and $\mathfrak{m}^{2} \leq \operatorname{seq}^{1-1}(\mathfrak{m})$, where the latter relations are visualized by the following diagram (in the diagram, \mathfrak{n}_{1} is below \mathfrak{n}_{2} if $\mathfrak{n}_{1} \leq \mathfrak{n}_{2}$):

[^0]Moreover, for finite cardinals \mathfrak{m} with $\mathfrak{m} \geq 5$ we have

$$
[\mathfrak{m}]^{2}<\mathfrak{m}^{2}<\operatorname{fin}(\mathfrak{m})<\operatorname{seq}^{1-1}(\mathfrak{m})
$$

and in the presence of the Axiom of Choice (i.e., in ZFC), for every infinite cardinal \mathfrak{m} we have

$$
[\mathfrak{m}]^{2}=\mathfrak{m}^{2}=\operatorname{fin}(\mathfrak{m})=\operatorname{seq}^{1-1}(\mathfrak{m}) .
$$

It is natural to ask whether some of these equalities can be proved also in ZF , i.e., without the aid of AC. Surprisingly, this is not the case. In [1], a permutation model was constructed in which for an infinite cardinal \mathfrak{m} we have $\operatorname{seq}(\mathfrak{m})<\operatorname{fin}(\mathfrak{m})$ (see [1, Thm. 2] or [4, Prp. 7.17]). As a consequence we obtain that the existence of an infinite cardinal \mathfrak{m} such that $\operatorname{seq}^{1-1}(\mathfrak{m})<\operatorname{fin}(\mathfrak{m})$ is consistent with ZF. This consistency result was modified to the existence of an infinite cardinal \mathfrak{m} for which $\mathfrak{m}^{2}<[\mathfrak{m}]^{2}$ (see [4, Prp. 7.18]), and later, it was strengthened to the existence of an infinite cardinal \mathfrak{m} for which $\operatorname{seq}(\mathfrak{m})<[\mathfrak{m}]^{2}$ (see [3] or [5, Prp. 8.28]). The consistency of $\operatorname{fin}(\mathfrak{m})<\operatorname{seq}^{1-1}(\mathfrak{m})$ for infinite cardinals \mathfrak{m} can be obtained with the Ordered Mostowski Model (see, for example, [5, Related Result 48, p. 217]), in which there is an infinite cardinal \mathfrak{m} with

$$
[\mathfrak{m}]^{2}<\mathfrak{m}^{2}<\operatorname{fin}(\mathfrak{m})<\operatorname{seq}^{1-1}(\mathfrak{m}) .
$$

Consistency results as well as ZF-results concerning the relations between these cardinals with other cardinals can be found, for example, in $[7,8]$ or [2].
Concerning the four cardinalities $[\mathfrak{m}]^{2}, \mathfrak{m}^{2}, \operatorname{fin}(\mathfrak{m})$, and $\operatorname{seq}^{1-1}(\mathfrak{m})$, a question which arises naturally is whether for some infinite cardinal \mathfrak{m}, fin $(\mathfrak{m})<\mathfrak{m}^{2}$ is consistent with ZF (see [5, Related Result 20, p. 133]). Moreover, assuming that \mathfrak{m} is infinite and the four cardinalities $[\mathfrak{m}]^{2}, \mathfrak{m}^{2}, \operatorname{fin}(\mathfrak{m}), \operatorname{seq}^{1-1}(\mathfrak{m})$ are pairwise distinct and pairwise comparable in ZF, one may ask which linear orderings on these four cardinalities are consistent with ZF.
Since for all cardinals \mathfrak{m}, we cannot have $[\mathfrak{m}]^{2}>\operatorname{fin}(\mathfrak{m})$ or $\mathfrak{m}^{2}>\operatorname{seq}^{1-1}(\mathfrak{m})$, there are only the following six linear orderings on these four cardinalities which might be consistent with ZF (where for two cardinals \mathfrak{n}_{1} and $\mathfrak{n}_{2}, \mathfrak{n}_{1} \longrightarrow \mathfrak{n}_{2}$ means $\mathfrak{n}_{1}<\mathfrak{n}_{2}$).

Diagram \mathbf{N}

Diagram И

Diagram C

Diagram \mathbf{J}

Diagram Z

Diagram $\boldsymbol{\Sigma}$

Below we show that each of the five diagrams $\mathbf{N}, \mathbf{Z}, \boldsymbol{И}, \boldsymbol{\beth}, \boldsymbol{\Sigma}$ is consistent with ZF .

2 Permutation Models

In order to show, for example, that for some infinite cardinals \mathfrak{m} and $\mathfrak{n}, \mathfrak{m}<\mathfrak{n}$ is consistent with ZF, by the Jech-Sochor Embedding Theorem (see, for example, [6, Thm. 6.1] or [5, Thm. 17.2]), it is enough to construct a permutation model in which this statement holds. The underlying idea of permutation models, which will be models of set theory with atoms (ZFA), is the fact that a model $\mathcal{V} \models$ ZFA does not distinguish between the atoms, where atoms are objects which do not have any elements but which are distinct from the empty set. The theory ZFA is essentially the same as that of ZF (except for the definition of ordinals, where we have to require that an ordinal does not have atoms among its elements). Let A be a set. Then by transfinite recursion on the ordinals $\alpha \in \Omega$ we can define the α-power $\mathscr{P}^{\alpha}(A)$ of A and $\mathscr{P}^{\infty}(A)=\bigcup_{\alpha \in \Omega} \mathscr{P}^{\alpha}(A)$. Like for the cumulative hierarchy of sets in ZF, one can show that if $\boldsymbol{\mathcal { M }}$ is a model of ZFA and A is the set of atoms of $\boldsymbol{\mathcal { M }}$, then $\boldsymbol{\mathcal { M }}=\mathscr{P}^{\infty}(A)$. The class $M_{0}:=\mathscr{P} \infty(\emptyset)$ is a model of ZF and is called the kernel. Notice that all ordinals belong to the kernel. By construction we obtain that every permutation of the set of atoms induces an automorphism of $\boldsymbol{\mathcal { M }}$, where the sets in the kernel are fixed.
Permutation models were first introduced by Adolf Fraenkel and, in a precise version (with supports), by Andrzej Mostowski. The version with filters, which we will follow below, is due to Ernst Specker (a detailed introduction to permutation models can be found, for example, in [5, Ch. 8] or [6]).

In order to construct a permutation model, we usually start with a set of atoms A and then define a group G of permutations or automorphisms of A.

The permutation models we construct below are of the following simple type: For each finite set $E \in \operatorname{fin}(A)$, let

$$
\operatorname{Fix}_{G}(E):=\{\pi \in G: \forall a \in E(\pi a=a)\},
$$

and let \mathscr{F} be the filter of subgroups of G generated by the subgroups $\left\{\operatorname{Fix}_{G}(E): E \in \operatorname{fin}(A)\right\}$. In other words, \mathscr{F} is the set of all subgroups $H \leq G$, such that there exists a finite set $E \in \operatorname{fin}(A)$, such that $\operatorname{Fix}_{G}(E) \leq H$.

For a set x, let

$$
\operatorname{sym}_{G}(x):=\{\pi \in G: \pi x=x\}
$$

where

$$
\pi x= \begin{cases}\emptyset & \text { if } x=\emptyset \\ \pi a & \text { if } x=a \text { for some } a \in A \\ \{\pi y: y \in x\} & \text { otherwise }\end{cases}
$$

Then, a set x is symmetric if and only if there exists a set of atoms $E_{x} \in \operatorname{fin}(A)$, such that

$$
\operatorname{Fix}_{G}\left(E_{x}\right) \leq \operatorname{sym}_{G}(x)
$$

We say that E_{x} is a support of x. Finally, let \mathcal{V} be the class of all hereditarily symmetric objects; then \mathcal{V} is a transitive model of ZFA. We call \mathcal{V} a permutation model. So, a set x belongs to the permutation model \mathcal{V} (with respect to G and \mathscr{F}), if and only if $x \subseteq \mathcal{V}$ and x has a finite support $E_{x} \in \operatorname{fin}(A)$. Because every $a \in A$ is symmetric, we get that each atom $a \in A$ belongs to \mathcal{V}.

2.1 A Model for Diagram N

We first show that in every model for Diagram \mathbf{N}, we have that the cardinality \mathfrak{m} is transfinite.
Lemma 1. If $\operatorname{fin}(\mathfrak{m}) \leq \mathfrak{m}^{2}$ for some $\mathfrak{m} \geq 5$, then $\aleph_{0} \leq \mathfrak{m}$.
Proof. Let A be a set of cardinality $\mathfrak{m} \geq 5$ and assume that $h: \operatorname{fin}(A) \rightarrow A^{2}$ is an injection. First we choose a 5 -sequence $S_{5}:=\left\langle a_{1}, \ldots, a_{5}\right\rangle$ of pairwise distinct elements of A. The ordering of S_{5} induces an ordering on $P_{5}:=\operatorname{fin}\left(\left\{a_{1}, \ldots, a_{5}\right\}\right)$, and since $\left|h\left[P_{5}\right]\right|=2^{5}$ and $2^{5}>5^{2}$, there exists a first set $u \in P_{5}$ such that for $\langle x, y\rangle=h(u)$, the set $D_{6}:=\{x, y\} \backslash\left\{a_{1}, \ldots, a_{5}\right\}$ is non-empty. If $x \in D_{6}$, let $a_{6}:=x$, otherwise, let $a_{6}:=y$. Now, let $S_{6}:=\left\langle a_{1}, \ldots, a_{6}\right\rangle$ and $P_{6}:=\operatorname{fin}\left(\left\{a_{1}, \ldots, a_{6}\right\}\right)$. As above, we find a $u \in P_{6}$ such that for $\langle x, y\rangle=h(u)$, the set $D_{7}:=\{x, y\} \backslash\left\{a_{1}, \ldots, a_{6}\right\}$ is non-empty. If $x \in D_{7}$, let $a_{7}:=x$, otherwise, let $a_{7}:=y$. Proceeding this way, we finally have an injection from ω into A, which shows that $\aleph_{0} \leq \mathfrak{m}$. \dashv

Proposition 2. If $\aleph_{0} \leq \mathfrak{m}$ for some cardinal $\mathfrak{m}=|A|$, then there exists a finite-to-one function $g: \operatorname{seq}(A) \rightarrow \operatorname{fin}(A)$.

Proof. By the assumption, there exists an injection $h: \omega \rightarrow A$, and for each $i \in \omega$, let $x_{i}:=h(i)$, let $B=\left\{x_{i}: i \in \omega\right\}$, and let $C:=\left\{x_{2 i}: i \in \omega\right\}$. Notice that

$$
\iota(a)= \begin{cases}a & \text { if } a \in A \backslash B, \\ x_{2 i+1} & \text { if } a=x_{i},\end{cases}
$$

is a bijection between A and $A \backslash C$. Thus, it is enough to construct a finite-to-one function $g: \operatorname{seq}(A \backslash C) \rightarrow \operatorname{fin}(A)$. Let $s=\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \operatorname{seq}(A \backslash C)$ and let $\operatorname{ran}(s):=\left\{a_{0}, \ldots, a_{n-1}\right\}$. The sequence s gives us in a natural way an enumeration of $\operatorname{ran}(s)$, and with respect to this enumeration we can encode the sequence s by a natural number $i_{s} \in \omega$. Now, let $g(s):=$ $\operatorname{ran}(s) \cup\left\{x_{2 i_{s}}\right\}$. Then, since there are just finitely many enumerations of $\operatorname{ran}(s), g$ is a finite-to-one function.

The following result is just a consequence of Proposition 2 and Lemma 1.
Corollary 3. If $\operatorname{fin}(\mathfrak{m}) \leq \mathfrak{m}^{2}$ for some $\mathfrak{m}=|A| \geq 5$, then there exists a finite-to-one function $g: \operatorname{seq}(A) \rightarrow \operatorname{fin}(A)$.

We now introduce the technique we intend to use in order to build a permutation model from which it will follow that for some infinite cardinal \mathfrak{m}, the relation $\operatorname{fin}(\mathfrak{m})<\mathfrak{m}^{2}$ is consistent with ZF. Notice that this relation is the main feature of Diagram \mathbf{N} and that this relation implies that $\aleph_{0} \leq \mathfrak{m}$. In the next section, we shall use a similar permutation model in order to show the consistency of Diagram \mathbf{Z} with $\mathbf{Z F}$.

Let K be the class of all the pairs (A, h) such that A is a (possibly empty) set and h is an injection h : fin $(A) \backslash\{\emptyset\} \rightarrow A^{2}$. We will also refer to the elements of K as models. We define a partial ordering \leq on K by stipulating

$$
(A, h) \leq(B, f) \Longleftrightarrow A \subseteq B \wedge h \subseteq f \wedge \operatorname{ran}\left(\left.f\right|_{\operatorname{fin}(B) \backslash \operatorname{in}(A)}\right) \subseteq B^{2} \backslash A^{2}
$$

When the functions involved are clear from the context, with a slight abuse of notation we will just write $A \leq B$ instead of $(A, h) \leq(B, f)$ and $A \in K$ instead of $(A, h) \in K$.
Before proceeding, we give two preliminary definitions. Given a model (M, f) and a countable subset $A \subseteq M$, we define the closure $\operatorname{cl}(A, M)$ as the smallest superset of A that is closed under f and pre-images with respect to the same function. Constructively, we can characterize $\operatorname{cl}(A, M)$ as a countable union as follows: $\operatorname{Define}^{\operatorname{cl}_{0}}=\operatorname{cl}_{0}(A, M):=A$ and, for all $i \in \omega$,

$$
\mathrm{cl}_{i+1}=\operatorname{cl}_{i} \cup \bigcup_{\substack{p \in \operatorname{fin}\left(\mathrm{cl}_{i}\right) \\ p \neq \emptyset}} \operatorname{ran}(f(p)) \cup \bigcup_{q \in\left(\mathrm{cl}_{i}\right)^{2} \cap \operatorname{ran}(f)} f^{-1}(q)
$$

in order to finally define $\operatorname{cl}(A, M):=\bigcup_{i \in \omega} \operatorname{cl}_{i}$. Furthermore, we set a standardized way to extend a partial model $\left(A, f^{\prime}\right)$, where f^{\prime} is only a partial function, to an element of K : Consider $\left(A, f^{\prime}\right)$, where A is a set and f^{\prime} is an injection with $\operatorname{dom}\left(f^{\prime}\right) \subseteq \operatorname{fin}(A) \backslash\{\emptyset\}$ and $\operatorname{ran}\left(f^{\prime}\right) \subseteq A^{2}$. Let $\left(M_{0}, f_{0}^{\prime}\right)=\left(A, f^{\prime}\right)$ and, for $j \in \omega$, define inductively $\left(M_{j+1}, f_{j+1}^{\prime}\right)$ as follows: M_{j+1} is the fully disjoint union

$$
M_{j} \quad \sqcup \underset{\substack{P \in \operatorname{fin}\left(M_{j}\right) \backslash \operatorname{dom}\left(f_{j}^{\prime}\right) \\ P \neq \emptyset}}{ }\left\{a_{P}, b_{P}\right\} .
$$

For what concerns the injection f_{j+1}^{\prime}, we naturally require the inclusion $f_{j}^{\prime} \subseteq f_{j+1}^{\prime}$, as well as the equality $\operatorname{dom}\left(f_{j+1}^{\prime}\right)=\operatorname{fin}\left(M_{j}\right) \backslash\{\emptyset\}$, where for $P \in \operatorname{fin}\left(M_{j}\right) \backslash \operatorname{dom}\left(f_{j}^{\prime}\right)$ with $P \neq \emptyset$, we define $f_{j+1}^{\prime}(P):=\left(a_{P}, b_{P}\right)$. We are now in the position of defining the plain extension of $\left(A, f^{\prime}\right)$ as

$$
(M, f):=\left(\bigcup_{j \in \omega} M_{j}, \bigcup_{j \in \omega} f_{j}^{\prime}\right) .
$$

Given the previous definitions, we remark that given a model $M \in K$ and a countable subset $A \subseteq M$, we have that $\mathrm{cl}(A, M) \leq M$, which proves the following:

Fact 4. For every countable subset A of a model $M \in K$, there is a countable model N such that $A \subseteq N \leq M$.

Proposition $5(\mathrm{CH})$. There is a model M_{*} of cardinality \mathfrak{c} in K such that:

- M_{*} is \aleph_{1}-universal, i.e., if $N \in K$ is countable then N is isomorphic to some $N_{*} \leq M_{*}$.
- M_{*} is \aleph_{1}-homogeneous, i.e., if $N_{1}, N_{2} \leq M_{*}$ are countable and $\pi: N_{1} \rightarrow N_{2}$ is an isomorphism then there exists an automorphism π_{*} of M_{*} such that $\pi \subseteq \pi_{*}$.
- If $N \leq M_{*}$ and $A \subseteq M_{*}$ are countable, then there is an automorphism π of M_{*} that fixes N pointwise, such that $\pi(A) \backslash N$ is disjoint from A.

Proof. We construct the model M_{*} by induction on ω_{1}, where we assume that $\omega_{1}=\mathfrak{c}$. Let $M_{0}=\emptyset$. When M_{α} is already defined for some $\alpha \in \omega_{1}$, we can define

$$
C_{\alpha}:=\left\{N \leq M_{\alpha}: N \in K \text { and } N \text { is countable }\right\} .
$$

The construction of $M_{\alpha+1}$, starting from M_{α}, consists of a disjoint union of two differently built sets of models. First, for each element $N \in C_{\alpha}$, let S_{N} be a system of representatives for the strong isomorphism classes of all the models $M \in K$ such that $N \leq M$ with M countable. Here, by strong we mean that, for two models M_{1} and M_{2} with $N \leq M_{1}, M_{2}$, it is not enough to be isomorphic in order to belong to the same class, but we require that there exists an isomorphism between M_{1} and M_{2} that fixes N pointwise, which we can express by saying that M_{1} is isomorphic to M_{2} over N. We first extend M_{α} by the set

$$
M_{\alpha}^{\prime}=\bigsqcup_{N \in C_{\alpha}} \bigsqcup_{M \in S_{N}} M \backslash N,
$$

where " \bigsqcup " indicates that we have a disjoint union, and now we define $M_{\alpha+1}$ as the plain extension of $M_{\alpha} \sqcup M_{\alpha}^{\prime}$. Finally, for non-empty limit ordinals δ define $M_{\delta}=\cup_{\alpha \in \delta} M_{\alpha}$, and let

$$
M_{*}=\bigcup_{\alpha \in \omega_{1}} M_{\alpha} .
$$

It remains to show that the model M_{*} has the required properties: First we notice that M_{*} has cardinality $\left|M_{*}\right|=\mathfrak{c}$, as required, and since, by construction, M_{1} is \aleph_{1}-universal, M_{*} is also \aleph_{1}-universal. In order to show that M_{*} is \aleph_{1}-homogeneous, we make use of a back-andforth argument. Let $N_{1}, N_{2} \leq M_{*}$ be countable models and $\pi: N_{1} \rightarrow N_{2}$ an isomorphism. Let $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\}$ be an enumeration of the elements of M_{*} and let $I_{0}:=N_{1}$. If $x_{\delta_{1}}$ is the first element (with respect to this enumeration) in $M_{*} \backslash I_{0}$, then, by FACT 4 , there exists a countable model $I_{1}^{\prime} \leq M_{*}$ such that $I_{0} \leq I_{1}^{\prime}$ and $x_{\delta_{1}} \in I_{1}^{\prime}$. Similarly, there is a countable model J_{1}^{\prime} with $N_{2} \leq J_{1}^{\prime} \leq M_{*}$ such that there exists an isomorphism $\pi_{1}^{\prime}: I_{1}^{\prime} \rightarrow J_{1}^{\prime}$ with $\pi \subseteq \pi_{1}^{\prime}$. Now, let $x_{\gamma_{1}}$ be the first element in $M_{*} \backslash J_{1}^{\prime}$: for the same reason as above we can find countable models J_{1}, I_{1} such that $I_{1}^{\prime} \leq I_{1} \leq M_{*}$ and $J_{1}^{\prime} \leq J_{1} \leq M_{*}$, together with $x_{\gamma_{1}} \in J_{1}$ and the fact that there exists an isomorphism $\pi_{1}: I_{1} \rightarrow J_{1}$ with $\pi_{1}^{\prime} \subseteq \pi_{1}$. Proceed inductively with $x_{\delta_{\alpha+1}}$ being the first element in $M_{*} \backslash I_{\alpha}$ and find countable models $I_{\alpha} \leq I_{\alpha+1}^{\prime} \leq M_{*}, J_{\alpha} \leq J_{\alpha+1}^{\prime} \leq M_{*}$ and an isomorphism $\pi_{\alpha+1}^{\prime}: I_{\alpha+1}^{\prime} \rightarrow J_{\alpha+1}^{\prime}$ with $x_{\delta_{\alpha+1}} \in I_{\alpha+1}^{\prime}$ and $\pi_{\alpha} \subseteq \pi_{\alpha+1}^{\prime}$. As in the second part of the base step, let $x_{\gamma_{\alpha+1}}$ be the first element in $M_{*} \backslash J_{\alpha+1}^{\prime}$ and find countable models $I_{\alpha+1}^{\prime} \leq I_{\alpha+1} \leq M_{*}, J_{\alpha+1}^{\prime} \leq J_{\alpha+1} \leq M_{*}$, with an isomorphism $\pi_{\alpha+1}: I_{\alpha+1} \rightarrow J_{\alpha+1}$ such that $x_{\gamma_{\alpha+1}} \in J_{\alpha+1}$ and $\pi_{\alpha+1}^{\prime} \subseteq \pi_{\alpha+1}$. We naturally take the union at limit stages and finally obtain $\pi_{*}=\cup_{\alpha \in \omega_{1}} \pi_{\alpha}$, which is the required automorphism of M_{*}.

To show the last property of the theorem, let $N \leq M_{*}$ and $A \subseteq M_{*}$ be both countable. Since the cofinality of ω_{1} is greater than ω, we can find by construction both a countable model M satisfying the properties $A \subseteq M, N \leq M \leq M_{*}$ and a further countable model M^{\prime} with $N \leq M^{\prime} \leq M_{*}$ such that $M^{\prime} \cap(A \backslash N)=\emptyset$, and such that there exists an isomorphism $i: M \rightarrow M^{\prime}$ with i fixing N pointwise. Now, by M_{*} being \aleph_{1}-homogeneous we obtain an automorphism i_{*} extending i, as required.

As anticipated, the construction of the previous theorem does not exploit any particular property of the functions $h: \operatorname{fin}(A) \backslash\{\emptyset\} \rightarrow A^{2}$. In fact, the construction is an analogue of a Fraïssé limit as it relies on similar properties, like, for example, a modified version of the Disjoint Amalgamation Property (DAP) of K, where we require that embeddings between structures $f:(A, h) \rightarrow(B, g)$ are allowed only when, according to our previous definition, $A \leq B$. Indeed, exactly the same construction can be carried out in the alternative framework of models
(A, f, g, h), where A is a set and we have three injections $f: A^{2} \rightarrow[A]^{2}, g:[A]^{2} \rightarrow \operatorname{seq}^{1-1}(A)$ and $h: \operatorname{seq}^{1-1}(A) \rightarrow \operatorname{fin}(A)$, which will be used below to show the consistency of Diagram \mathbf{Z} with ZF.

Given Proposition 5, we consider the permutation model $\mathcal{V}_{\mathbf{N}}$ that arises naturally by considering the elements of the \aleph_{1}-universal and \aleph_{1}-homogeneous model M_{*} as the set of atoms and its automorphisms $\operatorname{Aut}\left(M_{*}\right)$ as the group G of permutations. In particular, each permutation in G preserves the injection $h: \operatorname{fin}\left(M_{*}\right) \backslash\{\emptyset\} \rightarrow M_{*}^{2}$ that the model $\left(M_{*}, h\right)$ comes with.

We are now ready to prove the following result.
Theorem 6. Let M_{*} be the set of atoms of $\mathcal{V}_{\mathbf{N}}$ and let $\mathfrak{m}=\left|M_{*}\right|$. Then

$$
\mathcal{V}_{\mathbf{N}} \models[\mathfrak{m}]^{2}<\operatorname{fin}(\mathfrak{m})<\mathfrak{m}^{2}<\operatorname{seq}^{1-1}(\mathfrak{m})
$$

Proof. The existence of an injection $i: \operatorname{fin}\left(M_{*}\right) \rightarrow M_{*}^{2}$ in $\mathcal{V}_{\mathbf{N}}$ follows from the existence of the injection $h:$ fin $\left(M_{*}\right) \backslash\{\emptyset\} \rightarrow M_{*}^{2}$ given by the specific permutation model, together with the fact that h cannot be surjective, which will be shown later. So, we only need to prove that in $\mathcal{V}_{\mathbf{N}}$, there is no reverse injection from M_{*}^{2} into $\operatorname{fin}\left(M_{*}\right)$, and that there are no injections from fin $\left(M_{*}\right)$ into $\left[M_{*}\right]^{2}$ or from $\operatorname{seq}^{1-1}\left(M_{*}\right)$ into M_{*}^{2}.
In order to show that there is neither an injection from M_{*}^{2} into fin $\left(M_{*}\right)$, nor an injection from $\operatorname{seq}^{1-1}\left(M_{*}\right)$ into M_{*}^{2}, assume towards a contradiction that $\mathcal{V}_{\mathbf{N}}$ contains an injection $f_{1}: M_{*}^{2} \rightarrow$ $\operatorname{fin}\left(M_{*}\right)$ or an injection $f_{2}: \operatorname{seq}^{1-1}\left(M_{*}\right) \rightarrow M_{*}^{2}$. Let S be a finite support of both functions f_{1} and f_{2} (if they exist). In other words, $S \in \operatorname{fin}\left(M_{*}\right)$ and for each automorphism $\pi \in \operatorname{Fix}_{G}(S)$ we have $\pi\left(f_{1}\right)=f_{1}$ and $\pi\left(f_{2}\right)=f_{2}$, respectively. Let N_{1} be a countable model in K with $S \subseteq N_{1} \leq M_{*}$. Let $\left(N_{2}, g\right)$ be a countable model in K such that $\left(N_{1},\left.h\right|_{N_{1}}\right) \leq\left(N_{2}, g\right)$, constructed as follows: The domain of N_{2} is the disjoint union

$$
N_{2}=N_{1} \sqcup\{x, y, z\} \sqcup\left\{a_{i}: i \in \omega\right\} .
$$

Furthermore, we define the injection $g: \operatorname{fin}\left(N_{2}\right) \backslash\{\emptyset\} \rightarrow N_{2}^{2}$ such that $\left.g \supseteq h\right|_{N_{1}}$ and for $E \in \operatorname{fin}\left(N_{2}\right) \backslash \operatorname{fin}\left(N_{1}\right)$ we define $g(E)=\left\langle e_{1}, e_{2}\right\rangle$ such that g is injective and satisfies the following conditions (recall that since N_{2} is countable, also fin $\left(N_{2}\right)$ is countable):

- If $E \cap\{x, y, z\}=\emptyset$ then $\left\langle e_{1}, e_{2}\right\rangle=\left\langle a_{n}, a_{m}\right\rangle$ for some $n, m \in \omega$.
- If $|E \cap\{x, y, z\}|=1$, then $\left\langle e_{1}, e_{2}\right\rangle=\left\langle u, a_{k}\right\rangle$ for some $k \in \omega$, where u is the unique element in $E \cap\{x, y, z\}$.
- If $|E \cap\{x, y, z\}|=2$, then $\left\langle e_{1}, e_{2}\right\rangle=\left\langle v, a_{k}\right\rangle$ for some $k \in \omega$, where v is the unique element in $\{x, y, z\} \backslash(E \cap\{x, y, z\})$.
- If $|E \cap\{x, y, z\}|=3$ then $\left\langle e_{1}, e_{2}\right\rangle=\left\langle a_{n}, a_{m}\right\rangle$ for some $n, m \in \omega$.

Notice that there are automorphisms of $\left(N_{2}, g\right)$ that just permute x, y, z and fix all other elements of N_{2} pointwise. By construction of M_{*}, we find a model $N_{2}^{\prime} \in K$ such that $N_{1} \leq N_{2}^{\prime} \leq$ M_{*} and N_{2}^{\prime} is isomorphic to N_{2} over N_{1}. For this reason we can refer to N_{2} as a legit submodel of M_{*} that extends N_{1} in the way we described. Let us now consider $f_{1}(\langle x, y\rangle)$, where we assumed in $\mathcal{V}_{\mathbf{N}}$ the existence of an injection $f_{1}: M_{*}^{2} \rightarrow \operatorname{fin}\left(M_{*}\right)$ with finite support S. If $f_{1}(\langle x, y\rangle) \subseteq N_{1}$
or $f_{1}(\langle x, y\rangle) \nsubseteq N_{2}$, then we can apply the third property of PROPOSITION 5 with respect to $f_{1}(\langle x, y\rangle)$ and N_{1} and N_{2} respectively, which gives us a contradiction. If $\{x, y\} \subseteq f_{1}(\langle x, y\rangle)$ or $\{x, y\} \cap f_{1}(\langle x, y\rangle)=\emptyset$, we could swap x and y while fixing every other element of N_{2} pointwise and get $f_{1}(\langle x, y\rangle)=f_{1}(\langle y, x\rangle)$, which would imply that f_{1} is not injective. So, assume that $\left|\{x, y\} \cap f_{1}(\langle x, y\rangle)\right|=1$ and without loss of generality assume that $\{x, y\} \cap f_{1}(\langle x, y\rangle)=\{x\}$. Now, if $z \in f_{1}(\langle x, y\rangle)$, i.e., $\{x, z\} \subseteq f_{1}(\langle x, y\rangle)$, we similarly obtain a contradiction by swapping z and x, while if $z \notin f_{1}(\langle x, y\rangle)$ we get a contradiction by swapping z and y. This shows that f_{1} cannot belong to $\mathcal{V}_{\mathbf{N}}$.
For what concerns f_{2}, let us consider the set \mathscr{S} consisting of sequences without repetition of $\{x, y, z\}$ of length 2 or 3 . Notice that $|\mathscr{S}|=12$. Now, for each element $s \in \mathscr{S}$, if $f_{2}(s)=\langle a, b\rangle$, then a and b are such that $a \neq b$ and $\langle a, b\rangle \in\{x, y, z\}^{2}$ - notice that otherwise, for example, if $\{a, b\} \cap\{x, y\}=\emptyset$, then we can swap x and y and hence move s without moving $\langle a, b\rangle$, which is not consistent with S being a support of f_{2}. We get the conclusion by noticing that, because of this restriction, there are only six possible images of elements of \mathscr{S}, which implies that f_{2} cannot be an injection.
It remains to show that in $\mathcal{V}_{\mathbf{N}}$ there are no injections from $\operatorname{fin}\left(M_{*}\right)$ into $\left[M_{*}\right]^{2}$. For this, assume towards a contradiction that there exists such a function f_{3} in $\mathcal{V}_{\mathbf{N}}$ and assume that S is a finite support of f_{3}. Then, let N_{1} be a countable model in K with $S \subseteq N_{1} \leq M_{*}$. We will construct a countable model $\left(N_{2}, g\right) \in K$ satisfying $\left(N_{1},\left.h\right|_{N_{1}}\right) \leq\left(N_{2}, g\right) \leq M_{*}$ with a finite subset $u \in \operatorname{fin}\left(N_{2} \backslash N_{1}\right)$ such that, for all $\langle x, y\rangle \in N_{2}^{2} \backslash N_{1}^{2}$, one of the following holds:

- there is no finite set $E \in \operatorname{fin}\left(N_{2}\right) \backslash\{\emptyset\}$ with $h(E)=\langle x, y\rangle$;
- there exists an automorphism π of N_{2} over N_{1} with $\pi(u) \neq u$ and $\pi\{x, y\}=\{x, y\}$.

Let $u=\left\{a_{0}, b_{0}, c_{0}\right\}$ be disjoint from N_{1} and define $G_{0}^{1}=N_{1} \sqcup\left\{a_{0}, b_{0}, c_{0}\right\}$. Now, for each finite set $E \in \operatorname{fin}\left(G_{0}^{1}\right) \backslash\{\emptyset\}$ which is not in the domain of $h_{0}=\left.h\right|_{N_{1}}$, that is, for each finite set $E \in \operatorname{fin}\left(G_{0}^{1}\right)$ with $E \cap\left\{a_{0}, b_{0}, c_{0}\right\} \neq \emptyset$, let $\left\{x_{E}, y_{E}\right\}$ be a pair of new elements and define

$$
G_{0}^{*}:=G_{0}^{1} \sqcup \underset{E \in \operatorname{fin}\left(G_{0}^{1}\right) \backslash \operatorname{dom}\left(h_{0}\right), E \neq \emptyset}{\left\{x_{E}, y_{E}\right\} \quad \text { and } \quad h_{0}^{1}:=h_{0} \cup \underset{E \in \operatorname{fin}\left(G_{0}^{1}\right) \backslash \operatorname{dom}\left(h_{0}\right), E \neq \emptyset}{ }\left\{\left\langle E,\left\langle x_{E}, y_{E}\right\rangle\right\rangle\right\} . . ~}
$$

Let now G_{0}^{2} be an extension of G_{0}^{*} by adding a copy of $G_{0}^{1} \backslash N_{1}$, where the "copy function" is denoted by τ_{0}. Notice that at this stage, $G_{0}^{1} \backslash N_{1}=\left\{a_{0}, b_{0}, c_{0}\right\}$. More formally, $G_{0}^{2}=G_{0}^{*} \sqcup\left\{\tau_{0}(a)\right.$: $\left.a \in G_{0}^{1} \backslash N_{1}\right\}$, together with an extension of h_{0}^{1} defined as
where, given $E \in \operatorname{fin}\left(G_{0}^{1}\right) \backslash \operatorname{dom}\left(h_{0}\right)$ with $E \neq \emptyset, \tau_{0}(E)$ is defined as

$$
\tau_{0}(E):=\left(E \cap N_{1}\right) \sqcup\left\{\tau_{0}(a): a \in E \backslash N_{1}\right\}
$$

Notice that if $a \in G_{0}^{1} \backslash N_{1}$, then $\tau_{0}(a) \in G_{0}^{2} \backslash G_{0}^{*}$. The construction carried out so far is actually the first of countably many analogous extension steps we will consequently apply in order to consider the union of all the progressive extensions. That is, assume that for some
$i \in \omega$ we have already defined G_{i}^{2} and h_{i}^{2}. Define $G_{i+1}^{1}=G_{i}^{2}$ and, for each non-empty finite set $E \in \operatorname{fin}\left(G_{i+1}^{1}\right)$ which is not in the domain of h_{i}^{2}, consider a pair of new elements $\left\{x_{E}, y_{E}\right\}$ and define

$$
\begin{aligned}
G_{i+1}^{*}:=G_{i+1}^{1} & \sqcup \quad \bigsqcup_{E \in \operatorname{fin}\left(G_{i+1}^{1}\right) \backslash \operatorname{dom}\left(h_{i}^{2}\right), E \neq \emptyset}\left\{x_{E}, y_{E}\right\} \quad \text { and } \\
h_{i+1}^{1}:=h_{i}^{2} & \cup \quad \bigcup_{E \in \operatorname{fin}\left(G_{i+1}^{1}\right) \backslash \operatorname{dom}\left(h_{i}^{2}\right), E \neq \emptyset}\left\{\left\langle E,\left\langle x_{E}, y_{E}\right\rangle\right\rangle\right\} .
\end{aligned}
$$

Let now G_{i+1}^{2} be an extension of G_{i+1}^{*} by adding a copy of $G_{i+1}^{1} \backslash N_{1}$, where the "copy function" is now τ_{i+1}. More formally, $G_{i+1}^{2}:=G_{i+1}^{*} \sqcup\left\{\tau_{i+1}(a): a \in G_{i+1}^{1} \backslash N_{1}\right\}$, together with an extension of h_{i+1}^{1} defined as

$$
h_{i+1}^{2}:=h_{i+1}^{1} \cup \underset{E \in \operatorname{fin}\left(G_{i+1}^{1}\right) \backslash \operatorname{dom}\left(h_{i}^{2}\right), E \neq \emptyset}{\cup}\left\{\left\langle\tau_{i+1}(E),\left\langle y_{E}, x_{E}\right\rangle\right\rangle\right\} \underset{E \in \operatorname{dom}\left(h_{i}^{2}\right) \backslash \operatorname{fin}\left(N_{1}\right)}{\cup}\left\{\left\langle\tau_{i+1}(E), \tau_{i+1}\left(h_{i}^{2}(E)\right)\right\rangle\right\},
$$

where, again, given $E \in \operatorname{fin}\left(G_{i+1}^{1}\right) \backslash \operatorname{fin}\left(N_{1}\right), \tau_{i+1}(E)$ is defined as

$$
\tau_{i+1}(E):=\left(E \cap N_{1}\right) \sqcup\left\{\tau_{i+1}(a): a \in E \backslash N_{1}\right\},
$$

for which we newly remark that if $a \in G_{i+1}^{1} \backslash N_{1}$, then $\tau_{i+1}(a) \in G_{i+1}^{2} \backslash G_{i+1}^{*}$. Notice that every automorphism of $\left(G_{i+1}^{1}, h_{i}^{2}\right)$ can be extended to an automorphism of $\left(G_{i+1}^{*}, h_{i+1}^{1}\right)$ - this is because $G_{i+1}^{*} \backslash G_{i+1}^{1}$ consists of pairs $\{x, y\}$, each of which corresponds to a unique nonempty finite subset of G_{i+1}^{1} and moves according to this finite subset. Finally, we conclude that every automorphism of $\left(G_{i+1}^{*}, h_{i+1}^{1}\right)$ can be extended to an automorphism of $\left(G_{i+1}^{2}, h_{i+1}^{2}\right)$, which follows from the following two facts: $G_{i+1}^{2} \backslash G_{i+1}^{*}$ consists of a copy through τ_{i+1} of $G_{i+1}^{1} \backslash N_{1}$, and therefore supports the same automorphisms. Furthermore, every automorphism of $\left(G_{i+1}^{*}, h_{i+1}^{1}\right)$ is an extension of some automorphism of $\left(G_{i+1}^{1}, h_{i}^{2}\right)$, which follows from the fact that for all $E \in \operatorname{fin}\left(G_{i+1}^{*}\right) \backslash \emptyset$, we have $E \in \operatorname{dom}\left(h_{i+1}^{1}\right)$ if and only if $E \cap\left(G_{i+1}^{*} \backslash G_{i+1}^{1}\right)=\emptyset$.
Now, let

$$
N_{2}:=\bigcup_{i \in \omega} G_{i}^{1} \quad \text { and } \quad g:=\bigcup_{i \in \omega} h_{i}^{1} .
$$

We claim that $\left(N_{2}, g\right)$ satisfies the required properties. Indeed, if $\langle x, y\rangle \in N_{2}^{2} \backslash N_{1}^{2}$ and there is some finite set $E \in \operatorname{fin}\left(N_{2}\right) \backslash\{\emptyset\}$ with $g(E)=h(E)=\langle x, y\rangle$, then by construction of g we necessarily have $\langle x, y\rangle \in\left(N_{2} \backslash N_{1}\right)^{2}$ and the following fact: either there exists some index $n \in \omega$ such that $\langle x, y\rangle \in\left(G_{n}^{*} \backslash G_{n}^{1}\right)^{2}$, or there are indices $n, k \in \omega$ with $k>n$ such that for some ordered pair $\left\langle x^{\prime}, y^{\prime}\right\rangle \in\left(G_{n}^{*} \backslash G_{n}^{1}\right)^{2}$ we have $\langle x, y\rangle=\left\langle\tau_{k}\left(x^{\prime}\right), \tau_{k}\left(y^{\prime}\right)\right\rangle$. Each of the two conditions implies that there exists an automorphism π of N_{2} over N_{1} acting as follows: $\pi\langle x, y\rangle=\langle y, x\rangle$ and $\pi u=\pi\left\{a_{0}, b_{0}, c_{0}\right\}=\left\{\tau_{n}\left(a_{0}\right), \tau_{n}\left(b_{0}\right), \tau_{n}\left(c_{0}\right)\right\}$, which in particular means $\pi\{x, y\}=\{x, y\}$ and $\pi u \neq u$, as desired. We can finally consider the image $f_{3}(u)=\{x, y\}:$ If $\{x, y\} \nsubseteq N_{2}$ or $\{x, y\} \subseteq N_{1}$, then we can apply the third property of Proposition 5 with respect to $\{x, y\}$ and N_{1} and N_{2} respectively, which gives us a contradiction. Thus $\{x, y\} \subseteq N_{2}$ and $\{x, y\} \nsubseteq N_{1}$, and if there exists some finite set $E \in \operatorname{fin}\left(N_{2}\right) \backslash \emptyset$ with $g(E)=h(E)=\langle x, y\rangle$, then by the reasoning above we find that some automorphism of N_{2} over N_{1} does not preserve f_{3}, a contradiction. In every other case, we consider $\operatorname{cl}\left(N_{1} \cup\{x, y\}, M_{*}\right)$ and notice that, since for no $E \in \operatorname{fin}\left(N_{2}\right) \backslash \emptyset$ we have $h(E)=\langle x, y\rangle$ or $h(E)=\langle y, x\rangle$, then we claim that u cannot be
a subset of $\operatorname{cl}\left(N_{1} \cup\{x, y\}, M_{*}\right)$, which allows us to fix $\operatorname{cl}\left(N_{1} \cup\{x, y\}, M_{*}\right)$ pointwise, while not preserving u, a contradiction as well. In order to prove the claim, let $U_{0}:=u$ and for $i \in \omega$, let

$$
U_{i+1}:=U_{i} \cup\left\{\tau_{i}(a): a \in U_{i}\right\}
$$

and define $U:=\bigcup_{i \in \omega} U_{i}$. Furthermore, we define a rank-function rk: $N_{2} \rightarrow \omega \cup\{-\infty\}$ by stipulating

$$
\operatorname{rk}(a):= \begin{cases}-\infty & \text { if } a \in N_{1}, \\ 0 & \text { if } a \in U, \\ n+1 & \text { if } a \in\left\{x_{E}, y_{E}\right\}, \text { where } E \in \operatorname{fin}\left(N_{2}\right) \backslash \operatorname{fin}\left(N_{1}\right) \\ & \text { and } \max \{\operatorname{rk}(b): b \in E\}=n, \\ n & \text { if } a=\tau_{k}(b) \text { for some } k \in \omega \text { with } \operatorname{rk}(b)=n .\end{cases}
$$

Since for no $E \in \operatorname{fin}\left(N_{2}\right) \backslash \emptyset$ we have $h(E)=\langle x, y\rangle$ or $h(E)=\langle y, x\rangle$, for any $a \in \operatorname{cl}\left(N_{1} \cup\right.$ $\left.\{x, y\}, M_{*}\right) \backslash N_{1}$ we have $\operatorname{rk}(a) \geq \min \{\operatorname{rk}(x), \operatorname{rk}(y)\}$. Thus, the only way that $u \subseteq \operatorname{cl}\left(N_{1} \cup\right.$ $\{x, y\}, M_{*}$) would be that $\{x, y\} \cap U \neq \emptyset$. However, even in the case when $\{x, y\} \subseteq U$ (e.g., $\{x, y\} \subseteq\left\{a_{0}, b_{0}, c_{0}\right\}$), by the definition of τ_{i}, at least one of the elements of $\left\{a_{0}, b_{0}, c_{0}\right\}$ does not belong to $\operatorname{cl}\left(N_{1} \cup\{x, y\}, M_{*}\right)$. In particular, $u \nsubseteq \operatorname{cl}\left(N_{1} \cup\{x, y\}, M_{*}\right)$, which proves the claim. \dashv

So, the model $\mathcal{V}_{\mathbf{N}}$ witnesses the following
Consistency Result 1. The existence of an infinite cardinal \mathfrak{m} satisfying

is consistent with ZF .

2.2 A Model for Diagram Z

We are now going to set an analogue framework to the one for Diagram \mathbf{N}, just with the definitions adapted, in order to show the consistency of Diagram Z. In fact, as mentioned above, we can state the same proposition, guaranteeing the existence of a suitable \aleph_{1}-universal and \aleph_{1}-homogeneous model.

Let K be the class of all the quadruples (A, f, g, h) such that A is a (possibly empty) set and f, g, h are the following three injections:

$$
f: A^{2} \rightarrow[A]^{2} \quad g:[A]^{2} \rightarrow \operatorname{seq}^{1-1}(A) \quad h: \operatorname{seq}^{1-1}(A) \rightarrow \operatorname{fin}(A),
$$

where the function h satisfies $h(\emptyset)=\emptyset$. As before, we define a partial ordering \leq on K by stipulating $\left(A, f_{1}, g_{1}, h_{1}\right) \leq\left(B, f_{2}, g_{2}, h_{2}\right)$ if and only if

- $A \subseteq B$,
- $f_{1} \subseteq f_{2}, \operatorname{ran}\left(\left.f_{2}\right|_{B^{2} \backslash A^{2}}\right) \subseteq[B]^{2} \backslash[A]^{2}$,
- $g_{1} \subseteq g_{2}, \operatorname{ran}\left(\left.g_{2}\right|_{[B]^{2} \backslash[A]^{2}}\right) \subseteq \operatorname{seq}^{1-1}(B) \backslash \operatorname{seq}^{1-1}(A)$,
- $h_{1} \subseteq h_{2}, \operatorname{ran}\left(\left.h_{2}\right|_{\operatorname{seq}^{1-1}(B) \backslash \operatorname{seq}^{1-1}(A)}\right) \subseteq \operatorname{fin}(B) \backslash \operatorname{fin}(A)$.

Proposition $7(\mathrm{CH})$. There is a model M_{*} of cardinality \mathfrak{c} in K such that:

- M_{*} is \aleph_{1}-universal, i.e., if $N \in K$ is countable then N is isomorphic to some $N_{*} \leq M_{*}$.
- M_{*} is \aleph_{1}-homogeneous, i.e., if $N_{1}, N_{2} \leq M_{*}$ are countable and $\pi: N_{1} \rightarrow N_{2}$ is an isomorphism then there exists an automorphism π_{*} of M_{*} such that $\pi \subseteq \pi_{*}$.
- If $N \leq M_{*}$ and $A \subseteq M_{*}$ are countable, then there is an automorphism π of M_{*} over N such that $\pi(A) \backslash N$ is disjoint from A.

Proof. The proof is essentially the same as the one of Proposition 5.
We define $\mathcal{V}_{\mathbf{Z}}$ as the permutation model obtained by setting the elements of the \aleph_{1}-universal and \aleph_{1}-homogeneous model M_{*} as the set of atoms and its automorphisms $\operatorname{Aut}\left(M_{*}\right)$ as the group G of permutations. In particular, each permutation in G preserves the injections f, g, h that the model (M_{*}, f, g, h) comes with.

Theorem 8. Let M_{*} be the set of atoms of $\mathcal{V}_{\mathbf{Z}}$ and let $\mathfrak{m}=\left|M_{*}\right|$. Then

$$
\mathcal{V}_{\mathbf{Z}} \models \mathfrak{m}^{2}<[\mathfrak{m}]^{2}<\operatorname{seq}^{1-1}(\mathfrak{m})<\operatorname{fin}(\mathfrak{m})
$$

Proof. The existence of the required injections is clear by the definition of the model. Thus, it remains to prove that there are no reverse injections. Here, as in Theorem 6, we will make heavily use of the concepts of closure and of plain extension: given a model (M, f, g, h) and a countable subset $A \subseteq M$, we define the closure $\operatorname{cl}(A, M)$ as the smallest superset of A that is closed under f, g, h and pre-images with respect to the same functions. Constructively, we can characterize $\mathrm{cl}(A, M)$ as a countable union as follows: Define $\mathrm{cl}_{0}=\operatorname{cl}_{0}(A, M):=A$ and, for all $i \in \omega$,

$$
\begin{aligned}
& \mathrm{cl}_{i+1}=\mathrm{cl}_{i} \cup \bigcup_{p \in\left(\mathrm{cc}_{i}\right)^{2}} f(p) \cup \bigcup_{q \in\left[\mathrm{cl}_{i}\right]^{2}} \operatorname{ran}(g(q)) \cup \bigcup_{s \in \operatorname{seq}^{1-1}\left(\mathrm{cl}_{i}\right)} h(s) \\
& \cup \underset{q \in\left[\mathrm{cl}_{1}\right]^{2} \cap \operatorname{ran}(f)}{ } \operatorname{ran}\left(f^{-1}(q)\right) \quad \cup \bigcup_{s \in \operatorname{seq}^{1-1}\left(\mathrm{cl}_{i}\right) \cap \operatorname{ran}(g)} g^{-1}(s) \quad \cup \quad \bigcup_{r \in \operatorname{fin}\left(\mathrm{cl}_{i}\right) \operatorname{Rran}(h)} \operatorname{ran}\left(h^{-1}(r)\right),
\end{aligned}
$$

in order to finally define $\operatorname{cl}(A, M):=\bigcup_{i \in \omega} \operatorname{cl}_{i}$. Furthermore, we set a standardized way to extend a partial model ($A, f^{\prime}, g^{\prime}, h^{\prime}$), where $f^{\prime}, g^{\prime}, h^{\prime}$ are only partial functions, to an element of K : Consider $\left(A, f^{\prime}, g^{\prime}, h^{\prime}\right)$, where A is a set and $f^{\prime}, g^{\prime}, h^{\prime}$ are injections with $h^{\prime}(\emptyset)=\emptyset$ and

$$
\begin{aligned}
& \operatorname{dom}\left(f^{\prime}\right) \subseteq A^{2}, \quad \operatorname{dom}\left(g^{\prime}\right) \subseteq[A]^{2}, \quad \operatorname{dom}\left(h^{\prime}\right) \subseteq \operatorname{seq}^{1-1}(A) \\
& \operatorname{ran}\left(f^{\prime}\right) \subseteq[A]^{2}, \quad \operatorname{ran}\left(g^{\prime}\right) \subseteq \operatorname{seq}^{1-1}(A), \quad \operatorname{ran}\left(h^{\prime}\right) \subseteq \operatorname{fin}(A) .
\end{aligned}
$$

Let $\left(M_{0}, f_{0}^{\prime}, g_{0}^{\prime}, h_{0}^{\prime}\right)=\left(A, f^{\prime}, g^{\prime}, h^{\prime}\right)$ and, for $j \in \omega$, define inductively $\left(M_{j+1}, f_{j+1}^{\prime}, g_{j+1}^{\prime}, h_{j+1}^{\prime}\right)$ as follows: M_{j+1} is the fully disjoint union

For what concerns the injections $f_{j+1}^{\prime}, g_{j+1}^{\prime}, h_{j+1}^{\prime}$, we naturally require the inclusions $f_{j}^{\prime} \subseteq f_{j+1}^{\prime}$, $g_{j}^{\prime} \subseteq g_{j+1}^{\prime}$, and $h_{j}^{\prime} \subseteq h_{j+1}^{\prime}$, as well as the equalities $\operatorname{dom}\left(f_{j+1}^{\prime}\right)=M_{j}^{2}$, $\operatorname{dom}\left(g_{j+1}^{\prime}\right)=\left[M_{j}\right]^{2}$, and $\operatorname{dom}\left(h_{j+1}^{\prime}\right)=\operatorname{seq}^{1-1}\left(M_{j}\right)$, respectively, where for $P \in M_{j}^{2} \backslash \operatorname{dom}\left(f_{j}^{\prime}\right), Q \in\left[M_{j}\right]^{2} \backslash \operatorname{dom}\left(g_{j}^{\prime}\right)$, and $R \in \operatorname{seq}^{1-1}\left(M_{j}\right) \backslash \operatorname{dom}\left(h_{j}^{\prime}\right)$, we define

$$
f_{j+1}^{\prime}(P):=\left\{a_{P}, b_{P}\right\}, \quad g_{j+1}^{\prime}(Q):=\left\langle a_{Q}, b_{Q}, c_{Q}\right\rangle, \quad h_{j+1}^{\prime}(R):=\left\{a_{R}, b_{R}, c_{R}\right\} .
$$

We are now in the position of defining the plain extension of $\left(A, f^{\prime}, g^{\prime}, h^{\prime}\right)$ as

$$
(M, f, g, h):=\left(\bigcup_{j \in \omega} M_{j}, \bigcup_{j \in \omega} f_{j}^{\prime}, \bigcup_{j \in \omega} g_{j}^{\prime}, \bigcup_{j \in \omega} h_{j}^{\prime}\right)
$$

and we can finally prove, in three analogous steps, that neither of the three injections of the model (M_{*}, f, g, h) admits a reverse injection.

Assume there is an injection $i:\left[M_{*}\right]^{2} \rightarrow M_{*}^{2}$ with finite support S. Let $N_{1} \in K$ be a countable model such that $N_{1} \leq M_{*}$ and $S \subseteq N_{1}$. Let $\{x, y\} \in\left[M_{*}\right]^{2}$ with $N_{1} \cap\{x, y\}=\emptyset$, let $M_{0}=$ $N_{1} \sqcup\{x, y\}$, and let N_{2} be the plain extension of M_{0}. Without loss of generality we can assume that $N_{2} \leq M_{*}$. Consider $\langle a, b\rangle=i(\{x, y\})$. Then $\{a, b\} \nsubseteq N_{1}$ and $\{a, b\} \subseteq N_{2}$, since otherwise we could apply the third property of Proposition 7 with respect to $\{a, b\}$ and N_{1} and N_{2}, respectively. Moreover, $\{a, b\} \cap\{x, y\}=\emptyset$, since otherwise, (e.g., $a=x$), we could swap x and y while fixing S pointwise, but this would not preserve the injection i, which was assumed to have support S, a contradiction. Furthermore, we have

$$
\begin{equation*}
\{x, y\} \subseteq \operatorname{cl}\left(N_{1} \cup\{a, b\}, M_{*}\right) \tag{*}
\end{equation*}
$$

since otherwise we could apply the third property of Proposition 7 with respect to $\{x, y\}$ and $\operatorname{cl}\left(N_{1} \cup\{a, b\}, M_{*}\right) \leq M_{*}$. Now, this last inclusion implies that $a \neq b$ and that $\{a, b\}=$ $f\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)$ for some $\left\langle x^{\prime}, y^{\prime}\right\rangle \in N_{2}^{2} \backslash N_{1}^{2}$. To see this, notice first that since $N_{1} \cup\{a, b\} \subseteq N_{2}$, we build the closure $\operatorname{cl}\left(N_{1} \cup\{a, b\}, M_{*}\right)$ within the plain extension N_{2}, and recall that for $\{u, v\} \in\left[N_{2}\right]^{2} \backslash\left[M_{0}\right]^{2}$ we have $g(\{u, v\})=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ where $\left\langle x_{1}, x_{2}, x_{3}\right\rangle \in \operatorname{seq}^{1-1}\left(N_{2} \backslash M_{0}\right)$, and that for $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \operatorname{seq}^{1-1}\left(N_{2}\right) \backslash \operatorname{seq}^{1-1}\left(M_{0}\right)$ we have $h\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right) \in\left[N_{2} \backslash M_{0}\right]^{3}$. If there are no x^{\prime}, y^{\prime} such that $f\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)=\{a, b\}$, then, since $\{a, b\} \subseteq N_{2}$ and $\{a, b\} \nsubseteq N_{1},\{a, b\}$ cannot be a superset of any $\operatorname{ran}(g(\{u, v\}))$ for some u, v, or of any $h\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$ for some x_{1}, \ldots, x_{n}, so we have that $\{x, y\} \nsubseteq \operatorname{cl}\left(N_{1} \cup\{a, b\}, M_{*}\right)$, which is a contradiction to $(*)$. Now, since $f\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)=\{a, b\}$, by the construction of the plain extension N_{2} we find an automorphism π of N_{2} that fixes $N_{1} \cup\{x, y\}$ pointwise and for which we have $\pi(a)=b$ and $\pi(b)=a$. Hence, $i(\pi\{x, y\})=\langle a, b\rangle \neq\langle b, a\rangle=\pi i(\{x, y\})$, which is a contradiction.
Assume there is an injection $i: \operatorname{seq}^{1-1}\left(M_{*}\right) \rightarrow\left[M_{*}\right]^{2}$ with finite support S. Let $N_{1} \in K$ be a countable model such that $N_{1} \leq M_{*}$ and $S \subseteq N_{1}$. Let $\langle x, y, z\rangle \in \operatorname{seq}^{1-1}\left(M_{*}\right)$ with $N_{1} \cap$ $\{x, y, z\}=\emptyset$, let $M_{0}=N_{1} \sqcup\{x, y, z\}$, and let N_{2} be the plain extension of M_{0}. Finally, let
$\{a, b\}=i(\langle x, y, z\rangle)$. Then, a contradiction follows by noticing-with similar arguments as above - that necessarily $\{x, y, z\} \nsubseteq \operatorname{cl}\left(N_{1} \cup\{a, b\}, M_{*}\right)$. So, similarly as above, there is an automorphism π of M_{*} which fixes $\operatorname{cl}\left(N_{1} \cup\{a, b\}, M_{*}\right)$ pointwise, but $\pi(\{x, y, z\}) \neq\{x, y, z\}$.
Finally, assume there is an injection $i:$ fin $\left(M_{*}\right) \rightarrow \operatorname{seq}^{1-1}\left(M_{*}\right)$ with finite support S. Let $N_{1} \in K$ be a countable model such that $N_{1} \leq M_{*}$ and $S \subseteq N_{1}$. Let $\{x, y, z\} \in\left[M_{*}\right]^{3}$ be such that $N_{1} \cap\{x, y, z\}=\emptyset$, let $M_{0}=N_{1} \sqcup\{x, y, z\}$, and let N_{2} be the plain extension of M_{0}. Consider $\left\langle a_{j}: j \in n\right\rangle=i(\{x, y, z\})$ for some $n \in \omega$. It is easy to see that we must have $\left\{a_{j}: j \in n\right\} \cap\left(N_{2} \backslash M_{0}\right) \neq \emptyset$, and as before it must also hold $\{x, y, z\} \subseteq \operatorname{cl}\left(N_{1} \cup\left\{a_{j}: j \in n\right\}, M_{*}\right)$. In what follows, for a natural number n, we will refer to a cyclic permutation of order n by using the term " n-cycle". Our next step is to prove that a 3 -cycle π applied to $\{x, y, z\}$ cannot leave each element of $\left\{a_{j}: j \in n\right\} \cap\left(N_{2} \backslash M_{0}\right)$ unchanged, for at least one automorphism σ of N_{2} extending π does not fix any element of $N_{2} \backslash M_{0}$, as the following argument shows: Assume there is such an automorphism σ fixing a first appearing element $c \in M_{n} \backslash M_{n-1}$ in the construction of the plain extension of M_{0}. Notice that σ moves every unordered pair, ordered pair and injective sequence with non-empty intersection with $\{x, y, z\}$. Now, by looking at the possible ways that c could have appeared in N_{2}, one sees that if c is fixed, then some pair $p \in\left[M_{n-1}\right]^{2}$ such that $c \in \operatorname{ran}(g(p))$ also satisfies $\sigma(p)=p$. Now, since c was the first appearing element being fixed, we can say that for $p=\{a, b\} \in\left[M_{k}\right]^{2}$, for which $p=\{a, b\} \notin\left[M_{k-1}\right]^{2}$ holds, it is true that a, b are the first appearing elements being swapped by σ. Similarly as before, this implies that there are two pairs $p^{\prime}, p^{\prime \prime} \in\left[M_{k-1}\right]^{2}$ such that $\sigma(p)=p^{\prime}$ and $\sigma\left(p^{\prime}\right)=p$, which in turn requires either the existence of two ordered pairs in M_{k-1}^{2} swapped by σ, either contradicting the fact that a and b were the first appearing swapped elements, or implying the existence of a four-element set $\{s, r, t, p\} \subseteq N_{2} \backslash M_{0}$ on which σ acts as a four-cycle, but we can extend π to at least one σ such that $\sigma^{3}=\mathrm{Id}_{N_{2}}$, which does not allow four-cycles, and this concludes the proof.

So, the model $\mathcal{V}_{\mathbf{Z}}$ witnesses the following
Consistency Result 2. The existence of an infinite cardinal \mathfrak{m} satisfying

is consistent with ZF .

2.3 A Model for Diagram И

We show that Diagram $\boldsymbol{И}$ holds in the model constructed in [3] (see also [5, p. 209 ff]), where \mathfrak{m} is the cardinality of the set of atoms of that model.
The atoms of the permutation model $\boldsymbol{\mathcal { V }}_{\boldsymbol{u}}$ for Diagram $\boldsymbol{И}$ are constructed as follows:
(α) Let A_{0} be an arbitrary infinite set.
(β) G_{0} is the group of all permutations of A_{0}.
(γ) $A_{n+1}:=A_{n} \cup\left\{(n+1, p, \varepsilon): p \in \bigcup_{k=0}^{n+1} A_{n}^{k} \wedge \varepsilon \in\{0,1\}\right\}$.
(δ) G_{n+1} is the subgroup of the permutation group of A_{n+1} containing all permutations σ for which there are $\pi_{\sigma} \in G_{n}$ and $\varepsilon_{\sigma, p} \in\{0,1\}$ such that

$$
\sigma(x)= \begin{cases}\pi_{\sigma}(x) & \text { if } x \in A_{n} \\ \left(n+1, \pi_{\sigma}(p), \varepsilon_{\sigma, p}+2 \varepsilon\right) & \text { if } x=(n+1, p, \varepsilon)\end{cases}
$$

where for $p=\left\langle p_{0}, \ldots, p_{l-1}\right\rangle \in \bigcup_{0 \leq k \leq n+1} A_{n}^{k}, \pi_{\sigma}(p):=\left\langle\pi_{\sigma}\left(p_{0}\right), \ldots, \pi_{\sigma}\left(p_{l-1}\right)\right\rangle$ and $+_{2}$ denotes addition modulo 2 .

Let $A:=\bigcup\left\{A_{n}: n \in \omega\right\}$ be the set of atoms and let $\operatorname{Aut}(A)$ be the group of all permutations of A. Then

$$
G:=\left\{H \in \operatorname{Aut}(A): \forall n \in \omega\left(\left.H\right|_{A_{n}} \in G_{n}\right)\right\}
$$

is a group of permutations of A. The sets in $\mathcal{V}_{\boldsymbol{n}}$ are subsets of $\mathcal{V}_{\boldsymbol{n}}$ with finite support.
Proposition 9. Let A be the set of atoms of $\mathcal{V}_{\mathfrak{n}}$ and let $\mathfrak{m}:=|A|$. Then

$$
\mathcal{V}_{\mathfrak{n}} \models \mathfrak{m}^{2}<\operatorname{seq}^{1-1}(\mathfrak{m})<[\mathfrak{m}]^{2}<\operatorname{fin}(\mathfrak{m}) .
$$

Proof. In [3] it is shown that $\mathcal{V}_{\boldsymbol{n}}=\operatorname{seq}(\mathfrak{m})<[\mathfrak{m}]^{2}$, which implies that $\mathcal{V}_{\boldsymbol{n}}=\operatorname{seq}^{1-1}(\mathfrak{m})<[\mathfrak{m}]^{2}$. Thus, since $\mathfrak{m}^{2} \leq \operatorname{seq}^{1-1}(\mathfrak{m})$ and $[\mathfrak{m}]^{2} \leq \operatorname{fin}(\mathfrak{m})$, it remains to show that in $\mathcal{V}_{\mathfrak{n}}$ we have $\mathfrak{m}^{2} \neq$ $\operatorname{seq}^{1-1}(\mathfrak{m})$ and $[\mathfrak{m}]^{2} \neq \operatorname{fin}(\mathfrak{m})$.
$\mathfrak{m}^{2} \neq \operatorname{seq}^{1-1}(\mathfrak{m})$: We show that there is no injection $g_{1}: \operatorname{seq}^{1-1}(A) \rightarrow A^{2}$. Assume towards a contradiction that there is such an injection with finite support E_{1}.
By extending E_{1} if necessary, we may assume that if $\left(n+1,\left\langle a_{0}, \ldots, a_{l-1}\right\rangle, \varepsilon\right) \in E_{1}$, then also a_{0}, \ldots, a_{l-1} belong to E_{1} as well as the atom $\left(n+1,\left\langle a_{0}, \ldots, a_{l-1}\right\rangle, 1-\varepsilon\right)$. We say that a finite subset of A satisfying this condition is closed.
For a large enough number $k \in \omega$ choose a k-element set $X \subseteq A_{0} \backslash E_{1}$ such that $\left|\operatorname{seq}^{1-1}(X)\right|>$ $\left|\left(E_{1} \cup X\right)^{2}\right|$. Notice that $\left|\operatorname{seq}^{1-1}(X)\right| \geq k!$ and that $\left|\left(E_{1} \cup X\right)^{2}\right|=\left(\left|E_{1}\right|+k\right)^{2}$. Thus, we find a sequence $s \in \operatorname{seq}^{1-1}(X)$ such that $g_{1}(s) \notin\left(E_{1} \cup X\right)^{2}$. So, there exists a $\pi \in \operatorname{Fix}_{G}\left(E_{1} \cup X\right)$ such that $\pi g_{1}(s) \neq g_{1}(s)$ but $\pi s=s$, which contradicts the fact that E_{1} is a support of g_{1}.
$[\mathfrak{m}]^{2} \neq \operatorname{fin}(\mathfrak{m})$: We show that there is no injection $g_{2}: \operatorname{fin}(A) \rightarrow[A]^{2}$. Assume towards a contradiction that there is such an injection with closed finite support E_{2}. For a large enough number $k \in \omega$ we choose again a k-element set $X \subseteq A_{0} \backslash E_{2}$ such that $|\operatorname{fin}(X)|>\left|\left[E_{2} \cup X\right]^{2}\right|$ and such that we can find a subset $S \subseteq X$ with $P:=g_{2}(S) \backslash\left(E_{2} \cup X\right) \neq \emptyset$ and $|S| \geq 2$. If $|P|=1$ it is clear that we can find a permutation $\pi \in G$ which fixes E_{2} pointwise and for which $\pi(S)=S$ and $\pi\left(g_{2}(S)\right) \neq g_{2}(S)$. Likewise, we find a contradiction also if $|P|=2$ and P is not in the form $\{(l, p, 0),(l, p, 1)\}$ for some $l \in \omega \backslash\{0\}$ and $p \in \bigcup_{j=0}^{l} A_{l-1}^{j}$, so let us assume that P is indeed in that form. Consider the extension P^{\prime} of P to the smallest closed superset $P \subseteq P^{\prime}$. If we can find $x \in S \backslash P^{\prime}$ then G contains a permutation π with $\pi(x) \notin S$ and $\pi(P)=P$, which is a contradiction, so $S \backslash P^{\prime}$ must be empty. We notice that if $a \in A$ is an atom, Y is
the smallest closed set of atoms containing a and $b \in A_{0} \cap Y$, then for all permutations $\pi \in G$ we have that $\pi(b) \neq b$ implies $\pi(a) \notin Y$. We can now conclude since every element of S is in the closure of P and we can find a permutation $\pi \in G$ which fixes pointwise E_{2} with $\pi(S)=S$ but for which S is not fixed pointwise.

So, the permutation model $\mathcal{V}_{\boldsymbol{u}}$ witnesses the following
Consistency Result 3. The existence of an infinite cardinal \mathfrak{m} satisfying

is consistent with ZF .

2.4 A Model for Diagram J

We show that Diagram $\boldsymbol{\mathcal { O }}$ holds in a permutation model $\mathcal{V}_{\boldsymbol{\jmath}}$ which is similar to the Second Fraenkel Model, where \mathfrak{m} is the cardinality of the set of atoms of $\mathcal{V}_{\boldsymbol{\jmath}}$.

The permutation model $\mathcal{V}_{\boldsymbol{\jmath}}$ is constructed as follows (see also [5, p. 197]): The set of atoms of the model $\mathcal{V}_{\boldsymbol{\jmath}}$ consists of countably many mutually disjoint, cyclically ordered 3 -element sets. More formally,

$$
A=\bigcup_{n \in \omega} P_{n}, \quad \text { where } P_{n}=\left\{a_{n}, b_{n}, c_{n}\right\} \quad(\text { for } n \in \omega),
$$

and the cyclic ordering on P_{n} is illustrated by the following figure:

On each triple P_{n}, we define the cyclic distance between two elements by stipulating

$$
\operatorname{cyc}\left(a_{n}, b_{n}\right)=\operatorname{cyc}\left(b_{n}, c_{n}\right)=\operatorname{cyc}\left(c_{n}, a_{n}\right)=1
$$

and

$$
\operatorname{cyc}\left(a_{n}, c_{n}\right)=\operatorname{cyc}\left(b_{n}, a_{n}\right)=\operatorname{cyc}\left(c_{n}, b_{n}\right)=2 .
$$

Let G be the group of those permutations of A which preserve the triples P_{n} (i.e., $\pi P_{n}=P_{n}$ for $\pi \in G$ and $n \in \omega)$ and their cyclic ordering. The sets in $\mathcal{V}_{\boldsymbol{J}}$ are subsets of $\mathcal{V}_{\boldsymbol{J}}$ with finite support.

Proposition 10. Let A be the set of atoms of \mathcal{V}_{\supset} and let $\mathfrak{m}:=|A|$. Then

$$
\mathcal{V}_{\boldsymbol{J}} \mid=[\mathfrak{m}]^{2}<\mathfrak{m}^{2}<\operatorname{seq}^{1-1}(\mathfrak{m})<\operatorname{fin}(\mathfrak{m}) .
$$

Proof. We first show that $[\mathfrak{m}]^{2} \leq \mathfrak{m}^{2}$, and $\operatorname{seq}^{1-1}(\mathfrak{m}) \leq \operatorname{fin}(\mathfrak{m})$, and then we show that $[\mathfrak{m}]^{2} \neq \mathfrak{m}^{2}$, $\mathfrak{m}^{2} \neq \operatorname{seq}^{1-1}(\mathfrak{m})$, and $\operatorname{seq}^{1-1}(\mathfrak{m}) \neq \operatorname{fin}(\mathfrak{m})$.
$[\mathfrak{m}]^{2} \leq \mathfrak{m}^{2}$: We define an injective function $f_{1}:[A]^{2} \rightarrow A^{2}$. Let $\{x, y\} \in[A]^{2}$ and $m, n \in \omega$ be such that $x \in P_{m}$ and $y \in P_{n}$. Without loss of generality we may assume that $m \leq n$. If $m<n$, then $f_{1}(\{x, y\}):=\langle x, y\rangle$, and if $m=n$, then $f_{1}(\{x, y\}):=\langle z, z\rangle$ where $z:=P_{m} \backslash\{x, y\}$. It is easy to see that f_{1} is an injective function, and since f_{1} has empty support, f_{1} belongs to \mathcal{V}_{3}.
$\operatorname{seq}^{1-1}(\mathfrak{m}) \leq \operatorname{fin}(\mathfrak{m})$: We define an injective function $f_{3}: \operatorname{seq}^{1-1}(A) \rightarrow \operatorname{fin}(A)$. First, let $f_{3}(\langle \rangle):=$ \emptyset. Now, let $s=\left\langle x_{0}, \ldots, x_{k-1}\right\rangle \in \operatorname{seq}^{1-1}(A)$ be a non-empty sequence without repetition of length k. Let $j: k \rightarrow \omega$ be such that for each $i \in k, x_{i} \in P_{j(i)}$. Let $E_{0}:=\emptyset$, and by induction, for $i \in k$ define

$$
E_{i+1}:= \begin{cases}E_{i} \cup\left\{x_{i}\right\} & \text { if } P_{j(i)} \cap E_{i}=\emptyset \\ E_{i} & \text { otherwise }\end{cases}
$$

and

$$
\varepsilon_{i}:= \begin{cases}2 & \text { if } P_{j(i)} \cap E_{i}=\{u\} \text { and } \operatorname{cyc}\left(u, x_{i}\right)=2 \\ 1 & \text { otherwise } .\end{cases}
$$

Furthermore, let $\sigma(0):=j(0)$, and by induction, for $i \in k-1$ define $\sigma(i+1):=\sigma(i)+j(i+1)+1$. Finally, let $\left\{p_{i}: i \in \omega\right\}$ be an enumeration of the prime numbers and let

$$
q_{s}:=\prod_{i \in k} p_{\sigma(i)}^{\varepsilon_{i}}
$$

Now, we define $f_{3}(s):=E_{k} \cup P_{q_{s}}$. It is easy to see that f_{3} is an injective function from $\operatorname{seq}^{1-1}(A)$ into $\operatorname{fin}(A)$, and since f_{3} has empty support, f_{3} belongs to $\mathcal{V}_{\mathcal{O}}$.
$[\mathfrak{m}]^{2} \neq \mathfrak{m}^{2}$: It is enough to show that there is no injection from A^{2} into $[A]^{2}$. Assume towards a contradiction that there exists an injection $g_{1}: A^{2} \rightarrow[A]^{2}$ with finite support E_{1}.
Let $E_{1} \subseteq E$ for some non-empty set $E \in \operatorname{fin}(A)$ such that $P_{n} \subseteq E$ whenever $E \cap P_{n} \neq \emptyset$. Then E is also a support of g_{1}. Now $\left|[E]^{2}\right|<\left|E^{2}\right|$, which implies that there exists a pair $\langle x, y\rangle \in E^{2}$ such that $g_{1}(\langle x, y\rangle) \notin[E]^{2}$. So, there exists a $\pi \in \operatorname{Fix}_{G}(E)$ such that $\pi g_{1}(\langle x, y\rangle) \neq g_{1}(\langle x, y\rangle)$, but $\pi\langle x, y\rangle=\langle x, y\rangle$, which contradicts the fact that E is a support of g_{1}.
$\mathfrak{m}^{2} \neq \operatorname{seq}^{1-1}(\mathfrak{m})$: It is enough to show that there is no injection from $\operatorname{seq}^{1-1}(A)$ into A^{2}. Assume towards a contradiction that there exists an injection $g_{2}: \operatorname{seq}^{1-1}(A) \rightarrow A^{2}$ with finite support E_{2}. Let $E_{2} \subseteq E$ for some non-empty set $E \in \operatorname{fin}(A)$ such that $P_{n} \subseteq E$ whenever $E \cap P_{n} \neq \emptyset$. Then E is also a support of g_{2}. Now $\left|E^{2}\right|<\left|\operatorname{seq}^{1-1}(E)\right|$, and by similar arguments as above, we obtain a contradiction.
$\operatorname{seq}^{1-1}(\mathfrak{m}) \neq \operatorname{fin}(\mathfrak{m})$: It is enough to show that there is no injection from fin (A) into $\operatorname{seq}^{1-1}(A)$. Assume towards a contradiction that there is an injection $g_{3}: \operatorname{fin}(A) \rightarrow \operatorname{seq}^{1-1}(A)$ with finite support E_{3}, where we can assume that for all $n \in \omega, P_{n} \subseteq E_{3}$ whenever $E_{3} \cap P_{n} \neq \emptyset$.

Since E_{3} is finite, there exists an $n \in \omega$ such that $g_{3}\left(P_{n}\right) \notin \operatorname{seq}^{1-1}\left(E_{3}\right)$. Let $a \in A$ be the first element of the sequence $g_{3}\left(P_{n}\right)$ which does not belong to E_{3}. Then we find a $\pi \in \operatorname{Fix}_{G}\left(E_{3}\right)$ such that $\pi a \neq a$ (which implies $\left.\pi g_{3}\left(P_{n}\right) \neq g_{3}\left(P_{n}\right)\right)$ but $\pi P_{n}=P_{n}$, which contradicts the fact that E_{3} is a support of g_{3}.

So, the model $\mathcal{V}_{\boldsymbol{J}}$ witnesses the following
Consistency Result 4. The existence of an infinite cardinal \mathfrak{m} satisfying

is consistent with ZF .

2.5 A Model for Diagram Σ

As mention above, Diagram $\boldsymbol{\Sigma}$ holds in the Ordered Mostowski Model, where \mathfrak{m} is the cardinality of the set of atoms (see, for example, [5, Related Result 48, p. 217]). This leads to the following

Consistency Result 5. The existence of an infinite cardinal \mathfrak{m} satisfying

is consistent with ZF .

3 On Diagram C

Similar as in the proof of Lemma 1, in every model for Diagram C, we have that the cardinality \mathfrak{m} is transfinite.

Lemma 11. If $\mathfrak{m}^{2} \leq[\mathfrak{m}]^{2}$ and $\operatorname{fin}(\mathfrak{m}) \leq \operatorname{seq}^{1-1}(\mathfrak{m})$ for some $\mathfrak{m} \geq \mathfrak{1}$, then $\aleph_{0} \leq \mathfrak{m}$.
Proof. Assume that $\mathfrak{m}^{2} \leq[\mathfrak{m}]^{2}$ and $\operatorname{fin}(\mathfrak{m}) \leq \operatorname{seq}^{1-1}(\mathfrak{m})$ for some cardinal $\mathfrak{m} \geq 1$ and let A be a necessarily infinite set with $|A|=\mathfrak{m}$. Let $f: A^{2} \rightarrow[A]^{2}$ and $g: \operatorname{fin}(A) \rightarrow \operatorname{seq}^{1-1}(A)$ be injections. The goal is to construct with the functions f and g an injection $h: \omega \rightarrow A$. We first construct a countably infinite set of pairwise disjoint non-empty finite subsets of A. For this, we first choose an element $a_{0} \in A$, let $E_{0}:=\left\{a_{0}\right\}$, and let $\mathscr{E}_{0}:=\left\{E_{0}\right\}$.

Assume that for some $n \in \omega$ we have already constructed an $(n+1)$-element set $\mathscr{E}_{n}:=\left\{E_{i}\right.$: $i \leq n\}$ of pairwise disjoint non-empty finite subsets of A. Let

$$
E_{n+1}:=\bigcup_{i, j \leq n}\left\{x: \exists a \in E_{i} \exists b \in E_{j} \exists y(f(\langle a, b\rangle)=\{x, y\})\right\} \backslash \bigcup_{i \leq n} E_{i},
$$

and let $\mathscr{E}_{n+1}:=\mathscr{E}_{n} \cup\left\{E_{n+1}\right\}$. Notice that for $k:=\left|\bigcup_{i \leq n} E_{i}\right|$, we have

$$
\left|\left(\bigcup_{i \leq n} E_{i}\right)^{2}\right|=k^{2}>\binom{k}{2}=\left|\left[\bigcup_{i \leq n} E_{i}\right]^{2}\right|
$$

which implies that $E_{n+1} \neq \emptyset$. Proceeding this way, $\left\{E_{n}: n \in \omega\right\}$ is a countably infinite set of pairwise disjoint non-empty finite subsets of A.
Now, we apply the function g. For every $n \in \omega$, let $S_{n}:=g\left(E_{n}\right)$. Furthermore, let $\mathscr{S}_{0}:=S_{0}$, and in general, for $n \in \omega$ let $\mathscr{S}_{n+1}:=\mathscr{S}_{n} \frown S_{n+1}$. In this way, we obtain an infinite sequence \mathscr{S}_{∞} of elements of A. Since g is injective and the non-empty finite sets E_{n} are pairwise disjoint, the sequence \mathscr{S}_{∞} must contain infinitely many pairwise distinct elements of A. Now, let h be the enumeration of these pairwise distinct elements in the order they appear in \mathscr{S}_{∞}. Then $h: \omega \rightarrow A$ is an injection.

As a consequence of Proposition 2 and Lemma 11 we get
Corollary 12. If $\mathfrak{m}^{2} \leq[\mathfrak{m}]^{2}$ and $\operatorname{fin}(\mathfrak{m}) \leq \operatorname{seq}^{1-1}(\mathfrak{m})$ for some $\mathfrak{m}=|A| \geq 1$, then there exists a finite-to-one function $g: \operatorname{seq}(A) \rightarrow \operatorname{fin}(A)$.

Acknowledgement: We would like to thank the referee for her or his careful reading and the numerous comments and corrections that helped to improve the quality of this article.

References

[1] Lorenz Halbeisen and Saharon Shelah, Consequences of arithmetic for set theory [Sh:488], The Journal of Symbolic Logic, 59 (1994), 30-40.
[2] Lorenz Halbeisen and Saharon Shelah, Relations between some cardinals in the absence of the axiom of choice [Sh:699], The Bulletin of Symbolic Logic, 7 (2001), 237-261.
[3] Lorenz Halbeisen, A weird relation between two cardinals, Archive for Mathematical Logic, 57 (2018), 593-599.
[4] Lorenz Halbeisen, Combinatorial Set Theory: with a gentle introduction to forcing, (1st.ed.), [Springer Monographs in Mathematics], Springer-Verlag, London (2012).
[5] Lorenz Halbeisen, Combinatorial Set Theory: with a gentle introduction to forcing, (2nd.ed.), [Springer Monographs in Mathematics], Springer-Verlag, London (2017).
[6] Thomas Jech, The Axiom of Choice, [Studies in Logic and the Foundations of Mathematics 75], North-Holland, Amsterdam (1973).
[7] Guozhen Shen, Factorials of infinite cardinals in ZF. Part I: ZF results, The Journal of Symbolic Logic, 85 (2020), 224-243.
[8] Guozhen Shen, Factorials of infinite cardinals in ZF. Part II: Consistency results, The Journal of Symbolic Logic, 85 (2020), 244-270.

[^0]: ${ }^{1}$ Research partially supported by ISF 1838/19: The Israel Science Foundation (ISF) (2019-2023), and Rutgers 2018 DMS 1833363: NSF DMS Rutgers visitor program (PI S. Thomas) (2018-2021)

 Paper 1220 on Shelah's publication list.

