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Abstract. For a set M , fin(M) denotes the set of all finite subsets of M , M2

denotes the Cartesian productM×M , [M ]2 denotes the set of all 2-element subsets

of M , and seq1-1(M) denotes the set of all finite sequences without repetition which

can be formed with elements of M . Furthermore, for a set S, let |S| denote the

cardinality of S. Under the assumption that the four cardinalities |[M ]2|, |M2|,
| fin(M)|, | seq1-1(M)| are pairwise distinct and pairwise comparable in ZF, there

are six possible linear orderings between these four cardinalities. We show that at

least five of the six possible linear orderings are consistent with ZF.
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1 Introduction

Let M be a set. Then fin(M) denotes the set of all finite subsets of M , M2 denotes the
Cartesian product M×M , [M ]2 denotes the set of all 2-element subsets of M , seq1-1(M)
denotes the set of all finite sequences without repetitions which can be formed with
elements of M , and seq(M) denotes the set of all finite sequences which can be formed
with elements of M (where repetitions are allowed).

Furthermore, for a set A, let |A| denote the cardinality of A. We write |A| = |B|, if
there exists a bijection between A and B, and we write |A| ≤ |B|, if there exists a
bijection between A and a subset B′ ⊆ B (i.e., |A| ≤ |B| if and only if there exists an
injection from A into B). Finally, we write |A| < |B| if |A| ≤ |B| and |A| 6= |B|. By the
Cantor-Bernstein Theorem, which is provable in ZF only (i.e., without using the
Axiom of Choice), we get that |A| ≤ |B| and |A| ≥ |B| implies |A| = |B|.
Let m := |M |, and let [m]2 := |[M ]2|, m2 := |M2|, fin(m) := | fin(M)|, seq1-1(m) :=
| seq1-1(M)|, and seq(m) := | seq(M)|. Concerning these cardinalities, in ZF we obviously
have seq1-1(m) ≤ seq(m), [m]2 ≤ fin(m) and m2 ≤ seq1-1(m), where the latter relations
are visualized by the following diagram (in the diagram, n1 is below n2 if n1 ≤ n2):

fin(m) seq1-1(m)

[m]2 m2
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Moreover, for finite cardinals m with m ≥ 5 we have

[m]2 < m2 < fin(m) < seq1-1(m) ,

and in the presence of the Axiom of Choice (i.e., in ZFC), for every infinite cardinal m we have

[m]2 = m2 = fin(m) = seq1-1(m) .

It is natural to ask whether some of these equalities can be proved also in ZF, i.e., without the
aid of AC. Surprisingly, this is not the case. In [1], a permutation model was constructed in
which for an infinite cardinal m we have seq(m) < fin(m) (see [1, Thm. 2] or [4, Prp. 7.17]). As a
consequence we obtain that the existence of an infinite cardinal m such that seq1-1(m) < fin(m)
is consistent with ZF. This consistency result was modified to the existence of an infinite
cardinal m for which m2 < [m]2 (see [4, Prp. 7.18]), and later, it was strengthened to the
existence of an infinite cardinal m for which seq(m) < [m]2 (see [3] or [5, Prp. 8.28]). The
consistency of fin(m) < seq1-1(m) for infinite cardinals m can be obtained with the Ordered
Mostowski Model (see, for example, [5, Related Result 48, p. 217]), in which there is an infinite
cardinal m with

[m]2 < m2 < fin(m) < seq1-1(m) .

Consistency results as well as ZF-results concerning the relations between these cardinals with
other cardinals can be found, for example, in [7, 8] or [2].

Concerning the four cardinalities [m]2, m2, fin(m), and seq1-1(m), a question which arises nat-
urally is whether for some infinite cardinal m, fin(m) < m2 is consistent with ZF (see [5,
Related Result 20, p. 133]). Moreover, assuming that m is infinite and the four cardinalities
[m]2, m2, fin(m), seq1-1(m) are pairwise distinct and pairwise comparable in ZF, one may ask
which linear orderings on these four cardinalities are consistent with ZF.

Since for all cardinals m, we cannot have [m]2 > fin(m) or m2 > seq1-1(m), there are only the
following six linear orderings on these four cardinalities which might be consistent with ZF
(where for two cardinals n1 and n2, n1 −→ n2 means n1 < n2).

fin(m)
OO

$$

seq1-1(m)
OO

[m]2 m2

Diagram N

fin(m)
OO

// seq1-1(m)

[m]2 m2oo

Diagram C

fin(m) oo seq1-1(m)

[m]2

::

m2oo

Diagram Z

fin(m)
OO

seq1-1(m)
OO

zz
[m]2 m2

Diagram N

fin(m) oo seq1-1(m)
OO

[m]2 m2//

Diagram C

fin(m) // seq1-1(m)

[m]2 m2//

dd

Diagram Z

Below we show that each of the five diagrams N, Z, N, C, Zis consistent with ZF.
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2 Permutation Models

In order to show, for example, that for some infinite cardinals m and n, m < n is consistent
with ZF, by the Jech-Sochor Embedding Theorem (see, for example, [6, Thm. 6.1] or [5,
Thm. 17.2]), it is enough to construct a permutation model in which this statement holds.
The underlying idea of permutation models, which will be models of set theory with atoms
(ZFA), is the fact that a model V |= ZFA does not distinguish between the atoms, where atoms
are objects which do not have any elements but which are distinct from the empty set. The
theory ZFA is essentially the same as that of ZF (except for the definition of ordinals, where
we have to require that an ordinal does not have atoms among its elements). Let A be a set.
Then by transfinite recursion on the ordinals α ∈ Ω we can define the α-power Pα(A) of A
and P∞(A) =

⋃
α∈Ω Pα(A). Like for the cumulative hierarchy of sets in ZF, one can show

that if M is a model of ZFA and A is the set of atoms of M, then M = P∞(A). The class
M0 := P∞(∅) is a model of ZF and is called the kernel. Notice that all ordinals belong to
the kernel. By construction we obtain that every permutation of the set of atoms induces an
automorphism of M, where the sets in the kernel are fixed.

Permutation models were first introduced by Adolf Fraenkel and, in a precise version (with
supports), by Andrzej Mostowski. The version with filters, which we will follow below, is due
to Ernst Specker (a detailed introduction to permutation models can be found, for example,
in [5, Ch. 8] or [6]).

In order to construct a permutation model, we usually start with a set of atoms A and then
define a group G of permutations or automorphisms of A.

The permutation models we construct below are of the following simple type: For each finite
set E ∈ fin(A), let

FixG(E) :=
{
π ∈ G : ∀a ∈ E (πa = a)

}
,

and let F be the filter of subgroups of G generated by the subgroups {FixG(E) : E ∈ fin(A)}.
In other words, F is the set of all subgroups H ≤ G, such that there exists a finite set
E ∈ fin(A), such that FixG(E) ≤ H.

For a set x, let
symG(x) := {π ∈ G : πx = x}

where

πx =


∅ if x = ∅,

πa if x = a for some a ∈ A,{
πy : y ∈ x

}
otherwise.

Then, a set x is symmetric if and only if there exists a set of atoms Ex ∈ fin(A), such that

FixG(Ex) ≤ symG(x).

We say that Ex is a support of x. Finally, let V be the class of all hereditarily symmetric
objects; then V is a transitive model of ZFA. We call V a permutation model. So, a set x
belongs to the permutation model V (with respect to G and F ), if and only if x ⊆ V and x
has a finite support Ex ∈ fin(A). Because every a ∈ A is symmetric, we get that each atom
a ∈ A belongs to V .
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2.1 A Model for Diagram N

We first show that in every model for Diagram N, we have that the cardinality m is transfinite.

Lemma 1. If fin(m) ≤ m2 for some m ≥ 5, then ℵ0 ≤ m.

Proof. Let A be a set of cardinality m ≥ 5 and assume that h : fin(A) → A2 is an injection.
First we choose a 5-sequence S5 := 〈a1, . . . , a5〉 of pairwise distinct elements of A. The ordering
of S5 induces an ordering on P5 := fin({a1, . . . , a5}), and since |h[P5]| = 25 and 25 > 52, there
exists a first set u ∈ P5 such that for 〈x, y〉 = h(u), the set D6 := {x, y} \ {a1, . . . , a5} is
non-empty. If x ∈ D6, let a6 := x, otherwise, let a6 := y. Now, let S6 := 〈a1, . . . , a6〉 and
P6 := fin({a1, . . . , a6}). As above, we find a u ∈ P6 such that for 〈x, y〉 = h(u), the set
D7 := {x, y} \ {a1, . . . , a6} is non-empty. If x ∈ D7, let a7 := x, otherwise, let a7 := y.
Proceeding this way, we finally have an injection from ω into A, which shows that ℵ0 ≤ m. a

Proposition 2. If ℵ0 ≤ m for some cardinal m = |A|, then there exists a finite-to-one
function g : seq(A)→ fin(A).

Proof. By the assumption, there exists an injection h : ω → A, and for each i ∈ ω, let
xi := h(i), let B = {xi : i ∈ ω}, and let C := {x2i : i ∈ ω}. Notice that

ι(a) =

{
a if a ∈ A \B,

x2i+1 if a = xi,

is a bijection between A and A \ C. Thus, it is enough to construct a finite-to-one function
g : seq(A \ C)→ fin(A). Let s = 〈a0, . . . , an−1〉 ∈ seq(A \ C) and let ran(s) := {a0, . . . , an−1}.
The sequence s gives us in a natural way an enumeration of ran(s), and with respect to this
enumeration we can encode the sequence s by a natural number is ∈ ω. Now, let g(s) :=
ran(s) ∪ {x2is}. Then, since there are just finitely many enumerations of ran(s), g is a finite-
to-one function. a

The following result is just a consequence of Proposition 2 and Lemma 1.

Corollary 3. If fin(m) ≤ m2 for some m = |A| ≥ 5, then there exists a finite-to-one function
g : seq(A)→ fin(A).

We now introduce the technique we intend to use in order to build a permutation model from
which it will follow that for some infinite cardinal m, the relation fin(m) < m2 is consistent
with ZF. Notice that this relation is the main feature of Diagram N and that this relation
implies that ℵ0 ≤ m. In the next section, we shall use a similar permutation model in order to
show the consistency of Diagram Z with ZF.

Let K be the class of all the pairs (A, h) such that A is a (possibly empty) set and h is an
injection h : fin(A) \ {∅} → A2. We will also refer to the elements of K as models. We define
a partial ordering ≤ on K by stipulating

(A, h) ≤ (B, f) ⇐⇒ A ⊆ B ∧ h ⊆ f ∧ ran
(
f |fin(B)\fin(A)

)
⊆ B2 \A2 .
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When the functions involved are clear from the context, with a slight abuse of notation we
will just write A ≤ B instead of (A, h) ≤ (B, f) and A ∈ K instead of (A, h) ∈ K.

Before proceeding, we give two preliminary definitions. Given a model (M,f) and a countable
subset A ⊆ M , we define the closure cl(A,M) as the smallest superset of A that is closed
under f and pre-images with respect to the same function. Constructively, we can characterize
cl(A,M) as a countable union as follows: Define cl0 = cl0(A,M) := A and, for all i ∈ ω,

cli+1 = cli ∪
⋃

p ∈ fin(cli)
p 6= ∅

ran(f(p)) ∪
⋃

q∈(cli)2∩ran(f)

f−1(q)

in order to finally define cl(A,M) :=
⋃
i∈ω cli. Furthermore, we set a standardized way to

extend a partial model (A, f ′), where f ′ is only a partial function, to an element of K: Consider
(A, f ′), where A is a set and f ′ is an injection with dom(f ′) ⊆ fin(A) \ {∅} and ran(f ′) ⊆ A2.
Let (M0, f

′
0) = (A, f ′) and, for j ∈ ω, define inductively (Mj+1, f

′
j+1) as follows: Mj+1 is the

fully disjoint union

Mj t
⊔

P ∈ fin(Mj)\dom(f ′j)

P 6= ∅

{aP , bP }.

For what concerns the injection f ′j+1, we naturally require the inclusion f ′j ⊆ f ′j+1, as well as
the equality dom(f ′j+1) = fin(Mj)\{∅}, where for P ∈ fin(Mj)\dom(f ′j) with P 6= ∅, we define
f ′j+1(P ) := (aP , bP ). We are now in the position of defining the plain extension of (A, f ′) as

(M,f) :=

⋃
j∈ω

Mj ,
⋃
j∈ω

f ′j

 .

Given the previous definitions, we remark that given a model M ∈ K and a countable subset
A ⊆M , we have that cl(A,M) ≤M , which proves the following:

Fact 4. For every countable subset A of a model M ∈ K, there is a countable model N such
that A ⊆ N ≤M .

Proposition 5 (CH). There is a model M∗ of cardinality c in K such that:

• M∗ is ℵ1-universal, i.e., if N ∈ K is countable then N is isomorphic to some N∗ ≤M∗.

• M∗ is ℵ1-homogeneous, i.e., if N1, N2 ≤ M∗ are countable and π : N1 → N2 is an
isomorphism then there exists an automorphism π∗ of M∗ such that π ⊆ π∗.

• If N ≤ M∗ and A ⊆ M∗ are countable, then there is an automorphism π of M∗ that
fixes N pointwise, such that π(A) \N is disjoint from A.

Proof. We construct the model M∗ by induction on ω1, where we assume that ω1 = c. Let
M0 = ∅. When Mα is already defined for some α ∈ ω1, we can define

Cα :=
{
N ≤Mα : N ∈ K and N is countable

}
.
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The construction of Mα+1, starting from Mα, consists of a disjoint union of two differently
built sets of models. First, for each element N ∈ Cα, let SN be a system of representatives for
the strong isomorphism classes of all the models M ∈ K such that N ≤M with M countable.
Here, by strong we mean that, for two models M1 and M2 with N ≤M1,M2, it is not enough
to be isomorphic in order to belong to the same class, but we require that there exists an
isomorphism between M1 and M2 that fixes N pointwise, which we can express by saying that
M1 is isomorphic to M2 over N . We first extend Mα by the set

M ′α =
⊔

N∈Cα

⊔
M∈SN

M \N,

where “
⊔

” indicates that we have a disjoint union, and now we define Mα+1 as the plain
extension of Mα tM ′α. Finally, for non-empty limit ordinals δ define Mδ = ∪α∈δMα, and let

M∗ =
⋃
α∈ω1

Mα.

It remains to show that the model M∗ has the required properties: First we notice that M∗
has cardinality |M∗| = c, as required, and since, by construction, M1 is ℵ1-universal, M∗ is
also ℵ1-universal. In order to show that M∗ is ℵ1-homogeneous, we make use of a back-and-
forth argument. Let N1, N2 ≤M∗ be countable models and π : N1 → N2 an isomorphism. Let
{xα : α ∈ ω1} be an enumeration of the elements of M∗ and let I0 := N1. If xδ1 is the first
element (with respect to this enumeration) in M∗\I0, then, by Fact 4, there exists a countable
model I ′1 ≤ M∗ such that I0 ≤ I ′1 and xδ1 ∈ I ′1. Similarly, there is a countable model J ′1 with
N2 ≤ J ′1 ≤ M∗ such that there exists an isomorphism π′1 : I ′1 → J ′1 with π ⊆ π′1. Now, let xγ1
be the first element in M∗ \ J ′1: for the same reason as above we can find countable models
J1, I1 such that I ′1 ≤ I1 ≤ M∗ and J ′1 ≤ J1 ≤ M∗, together with xγ1 ∈ J1 and the fact that
there exists an isomorphism π1 : I1 → J1 with π′1 ⊆ π1. Proceed inductively with xδα+1 being
the first element in M∗ \ Iα and find countable models Iα ≤ I ′α+1 ≤ M∗, Jα ≤ J ′α+1 ≤ M∗
and an isomorphism π′α+1 : I ′α+1 → J ′α+1 with xδα+1 ∈ I ′α+1 and πα ⊆ π′α+1. As in the second
part of the base step, let xγα+1 be the first element in M∗ \ J ′α+1 and find countable models
I ′α+1 ≤ Iα+1 ≤ M∗, J

′
α+1 ≤ Jα+1 ≤ M∗, with an isomorphism πα+1 : Iα+1 → Jα+1 such that

xγα+1 ∈ Jα+1 and π′α+1 ⊆ πα+1. We naturally take the union at limit stages and finally obtain
π∗ = ∪α∈ω1πα, which is the required automorphism of M∗.

To show the last property of the theorem, let N ≤M∗ and A ⊆M∗ be both countable. Since
the cofinality of ω1 is greater than ω, we can find by construction both a countable model
M satisfying the properties A ⊆ M , N ≤ M ≤ M∗ and a further countable model M ′ with
N ≤ M ′ ≤ M∗ such that M ′ ∩ (A \ N) = ∅, and such that there exists an isomorphism
i : M → M ′ with i fixing N pointwise. Now, by M∗ being ℵ1-homogeneous we obtain an
automorphism i∗ extending i, as required. a

As anticipated, the construction of the previous theorem does not exploit any particular prop-
erty of the functions h : fin(A)\{∅} → A2. In fact, the construction is an analogue of a Fräıssé
limit as it relies on similar properties, like, for example, a modified version of the Disjoint
Amalgamation Property (DAP) of K, where we require that embeddings between structures
f : (A, h) → (B, g) are allowed only when, according to our previous definition, A ≤ B. In-
deed, exactly the same construction can be carried out in the alternative framework of models
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(A, f, g, h), where A is a set and we have three injections f : A2 → [A]2, g : [A]2 → seq1-1(A)
and h : seq1-1(A) → fin(A), which will be used below to show the consistency of Diagram Z
with ZF.

Given Proposition 5, we consider the permutation model VN that arises naturally by consid-
ering the elements of the ℵ1-universal and ℵ1-homogeneous model M∗ as the set of atoms and
its automorphisms Aut(M∗) as the group G of permutations. In particular, each permutation
in G preserves the injection h : fin(M∗) \ {∅} →M2

∗ that the model (M∗, h) comes with.

We are now ready to prove the following result.

Theorem 6. Let M∗ be the set of atoms of VN and let m = |M∗|. Then

VN |= [m]2 < fin(m) < m2 < seq1-1(m) .

Proof. The existence of an injection i : fin(M∗)→M2
∗ in VN follows from the existence of the

injection h : fin(M∗) \ {∅} → M2
∗ given by the specific permutation model, together with the

fact that h cannot be surjective, which will be shown later. So, we only need to prove that in
VN, there is no reverse injection from M2

∗ into fin(M∗), and that there are no injections from
fin(M∗) into [M∗]

2 or from seq1-1(M∗) into M2
∗ .

In order to show that there is neither an injection from M2
∗ into fin(M∗), nor an injection from

seq1-1(M∗) into M2
∗ , assume towards a contradiction that VN contains an injection f1 : M2

∗ →
fin(M∗) or an injection f2 : seq1-1(M∗)→M2

∗ . Let S be a finite support of both functions f1 and
f2 (if they exist). In other words, S ∈ fin(M∗) and for each automorphism π ∈ FixG(S) we have
π(f1) = f1 and π(f2) = f2, respectively. Let N1 be a countable model in K with S ⊆ N1 ≤M∗.
Let (N2, g) be a countable model in K such that (N1, h|N1) ≤ (N2, g), constructed as follows:
The domain of N2 is the disjoint union

N2 = N1 t {x, y, z} t {ai : i ∈ ω} .

Furthermore, we define the injection g : fin(N2) \ {∅} → N2
2 such that g ⊇ h|N1 and for

E ∈ fin(N2) \ fin(N1) we define g(E) = 〈e1, e2〉 such that g is injective and satisfies the
following conditions (recall that since N2 is countable, also fin(N2) is countable):

• If E ∩ {x, y, z} = ∅ then 〈e1, e2〉 = 〈an, am〉 for some n,m ∈ ω.

• If |E ∩ {x, y, z}| = 1, then 〈e1, e2〉 = 〈u, ak〉 for some k ∈ ω, where u is the unique
element in E ∩ {x, y, z}.

• If |E∩{x, y, z}| = 2, then 〈e1, e2〉 = 〈v, ak〉 for some k ∈ ω, where v is the unique element
in {x, y, z} \ (E ∩ {x, y, z}).

• If |E ∩ {x, y, z}| = 3 then 〈e1, e2〉 = 〈an, am〉 for some n,m ∈ ω.

Notice that there are automorphisms of (N2, g) that just permute x, y, z and fix all other
elements of N2 pointwise. By construction of M∗, we find a model N ′2 ∈ K such that N1 ≤ N ′2 ≤
M∗ andN ′2 is isomorphic toN2 overN1. For this reason we can refer toN2 as a legit submodel of
M∗ that extends N1 in the way we described. Let us now consider f1(〈x, y〉), where we assumed
in VN the existence of an injection f1 : M2

∗ → fin(M∗) with finite support S. If f1(〈x, y〉) ⊆ N1
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or f1(〈x, y〉) * N2, then we can apply the third property of Proposition 5 with respect to
f1(〈x, y〉) and N1 and N2 respectively, which gives us a contradiction. If {x, y} ⊆ f1(〈x, y〉) or
{x, y}∩f1(〈x, y〉) = ∅, we could swap x and y while fixing every other element of N2 pointwise
and get f1(〈x, y〉) = f1(〈y, x〉), which would imply that f1 is not injective. So, assume that
|{x, y} ∩ f1(〈x, y〉)| = 1 and without loss of generality assume that {x, y} ∩ f1(〈x, y〉) = {x}.
Now, if z ∈ f1(〈x, y〉), i.e., {x, z} ⊆ f1(〈x, y〉), we similarly obtain a contradiction by swapping
z and x, while if z /∈ f1(〈x, y〉) we get a contradiction by swapping z and y. This shows that
f1 cannot belong to VN.

For what concerns f2, let us consider the set S consisting of sequences without repetition of
{x, y, z} of length 2 or 3. Notice that |S | = 12. Now, for each element s ∈ S , if f2(s) = 〈a, b〉,
then a and b are such that a 6= b and 〈a, b〉 ∈ {x, y, z}2 — notice that otherwise, for example, if
{a, b} ∩ {x, y} = ∅, then we can swap x and y and hence move s without moving 〈a, b〉, which
is not consistent with S being a support of f2. We get the conclusion by noticing that, because
of this restriction, there are only six possible images of elements of S , which implies that f2

cannot be an injection.

It remains to show that in VN there are no injections from fin(M∗) into [M∗]
2. For this, assume

towards a contradiction that there exists such a function f3 in VN and assume that S is a
finite support of f3. Then, let N1 be a countable model in K with S ⊆ N1 ≤ M∗. We will
construct a countable model (N2, g) ∈ K satisfying (N1, h|N1) ≤ (N2, g) ≤ M∗ with a finite
subset u ∈ fin(N2 \N1) such that, for all 〈x, y〉 ∈ N2

2 \N2
1 , one of the following holds:

• there is no finite set E ∈ fin(N2) \ {∅} with h(E) = 〈x, y〉;

• there exists an automorphism π of N2 over N1 with π(u) 6= u and π{x, y} = {x, y}.

Let u = {a0, b0, c0} be disjoint from N1 and define G1
0 = N1 t {a0, b0, c0}. Now, for each finite

set E ∈ fin(G1
0) \ {∅} which is not in the domain of h0 = h|N1 , that is, for each finite set

E ∈ fin(G1
0) with E ∩ {a0, b0, c0} 6= ∅, let {xE , yE} be a pair of new elements and define

G∗0 := G1
0 t

⊔
E∈fin(G1

0)\dom(h0), E 6=∅

{xE , yE} and h1
0 := h0 ∪

⋃
E∈fin(G1

0)\dom(h0), E 6=∅

{〈
E, 〈xE , yE〉

〉}
.

Let now G2
0 be an extension of G∗0 by adding a copy of G1

0 \N1, where the “copy function” is
denoted by τ0. Notice that at this stage,G1

0\N1 = {a0, b0, c0}. More formally,G2
0 = G∗0t{τ0(a) :

a ∈ G1
0 \N1}, together with an extension of h1

0 defined as

h2
0 := h1

0 ∪
⋃

E∈fin(G1
0)\dom(h0), E 6=∅

{〈
τ0(E), 〈yE , xE〉

〉}
,

where, given E ∈ fin(G1
0) \ dom(h0) with E 6= ∅, τ0(E) is defined as

τ0(E) := (E ∩N1) t {τ0(a) : a ∈ E \N1}.

Notice that if a ∈ G1
0 \ N1, then τ0(a) ∈ G2

0 \ G∗0. The construction carried out so far is
actually the first of countably many analogous extension steps we will consequently apply in
order to consider the union of all the progressive extensions. That is, assume that for some
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i ∈ ω we have already defined G2
i and h2

i . Define G1
i+1 = G2

i and, for each non-empty finite set
E ∈ fin(G1

i+1) which is not in the domain of h2
i , consider a pair of new elements {xE , yE} and

define
G∗i+1 := G1

i+1 t
⊔

E∈fin(G1
i+1)\dom(h2i ), E 6=∅

{xE , yE} and

h1
i+1 := h2

i ∪
⋃

E∈fin(G1
i+1)\dom(h2i ), E 6=∅

{〈
E, 〈xE , yE〉

〉}
.

Let now G2
i+1 be an extension of G∗i+1 by adding a copy of G1

i+1 \ N1, where the “copy
function” is now τi+1. More formally, G2

i+1 := G∗i+1 t {τi+1(a) : a ∈ G1
i+1 \N1}, together with

an extension of h1
i+1 defined as

h2
i+1 := h1

i+1 ∪
⋃

E∈fin(G1
i+1)\dom(h2i ), E 6=∅

{〈
τi+1(E), 〈yE , xE〉

〉}
∪

⋃
E∈dom(h2i )\fin(N1)

{〈
τi+1(E), τi+1(h2

i (E))
〉}
,

where, again, given E ∈ fin(G1
i+1) \ fin(N1), τi+1(E) is defined as

τi+1(E) := (E ∩N1) t {τi+1(a) : a ∈ E \N1},

for which we newly remark that if a ∈ G1
i+1 \ N1, then τi+1(a) ∈ G2

i+1 \ G∗i+1. Notice that
every automorphism of (G1

i+1, h
2
i ) can be extended to an automorphism of (G∗i+1, h

1
i+1) — this

is because G∗i+1 \ G1
i+1 consists of pairs {x, y}, each of which corresponds to a unique non-

empty finite subset of G1
i+1 and moves according to this finite subset. Finally, we conclude

that every automorphism of (G∗i+1, h
1
i+1) can be extended to an automorphism of (G2

i+1, h
2
i+1),

which follows from the following two facts: G2
i+1 \ G∗i+1 consists of a copy through τi+1 of

G1
i+1\N1, and therefore supports the same automorphisms. Furthermore, every automorphism

of (G∗i+1, h
1
i+1) is an extension of some automorphism of (G1

i+1, h
2
i ), which follows from the

fact that for all E ∈ fin(G∗i+1)\∅, we have E ∈ dom(h1
i+1) if and only if E ∩ (G∗i+1 \G1

i+1) = ∅.

Now, let

N2 :=
⋃
i∈ω

G1
i and g :=

⋃
i∈ω

h1
i .

We claim that (N2, g) satisfies the required properties. Indeed, if 〈x, y〉 ∈ N2
2 \ N2

1 and there
is some finite set E ∈ fin(N2) \ {∅} with g(E) = h(E) = 〈x, y〉, then by construction of g
we necessarily have 〈x, y〉 ∈ (N2 \N1)2 and the following fact: either there exists some index
n ∈ ω such that 〈x, y〉 ∈ (G∗n \ G1

n)2, or there are indices n, k ∈ ω with k > n such that
for some ordered pair 〈x′, y′〉 ∈ (G∗n \ G1

n)2 we have 〈x, y〉 =
〈
τk(x

′), τk(y
′)
〉
. Each of the

two conditions implies that there exists an automorphism π of N2 over N1 acting as follows:
π〈x, y〉 = 〈y, x〉 and πu = π{a0, b0, c0} =

{
τn(a0), τn(b0), τn(c0)

}
, which in particular means

π{x, y} = {x, y} and πu 6= u, as desired. We can finally consider the image f3(u) = {x, y}:
If {x, y} * N2 or {x, y} ⊆ N1, then we can apply the third property of Proposition 5 with
respect to {x, y} and N1 and N2 respectively, which gives us a contradiction. Thus {x, y} ⊆ N2

and {x, y} * N1, and if there exists some finite set E ∈ fin(N2) \ ∅ with g(E) = h(E) = 〈x, y〉,
then by the reasoning above we find that some automorphism of N2 over N1 does not preserve
f3, a contradiction. In every other case, we consider cl(N1 ∪ {x, y},M∗) and notice that, since
for no E ∈ fin(N2) \ ∅ we have h(E) = 〈x, y〉 or h(E) = 〈y, x〉, then we claim that u cannot be

9



a subset of cl(N1 ∪ {x, y},M∗), which allows us to fix cl(N1 ∪ {x, y},M∗) pointwise, while not
preserving u, a contradiction as well. In order to prove the claim, let U0 := u and for i ∈ ω, let

Ui+1 := Ui ∪ {τi(a) : a ∈ Ui}

and define U :=
⋃
i∈ω Ui. Furthermore, we define a rank-function rk : N2 → ω ∪ {−∞} by

stipulating

rk(a) :=



−∞ if a ∈ N1,

0 if a ∈ U,
n+ 1 if a ∈ {xE , yE}, where E ∈ fin(N2) \ fin(N1)

and max{rk(b) : b ∈ E} = n,

n if a = τk(b) for some k ∈ ω with rk(b) = n.

Since for no E ∈ fin(N2) \ ∅ we have h(E) = 〈x, y〉 or h(E) = 〈y, x〉, for any a ∈ cl(N1 ∪
{x, y},M∗) \ N1 we have rk(a) ≥ min

{
rk(x), rk(y)

}
. Thus, the only way that u ⊆ cl(N1 ∪

{x, y},M∗) would be that {x, y} ∩ U 6= ∅. However, even in the case when {x, y} ⊆ U (e.g.,
{x, y} ⊆ {a0, b0, c0}), by the definition of τi, at least one of the elements of {a0, b0, c0} does not
belong to cl(N1 ∪{x, y},M∗). In particular, u * cl(N1 ∪{x, y},M∗), which proves the claim. a

So, the model VN witnesses the following

Consistency Result 1. The existence of an infinite cardinal m satisfying

fin(m)

##

seq(m)

[m]2

OO

m2

OO

is consistent with ZF.

2.2 A Model for Diagram Z

We are now going to set an analogue framework to the one for Diagram N, just with the
definitions adapted, in order to show the consistency of Diagram Z. In fact, as mentioned
above, we can state the same proposition, guaranteeing the existence of a suitable ℵ1-universal
and ℵ1-homogeneous model.

Let K be the class of all the quadruples (A, f, g, h) such that A is a (possibly empty) set and
f, g, h are the following three injections:

f : A2 → [A]2 g : [A]2 → seq1−1(A) h : seq1−1(A)→ fin(A),

where the function h satisfies h(∅) = ∅. As before, we define a partial ordering ≤ on K by
stipulating (A, f1, g1, h1) ≤ (B, f2, g2, h2) if and only if

• A ⊆ B,

10



• f1 ⊆ f2, ran
(
f2|B2\A2

)
⊆ [B]2 \ [A]2,

• g1 ⊆ g2, ran
(
g2|[B]2\[A]2

)
⊆ seq1-1(B) \ seq1-1(A),

• h1 ⊆ h2, ran
(
h2|seq1-1(B)\seq1-1(A)

)
⊆ fin(B) \ fin(A).

Proposition 7 (CH). There is a model M∗ of cardinality c in K such that:

• M∗ is ℵ1-universal, i.e., if N ∈ K is countable then N is isomorphic to some N∗ ≤M∗.

• M∗ is ℵ1-homogeneous, i.e., if N1, N2 ≤ M∗ are countable and π : N1 → N2 is an
isomorphism then there exists an automorphism π∗ of M∗ such that π ⊆ π∗.

• If N ≤ M∗ and A ⊆ M∗ are countable, then there is an automorphism π of M∗ over
N such that π(A) \N is disjoint from A.

Proof. The proof is essentially the same as the one of Proposition 5. a

We define VZ as the permutation model obtained by setting the elements of the ℵ1-universal
and ℵ1-homogeneous model M∗ as the set of atoms and its automorphisms Aut(M∗) as the
group G of permutations. In particular, each permutation in G preserves the injections f, g, h
that the model (M∗, f, g, h) comes with.

Theorem 8. Let M∗ be the set of atoms of VZ and let m = |M∗|. Then

VZ |= m2 < [m]2 < seq1-1(m) < fin(m) .

Proof. The existence of the required injections is clear by the definition of the model. Thus,
it remains to prove that there are no reverse injections. Here, as in Theorem 6, we will make
heavily use of the concepts of closure and of plain extension: given a model (M,f, g, h) and a
countable subset A ⊆M , we define the closure cl(A,M) as the smallest superset of A that is
closed under f, g, h and pre-images with respect to the same functions. Constructively, we can
characterize cl(A,M) as a countable union as follows: Define cl0 = cl0(A,M) := A and, for all
i ∈ ω,

cli+1 = cli ∪
⋃

p∈(cli)2

f(p) ∪
⋃

q∈[cli]2

ran(g(q)) ∪
⋃

s∈seq1-1(cli)

h(s)

∪
⋃

q∈[cli]2∩ran(f)

ran(f−1(q)) ∪
⋃

s∈seq1−1(cli)∩ran(g)

g−1(s) ∪
⋃

r∈fin(cli)∩ran(h)

ran(h−1(r)) ,

in order to finally define cl(A,M) :=
⋃
i∈ω cli. Furthermore, we set a standardized way to

extend a partial model (A, f ′, g′, h′), where f ′, g′, h′ are only partial functions, to an element
of K: Consider (A, f ′, g′, h′), where A is a set and f ′, g′, h′ are injections with h′(∅) = ∅ and

dom(f ′) ⊆ A2, dom(g′) ⊆ [A]2, dom(h′) ⊆ seq1−1(A)

ran(f ′) ⊆ [A]2, ran(g′) ⊆ seq1−1(A), ran(h′) ⊆ fin(A).
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Let (M0, f
′
0, g
′
0, h
′
0) = (A, f ′, g′, h′) and, for j ∈ ω, define inductively (Mj+1, f

′
j+1, g

′
j+1, h

′
j+1)

as follows: Mj+1 is the fully disjoint union

Mj t
⊔

P∈M2
j \dom(f ′j)

{aP , bP } t
⊔

Q∈[Mj ]2\dom(g′j)

{aQ, bQ, cQ} t
⊔

R∈seq1-1(Mj)\dom(h′j)

{aR, bR, cR}.

For what concerns the injections f ′j+1, g
′
j+1, h

′
j+1, we naturally require the inclusions f ′j ⊆ f ′j+1,

g′j ⊆ g′j+1, and h′j ⊆ h′j+1, as well as the equalities dom(f ′j+1) = M2
j , dom(g′j+1) = [Mj ]

2, and

dom(h′j+1) = seq1−1(Mj), respectively, where for P ∈M2
j \dom(f ′j), Q ∈ [Mj ]

2 \dom(g′j), and

R ∈ seq1−1(Mj) \ dom(h′j), we define

f ′j+1(P ) := {aP , bP } , g′j+1(Q) := 〈aQ, bQ, cQ〉 , h′j+1(R) := {aR, bR, cR} .

We are now in the position of defining the plain extension of (A, f ′, g′, h′) as

(M,f, g, h) :=

⋃
j∈ω

Mj ,
⋃
j∈ω

f ′j ,
⋃
j∈ω

g′j ,
⋃
j∈ω

h′j

 ,

and we can finally prove, in three analogous steps, that neither of the three injections of the
model (M∗, f, g, h) admits a reverse injection.

Assume there is an injection i : [M∗]
2 →M2

∗ with finite support S. Let N1 ∈ K be a countable
model such that N1 ≤ M∗ and S ⊆ N1. Let {x, y} ∈ [M∗]

2 with N1 ∩ {x, y} = ∅, let M0 =
N1t{x, y}, and let N2 be the plain extension of M0. Without loss of generality we can assume
that N2 ≤M∗. Consider 〈a, b〉 = i({x, y}). Then {a, b} * N1 and {a, b} ⊆ N2, since otherwise
we could apply the third property of Proposition 7 with respect to {a, b} and N1 and N2,
respectively. Moreover, {a, b} ∩ {x, y} = ∅, since otherwise, (e.g., a = x), we could swap x and
y while fixing S pointwise, but this would not preserve the injection i, which was assumed to
have support S, a contradiction. Furthermore, we have

{x, y} ⊆ cl(N1 ∪ {a, b},M∗) (∗)

since otherwise we could apply the third property of Proposition 7 with respect to {x, y}
and cl

(
N1 ∪ {a, b},M∗

)
≤M∗. Now, this last inclusion implies that a 6= b and that {a, b} =

f(〈x′, y′〉) for some 〈x′, y′〉 ∈ N2
2 \ N2

1 . To see this, notice first that since N1 ∪ {a, b} ⊆ N2,
we build the closure cl

(
N1 ∪ {a, b},M∗

)
within the plain extension N2, and recall that for

{u, v} ∈ [N2]2 \ [M0]2 we have g({u, v}) = 〈x1, x2, x3〉 where 〈x1, x2, x3〉 ∈ seq1-1(N2 \M0), and
that for 〈x1, . . . , xn〉 ∈ seq1-1(N2)\seq1-1(M0) we have h(〈x1, . . . , xn〉) ∈ [N2 \M0]3. If there are
no x′, y′ such that f(〈x′, y′〉) = {a, b}, then, since {a, b} ⊆ N2 and {a, b} * N1, {a, b} cannot
be a superset of any ran

(
g({u, v})

)
for some u, v, or of any h(〈x1, . . . , xn〉) for some x1, . . . , xn,

so we have that {x, y} * cl(N1 ∪ {a, b},M∗), which is a contradiction to (∗). Now, since
f(〈x′, y′〉) = {a, b}, by the construction of the plain extension N2 we find an automorphism π
of N2 that fixes N1 ∪ {x, y} pointwise and for which we have π(a) = b and π(b) = a. Hence,
i(π{x, y}) = 〈a, b〉 6= 〈b, a〉 = πi({x, y}), which is a contradiction.

Assume there is an injection i : seq1−1(M∗) → [M∗]
2 with finite support S. Let N1 ∈ K be

a countable model such that N1 ≤ M∗ and S ⊆ N1. Let 〈x, y, z〉 ∈ seq1-1(M∗) with N1 ∩
{x, y, z} = ∅, let M0 = N1 t {x, y, z}, and let N2 be the plain extension of M0. Finally, let
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{a, b} = i(〈x, y, z〉). Then, a contradiction follows by noticing — with similar arguments as
above — that necessarily {x, y, z} 6⊆ cl

(
N1 ∪ {a, b},M∗

)
. So, similarly as above, there is an

automorphism π of M∗ which fixes cl(N1 ∪ {a, b},M∗) pointwise, but π({x, y, z}) 6= {x, y, z}.

Finally, assume there is an injection i : fin(M∗) → seq1−1(M∗) with finite support S. Let
N1 ∈ K be a countable model such that N1 ≤ M∗ and S ⊆ N1. Let {x, y, z} ∈ [M∗]

3 be
such that N1 ∩ {x, y, z} = ∅, let M0 = N1 t {x, y, z}, and let N2 be the plain extension of
M0. Consider 〈aj : j ∈ n〉 = i({x, y, z}) for some n ∈ ω. It is easy to see that we must have
{aj : j ∈ n}∩(N2\M0) 6= ∅, and as before it must also hold {x, y, z} ⊆ cl

(
N1∪{aj : j ∈ n},M∗

)
.

In what follows, for a natural number n, we will refer to a cyclic permutation of order n by
using the term “n-cycle”. Our next step is to prove that a 3-cycle π applied to {x, y, z} cannot
leave each element of {aj : j ∈ n} ∩ (N2 \M0) unchanged, for at least one automorphism
σ of N2 extending π does not fix any element of N2 \M0, as the following argument shows:
Assume there is such an automorphism σ fixing a first appearing element c ∈Mn\Mn−1 in the
construction of the plain extension of M0. Notice that σ moves every unordered pair, ordered
pair and injective sequence with non-empty intersection with {x, y, z}. Now, by looking at the
possible ways that c could have appeared in N2, one sees that if c is fixed, then some pair
p ∈ [Mn−1]2 such that c ∈ ran(g(p)) also satisfies σ(p) = p. Now, since c was the first appearing
element being fixed, we can say that for p = {a, b} ∈ [Mk]

2, for which p = {a, b} /∈ [Mk−1]2

holds, it is true that a, b are the first appearing elements being swapped by σ. Similarly as
before, this implies that there are two pairs p′, p′′ ∈ [Mk−1]2 such that σ(p) = p′ and σ(p′) = p,
which in turn requires either the existence of two ordered pairs in M2

k−1 swapped by σ, either
contradicting the fact that a and b were the first appearing swapped elements, or implying the
existence of a four-element set {s, r, t, p} ⊆ N2 \M0 on which σ acts as a four-cycle, but we
can extend π to at least one σ such that σ3 = IdN2 , which does not allow four-cycles, and this
concludes the proof. a

So, the model VZ witnesses the following

Consistency Result 2. The existence of an infinite cardinal m satisfying

fin(m) oo seq1-1(m)

[m]2

::

m2oo

is consistent with ZF.

2.3 A Model for Diagram N

We show that Diagram Nholds in the model constructed in [3] (see also [5, p. 209 ff]), where
m is the cardinality of the set of atoms of that model.

The atoms of the permutation model V Nfor Diagram Nare constructed as follows:

(α) Let A0 be an arbitrary infinite set.
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(β) G0 is the group of all permutations of A0.

(γ) An+1 := An ∪
{

(n+ 1, p, ε) : p ∈
⋃n+1
k=0 A

k
n ∧ ε ∈ {0, 1}

}
.

(δ) Gn+1 is the subgroup of the permutation group of An+1 containing all permutations σ
for which there are πσ ∈ Gn and εσ,p ∈ {0, 1} such that

σ(x) =

{
πσ(x) if x ∈ An,

(n+ 1, πσ(p), εσ,p +2 ε) if x = (n+ 1, p, ε),

where for p = 〈p0, . . . , pl−1〉 ∈
⋃

0≤k≤n+1A
k
n, πσ(p) := 〈πσ(p0), . . . , πσ(pl−1)〉 and +2

denotes addition modulo 2.

Let A :=
⋃
{An : n ∈ ω} be the set of atoms and let Aut(A) be the group of all permutations

of A. Then
G :=

{
H ∈ Aut(A) : ∀n ∈ ω (H|An ∈ Gn)

}
is a group of permutations of A. The sets in V Nare subsets of V Nwith finite support.

Proposition 9. Let A be the set of atoms of V Nand let m := |A|. Then

V N|= m2 < seq1-1(m) < [m]2 < fin(m) .

Proof. In [3] it is shown that V N|= seq(m) < [m]2, which implies that V N|= seq1-1(m) < [m]2.
Thus, since m2 ≤ seq1-1(m) and [m]2 ≤ fin(m), it remains to show that in V Nwe have m2 6=
seq1-1(m) and [m]2 6= fin(m).

m2 6= seq1-1(m): We show that there is no injection g1 : seq1-1(A) → A2. Assume towards a
contradiction that there is such an injection with finite support E1.

By extending E1 if necessary, we may assume that if (n+ 1, 〈a0, . . . , al−1〉, ε) ∈ E1, then also
a0, . . . , al−1 belong to E1 as well as the atom (n+ 1, 〈a0, . . . , al−1〉, 1− ε). We say that a finite
subset of A satisfying this condition is closed.

For a large enough number k ∈ ω choose a k-element set X ⊆ A0 \E1 such that | seq1-1 (X) | >∣∣ (E1 ∪X)2
∣∣. Notice that | seq1-1 (X) | ≥ k! and that

∣∣ (E1 ∪X)2
∣∣ = (|E1|+ k)2. Thus, we find

a sequence s ∈ seq1-1(X) such that g1(s) /∈ (E1 ∪X)2. So, there exists a π ∈ FixG(E1 ∪ X)
such that πg1(s) 6= g1(s) but πs = s, which contradicts the fact that E1 is a support of g1.

[m]2 6= fin(m): We show that there is no injection g2 : fin(A) → [A]2. Assume towards a
contradiction that there is such an injection with closed finite support E2. For a large enough
number k ∈ ω we choose again a k-element set X ⊆ A0 \E2 such that |fin (X) | >

∣∣ [E2 ∪X]2
∣∣

and such that we can find a subset S ⊆ X with P := g2(S) \ (E2 ∪ X) 6= ∅ and |S| ≥ 2. If
|P | = 1 it is clear that we can find a permutation π ∈ G which fixes E2 pointwise and for which
π(S) = S and π(g2(S)) 6= g2(S). Likewise, we find a contradiction also if |P | = 2 and P is not
in the form {(l, p, 0), (l, p, 1)} for some l ∈ ω \ {0} and p ∈

⋃ l
j=0A

j
l−1, so let us assume that P

is indeed in that form. Consider the extension P ′ of P to the smallest closed superset P ⊆ P ′.
If we can find x ∈ S \ P ′ then G contains a permutation π with π(x) /∈ S and π(P ) = P ,
which is a contradiction, so S \ P ′ must be empty. We notice that if a ∈ A is an atom, Y is
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the smallest closed set of atoms containing a and b ∈ A0 ∩ Y , then for all permutations π ∈ G
we have that π(b) 6= b implies π(a) /∈ Y . We can now conclude since every element of S is in
the closure of P and we can find a permutation π ∈ G which fixes pointwise E2 with π(S) = S
but for which S is not fixed pointwise. a

So, the permutation model V Nwitnesses the following

Consistency Result 3. The existence of an infinite cardinal m satisfying

fin(m)
OO

seq1-1(m)

[m]2
zz

m2

OO

is consistent with ZF.

2.4 A Model for Diagram C

We show that Diagram Cholds in a permutation model V Cwhich is similar to the Second
Fraenkel Model, where m is the cardinality of the set of atoms of V C.

The permutation model V Cis constructed as follows (see also [5, p. 197]): The set of atoms of
the model V Cconsists of countably many mutually disjoint, cyclically ordered 3-element sets.
More formally,

A =
⋃
n∈ω

Pn, where Pn = {an, bn, cn} (for n ∈ ω),

and the cyclic ordering on Pn is illustrated by the following figure:

an

bn

cn

bc

bc

bc

On each triple Pn, we define the cyclic distance between two elements by stipulating

cyc (an, bn) = cyc (bn, cn) = cyc (cn, an) = 1

and
cyc (an, cn) = cyc (bn, an) = cyc (cn, bn) = 2 .

Let G be the group of those permutations of A which preserve the triples Pn (i.e., πPn = Pn
for π ∈ G and n ∈ ω) and their cyclic ordering. The sets in V Care subsets of V Cwith finite
support.
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Proposition 10. Let A be the set of atoms of V Cand let m := |A|. Then

V C|= [m]2 < m2 < seq1-1(m) < fin(m) .

Proof. We first show that [m]2 ≤ m2, and seq1-1(m) ≤ fin(m), and then we show that [m]2 6= m2,
m2 6= seq1-1(m), and seq1-1(m) 6= fin(m).

[m]2 ≤ m2: We define an injective function f1 : [A]2 → A2. Let {x, y} ∈ [A]2 and m,n ∈ ω
be such that x ∈ Pm and y ∈ Pn. Without loss of generality we may assume that m ≤ n. If
m < n, then f1({x, y}) := 〈x, y〉, and if m = n, then f1({x, y}) := 〈z, z〉 where z := Pm\{x, y}.
It is easy to see that f1 is an injective function, and since f1 has empty support, f1 belongs
to V C.

seq1-1(m) ≤ fin(m): We define an injective function f3 : seq1-1(A)→ fin(A). First, let f3(〈 〉) :=
∅. Now, let s = 〈x0, . . . , xk−1〉 ∈ seq1-1(A) be a non-empty sequence without repetition of
length k. Let j : k → ω be such that for each i ∈ k, xi ∈ Pj(i). Let E0 := ∅, and by induction,
for i ∈ k define

Ei+1 :=

Ei ∪ {xi} if Pj(i) ∩ Ei = ∅,

Ei otherwise,

and

εi :=

2 if Pj(i) ∩ Ei = {u} and cyc (u, xi) = 2,

1 otherwise.

Furthermore, let σ(0) := j(0), and by induction, for i ∈ k−1 define σ(i+1) := σ(i)+j(i+1)+1.
Finally, let {pi : i ∈ ω} be an enumeration of the prime numbers and let

qs :=
∏
i∈k

pεiσ(i) .

Now, we define f3(s) := Ek∪Pqs . It is easy to see that f3 is an injective function from seq1-1(A)
into fin(A), and since f3 has empty support, f3 belongs to V C.

[m]2 6= m2: It is enough to show that there is no injection from A2 into [A]2. Assume towards
a contradiction that there exists an injection g1 : A2 → [A]2 with finite support E1.

Let E1 ⊆ E for some non-empty set E ∈ fin(A) such that Pn ⊆ E whenever E ∩Pn 6= ∅. Then
E is also a support of g1. Now |[E]2| < |E2|, which implies that there exists a pair 〈x, y〉 ∈ E2

such that g1(〈x, y〉) /∈ [E]2. So, there exists a π ∈ FixG(E) such that πg1(〈x, y〉) 6= g1(〈x, y〉),
but π〈x, y〉 = 〈x, y〉, which contradicts the fact that E is a support of g1.

m2 6= seq1-1(m): It is enough to show that there is no injection from seq1-1(A) into A2. Assume
towards a contradiction that there exists an injection g2 : seq1-1(A) → A2 with finite support
E2. Let E2 ⊆ E for some non-empty set E ∈ fin(A) such that Pn ⊆ E whenever E ∩ Pn 6= ∅.
Then E is also a support of g2. Now |E2| < | seq1-1(E)|, and by similar arguments as above,
we obtain a contradiction.

seq1-1(m) 6= fin(m): It is enough to show that there is no injection from fin(A) into seq1-1(A).
Assume towards a contradiction that there is an injection g3 : fin(A)→ seq1-1(A) with finite
support E3, where we can assume that for all n ∈ ω, Pn ⊆ E3 whenever E3 ∩ Pn 6= ∅.
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Since E3 is finite, there exists an n ∈ ω such that g3(Pn) /∈ seq1-1(E3). Let a ∈ A be the first
element of the sequence g3(Pn) which does not belong to E3. Then we find a π ∈ FixG(E3)
such that πa 6= a (which implies πg3(Pn) 6= g3(Pn)) but πPn = Pn, which contradicts the fact
that E3 is a support of g3. a

So, the model V Cwitnesses the following

Consistency Result 4. The existence of an infinite cardinal m satisfying

fin(m) oo seq1-1(m)

[m]2 m2//

OO

is consistent with ZF.

2.5 A Model for Diagram Z

As mention above, Diagram Zholds in the Ordered Mostowski Model , where m is the cardinality
of the set of atoms (see, for example, [5, Related Result 48, p. 217]). This leads to the following

Consistency Result 5. The existence of an infinite cardinal m satisfying

fin(m) // seq1-1(m)

[m]2 m2//

dd

is consistent with ZF.

3 On Diagram C

Similar as in the proof of Lemma 1, in every model for Diagram C, we have that the cardinality
m is transfinite.

Lemma 11. If m2 ≤ [m]2 and fin(m) ≤ seq1-1(m) for some m ≥ 1, then ℵ0 ≤ m.

Proof. Assume that m2 ≤ [m]2 and fin(m) ≤ seq1-1(m) for some cardinal m ≥ 1 and let A
be a necessarily infinite set with |A| = m. Let f : A2 → [A]2 and g : fin(A) → seq1-1(A) be
injections. The goal is to construct with the functions f and g an injection h : ω → A. We
first construct a countably infinite set of pairwise disjoint non-empty finite subsets of A. For
this, we first choose an element a0 ∈ A, let E0 := {a0}, and let E0 := {E0}.
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Assume that for some n ∈ ω we have already constructed an (n + 1)-element set En :=
{
Ei :

i ≤ n
}

of pairwise disjoint non-empty finite subsets of A. Let

En+1 :=
⋃
i,j≤n

{
x : ∃a ∈ Ei ∃b ∈ Ej ∃y

(
f(〈a, b〉) = {x, y}

)}
\
⋃
i≤n

Ei ,

and let En+1 := En ∪ {En+1}. Notice that for k := |
⋃
i≤nEi|, we have∣∣∣∣(⋃

i≤n
Ei

)
2

∣∣∣∣ = k2 >

(
k

2

)
=

∣∣∣∣[ ⋃
i≤n

Ei

]2∣∣∣∣ ,
which implies that En+1 6= ∅. Proceeding this way,

{
En : n ∈ ω

}
is a countably infinite set of

pairwise disjoint non-empty finite subsets of A.

Now, we apply the function g. For every n ∈ ω, let Sn := g(En). Furthermore, let S0 := S0,
and in general, for n ∈ ω let Sn+1 := Sn

_Sn+1. In this way, we obtain an infinite sequence
S∞ of elements of A. Since g is injective and the non-empty finite sets En are pairwise disjoint,
the sequence S∞ must contain infinitely many pairwise distinct elements of A. Now, let h be
the enumeration of these pairwise distinct elements in the order they appear in S∞. Then
h : ω → A is an injection. a

As a consequence of Proposition 2 and Lemma 11 we get

Corollary 12. If m2 ≤ [m]2 and fin(m) ≤ seq1-1(m) for some m = |A| ≥ 1, then there exists
a finite-to-one function g : seq(A)→ fin(A).
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