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PROBLEMS

12223 . Proposed by Michael Elgersma, Plymouth, MN, and James R. Roche, Ellicott City,
MD. Two weighted m-sided dice have faces labeled with the integers 1 to m. The first die
shows the integer i with probability pi , while the second die shows the integer i with prob-
ability ri . Alice rolls the two dice and sums the resulting integers; Bob then independently
does the same.
(a) For each m with m ≥ 2, find the probability vectors (p1, . . . , pm) and (r1, . . . , rm) that
minimize the probability that Alice’s sum equals Bob’s sum.
(b)* Generalize to n dice, with n ≥ 3.

12224 . Proposed by Cherng-tiao Perng, Norfolk State University, Norfolk, VA. Let ABC

be a triangle, with D and E on AB and AC, respectively. For a point F in the plane, let
DF intersect BC at G and let EF intersect BC at H . Furthermore, let AF intersect BC

at I , let DH intersect EG at J , and let BE intersect CD at K . Prove that I , J , and K are
collinear.

12225 . Proposed by Pakawut Jiradilok, Massachusetts Institute of Technology, Cambridge,
MA, and Wijit Yangjit, University of Michigan, Ann Arbor, MI. Let ! denote the gamma
function, defined by !(x) =

∫∞
0 e−t t x−1 dt for x > 0.

(a) Prove that ⌈! (1/n)⌉ = n for every positive integer n, where ⌈y⌉ denotes the smallest
integer greater than or equal to y.
(b) Find the smallest constant c such that ! (1/n) ≥ n −c for every positive integer n.

12226 . Proposed by Jovan Vukmirovic, Belgrade, Serbia. Let x1, x2, and x3 be real num-
bers, and define xn for n ≥ 4 recursively by xn = max{xn−3, xn−1} −xn−2. Show that
the sequence x1, x2, . . . is either convergent or eventually periodic, and find all triples
(x1, x2, x3) for which it is convergent.

12227 . Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Prove that for any integer
n with n ≥ 3 there exist infinitely many pairs (A,B) such that A is a set of n consecutive
positive integers, B is a set of fewer than n positive integers, A and B are disjoint, and∑

k∈A 1/k = ∑
k∈B 1/k.
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