Solving the Quartic by Conics

Lorenz Halbeisen

Department of Mathematics, ETH Zentrum, Rämistrasse101, 8092 Zürich, Switzerland ORCID 0000-0001-6078-7237, lorenz.halbeisen@math.ethz.ch

Norbert Hungerbühler

Department of Mathematics, ETH Zentrum, Rämistrasse101, 8092 Zürich, Switzerland ORCID 0000-0001-6191-0022, norbert.hungerbuehler@math.ethz.ch

key-words: intersection of conics, pencils of conics, quartic equations, cubic equations, ruler and compass constructions

2020 Mathematics Subject Classification: 51M05 51M15 12D10

Abstract

Two conic sections that pass through two given points can generally have two further points of intersection. It is shown how these can be constructed using a compass and ruler. The idea of the construction is then used to reduce a general quartic equation to a cubic equation and to solve it.

1 Introduction

We investigate the problem of finding the intersection points of two conic sections from a geometric and from an algebraic point of view. The conics are given by quadratic equations in the variables x and y , in the form

$$
a_{xx}x^2 + a_{xy}xy + a_{yy}y^2 + a_xx + a_yy + a = 0,
$$
\n(1)

where the coefficients are real numbers. A system of two such quadratic equations is equivalent to two quartic equations, one in x alone and one in y alone. This can be seen by applying the Buchberger algorithm to the two quadratic equations to determine a Gröbner basis. The coefficients of the two quartic equations are polynomials in the coefficients of the two quadratic equations. If a point P of one of the conics is known, one can apply a projective transformation to send P to a point at infinity, and we can therefore assume that one conic is a parabola. Note that in general the solution of a quadratic equation is required to find such a point P . We may then assume, by a suitable affine transformation, that one conic is the normal parabola $y = x^2$, and the other conic is given by (1) . In this form the quartic equation in x becomes apparent.

This article is organized as follows. In Section [2,](#page-0-1) we present a construction of the intersections of two conics by ruler and compass, provided two intersections are known. In Section [3,](#page-2-0) we use the geometric idea to show how a quartic equation can be reduced to a cubic equation by considering the pencil of two associated conics.

2 Construction of the intersection of two conic sections

As discussed in the introduction, the problem of finding the intersection points of two conic sections corresponds to a quartic equation. It is therefore in general impossible to construct the intersections by ruler and compass. However, if two points of intersection are known, the problem reduces to a quadratic equation, and a construction should be feasible. In [\[2\]](#page-6-0) such a construction was used to intersect a circle and a hyperbola in a special position. In this section we want to present a construction, which works for two arbitrary conics for which two common points are known.

Before we describe the construction, we will prove a lemma concerning quadruples of points forming harmonic ranges. Recall that four points A, B, X, Y on a line in the real projective plane form a harmonic range, denoted $(A, B; X, Y)$, if their cross ratio satisfies $cr(A, B; X, Y) = -1$.

Lemma. Let C_1 and C_2 be two conics which meet in the four points I_1, I_2, J_1, J_2 (see Figure [1\)](#page-1-0). Let $r := I_1I_2$, let P_1 and Q_2 be the poles of the polar line r with respect to C_1 and C_2 , respectively, let p_2 be the polar line of P_1 with respect to C_2 , and let q_1 be the polar line of Q_2 with respect to C_1 . Furthermore, let $s := P_1Q_2$, let R, T_1, T_2 be the intersection points of s with r, q_1, p_2 , respectively, and let A_1, B_1 and A_2, B_2 be the intersection points of s with C_1 and C_2 , respectively. Finally, let H_1 and H_2 be the intersection points of I_1J_2 with I_2J_1 , and I_1J_1 with I_2J_2 , respectively.

Then we have the following:

- (a) The points $A_1, B_1, A_2, B_2, H_1, H_2$ are collinear.
- (b) $(P_1, R; A_1, B_1)$ and $(Q_2, T_1; A_1, B_1)$.
- (c) $(P_1, T_2; A_2, B_2)$ and $(Q_2, R; A_2, B_2)$.
- (d) $(A_1, B_1; H_1, H_2)$ and $(A_2, B_2; H_1, H_2)$.

Proof. By a projective transformation we can assume that the four points I_1, I_2, J_1, J_2 form a isosceles trapezoid, where the lines I_1I_2 and J_1J_2 are parallel. In this situation, the entire configuration is mirror symmetric with respect to s. In particular, the lines r, p_2, q_1 are parallel.

(a) follows directly from the symmetry. (b), (c) and (d) follow from the following fact (see, e.g., [\[1,](#page-6-1) Satz 4.9): Let C be a conic, let P be a point not on C, let p be the polar line of P with respect to C, and let s be a line through P with intersects p at T and the conic C at the two points A and B. Then the four points P, T, A, B on s form a harmonic range $(P, T; A, B)$. q.e.d.

Now, we are ready to present a construction of the intersections of two conics C_1 and C_2 by ruler and compass, provided that the two conics have four intersection points and that two intersections I_1 and I_2 are known.

Construction. Since a conic is determined by five points, assume that C_1 and C_2 are given by the points $I_1, I_2, C_{1,1}, C_{1,2}, C_{1,3}$ and $I_1, I_2, C_{2,1}, C_{2,2}, C_{2,3}$, respectively. Then, we construct the following points and lines.

1. **Point** P_1 : By Pascal's Theorem, we can construct by ruler alone the tangents to the conic C_1 at the points I_1 and I_2 (see Figure [2\)](#page-2-1). The intersection of these two tangents is the point P_1 .

Figure 2: Construction of the tangent in $I_1: XY$ is the pascal line in the hexagon $I_1I_2C_{1,1}C_{1,2}C_{1,3}I_1$. Hence ZI_1 is the tangent to C_1 in I_1 .

- 2. **Point** Q_2 **:** The point Q_2 is constructed as above as the intersection of the tangents in I_1 and I_2 with respect to the conic C_2 .
- 3. Line s: Joining the points P_1 and Q_2 , we obtain the line s.
- 4. **Point R:** Intersecting the line $r = I_1 I_2$ with s gives the point R.
- 5. Point T_2 : By Pascal's Theorem we can construct the intersection point I'_1 of C_2 with the line P_1I_1 P_1I_1 P_1I_1 . Then T_2 is the intersection of $I_2I'_1$ and s. See Figure 1 and [\[1,](#page-6-1) Satz 4.10]).
- 6. Point T_1 : The point T_1 is constructed in the same way as T_2 , above, with the point Q_2 in place of P_1 and the conic C_1 in place of C_2 .
- 7. **Points** A_1, B_1 **:** By item (b) of the above lemma we have the harmonic ranges $(P_1, R; A_1, B_1)$ and $(Q_2, T_1; A_1, B_1)$. Hence, the points A_1 and B_1 are determined by the points P_1, R, Q_2, T_1 which we have already constructed—and can be constructed using a compass and ruler (see Figure [3,](#page-3-0) and [\[1,](#page-6-1) p. 78]).
- 8. Points A_2, B_2 : The points A_2, B_2 are constructed as above with respect to the points P_1, T_2, Q_2, R and using item (c) of the lemma.
- 9. Points H_1, H_2 : The points H_1, H_2 are constructed as above with respect to the points A_1, B_1, A_2, B_2 and using item (d) of the lemma.
- 10. **Points** J_1, J_2 **:** Finally, the other two intersection points J_1, J_2 of C_1 and C_2 are obtained as follows: J_1 is the intersection of the lines I_1H_2 and I_2H_1 , and J_2 is the intersection of the lines I_1H_1 and I_2H_2 .

3 Solving the quartic by conics

It is well known that a quartic equation in the variable z can be reduced to a cubic equation. The usual procedure is to first get rid of the cubic term in the quartic equation. This is done

Figure 3: Construction of the points A_1, B_1 . The circle c has P_1R as a diameter. The segments in T_1 and Q_2 are orthogonal to s.

by a substitution $z = x - \mu$, leading to the depressed quartic in the variable x. Then one can follow Ferrari's solution, for example, which leads to a cubic equation (see, e.g., [\[5,](#page-6-2) §3.2]). Another way is to employ Galois theory and factorization to reduce the quartic to a cubic problem (see, e.g., [\[4\]](#page-6-3)). In this section, we want to show an alternative way which is inspired by the geometric considerations of Section [2](#page-0-1) to reduce the quartic to a cubic equation. The idea is that the pairs of lines I_1J_1, I_2J_2 and I_1J_2, I_2J_1 are degenerate conics in the pencil spanned by C_1 and C_2 . And to compute theses degenerate conics from the equations of C_1, C_2 is only a cubic problem. To make this idea work, we only need to reformulate a given quartic equation as a system of two quadratic equations in two variables which represent the conics C_1 and C_2 . Before we describe the general case, we illustrate the method with the following example.

Example. Suppose we want to solve the quartic

$$
z^4 + z^3 - 45z^2 - 97z + 140 = 0.
$$
 (2)

To have it easier later on, we first remove the quadratic term in the equation. If we substitute $z = x - \mu$ we find the coefficient $3(2\mu^2 - \mu - 15)$ for x^2 . This quadratic expression vanishes for $\mu = 3$. The resulting quartic equation in x is then

$$
x^4 - 11x^3 + 92x + 80 = 0.\t\t(3)
$$

Now we consider the two conics

$$
C_1: \quad y - x^2 = 0 \tag{4}
$$

$$
C_2: \quad y^2 - 11xy + 92x + 80 = 0 \tag{5}
$$

Clearly, if x, y is a solution of the system [\(4\)](#page-3-1)–[\(5\)](#page-3-2), then x solves [\(3\)](#page-3-3), and vice versa, if x is a solution of [\(3\)](#page-3-3), then $x, y = x^2$ is a solution of [\(4\)](#page-3-1)–[\(5\)](#page-3-2). We can write the first conic (4) as $\langle X, AX \rangle = 0$, where $X = (x, y, 1)^\top$ and

$$
A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.
$$

Here, $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^3 . Similarly, the second conic [\(5\)](#page-3-2) is given by the equation $\langle X, BX \rangle = 0$ with

$$
B = \begin{pmatrix} 0 & -11 & 92 \\ -11 & 2 & 0 \\ 92 & 0 & 160 \end{pmatrix}.
$$

The pencil of the two conics, i.e., the conics whose equations are linear combinations of [\(4\)](#page-3-1) and [\(5\)](#page-3-2), are then given by

$$
\langle X, (\lambda A + B)X \rangle = 0. \tag{6}
$$

Observe that all conics of the pencil pass through the intersections of C_1 and C_2 . The idea is now to find two values of λ such that the matrix $\lambda A + B$ is singular and hence the corresponding conic of the pencil degenerates to two straight lines. Then, the intersections of the conics C_1 and C_2 can simply be computed by intersecting these lines, see Figure [4.](#page-4-0)

Figure 4: The parabola C_1 and the hyperbola C_2 are shown in red. The degenerate conics in the pencil of C_1, C_2 are the blue lines g_1, h_1 and the green lines g_2, h_2 .

The point is that finding the degenerate conics in the pencil of C_1 and C_2 corresponds to the *cubic* equation $\det(\lambda A + B) = -2\lambda^3 + 2664\lambda - 36288 = 0$. Observe that there is no quadratic term, which makes it quite easy to find the roots in general (see below). In our model case we find the values $\lambda_1 = 18$ and $\lambda_2 = 24$. For these values [\(6\)](#page-4-1) factors in two straight lines as follows (see below for the general case):

$$
\langle X, (18A+B)X \rangle = \langle X, g_1 \rangle \langle X, h_1 \rangle, \quad \langle X, (24A+B)X \rangle = \langle X, g_2 \rangle \langle X, h_2 \rangle,
$$

with

$$
g_1 = \begin{pmatrix} 9 \\ -1 \\ 10 \end{pmatrix}, \quad h_1 = \begin{pmatrix} 4 \\ -2 \\ 16 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 8 \\ -1 \\ 20 \end{pmatrix}, \quad h_2 = \begin{pmatrix} 6 \\ -2 \\ 8 \end{pmatrix}.
$$

The intersections of these lines can be computed by the respective cross products:

$$
g_1 \times g_2 = -\begin{pmatrix} 10 \\ 100 \\ 1 \end{pmatrix}, \quad g_1 \times h_2 = -12 \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \quad h_1 \times g_2 = 12 \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix}, \quad h_1 \times h_2 = 4 \begin{pmatrix} 4 \\ 16 \\ 1 \end{pmatrix}.
$$

We read off the solutions $x_1 = 10$, $x_2 = -1$, $x_3 = -2$, $x_4 = 4$ of the equation [\(3\)](#page-3-3). Hence, the solutions of the original equation [\(2\)](#page-3-4) are $z_1 = 7$, $z_2 = -4$, $z_3 = -5$, $z_4 = 1$.

The general case of a quartic equation. Let uns now solve the general quartic equation

$$
a_0 + a_1 z + a_2 z^2 + a_3 z^3 + z^4 = 0.
$$

The coefficients are allowed to be complex numbers, and all subsequent computations are carried out in C. Substituting $z = x - \mu$ yields for the quadratic term of x^2 the expression $a_2 - 3a_3\mu + 6\mu^2$. This is a quadratic equation, and we can choose one of its solutions to obtain a quartic equation without quadratic term. So, from now on we assume that the quartic has the form

$$
a_0 + a_1 x + a_3 x^3 + x^4 = 0.
$$
\n⁽⁷⁾

Consider the two conics

$$
C_1: \quad y - x^2 = 0 \tag{8}
$$

$$
C_2: \quad a_0 + a_1 x + a_3 x y + y^2 = 0. \tag{9}
$$

As in the example above we have that if x, y is a solution of the system $(8)-(9)$ $(8)-(9)$ $(8)-(9)$, then x solves [\(7\)](#page-5-2), and vice versa, if x is a solution of [\(7\)](#page-5-2), then $x, y = x^2$ is a solution of [\(8\)](#page-5-0)–[\(9\)](#page-5-1). As before, the first conic [\(8\)](#page-5-0) is given by $\langle X, AX \rangle = 0$, and the second conic by $\langle X, BX \rangle = 0$, where now

$$
B = \begin{pmatrix} 0 & a_3 & a_1 \\ a_3 & 2 & 0 \\ a_1 & 0 & 2a_0 \end{pmatrix}.
$$

The cubic equation to determine the degenerate conics in the pencil of C_1, C_2 is

$$
\det(\lambda A + B) = \underbrace{a_1^2 + a_0 a_3^2}_{=:p} + \underbrace{(a_1 a_3 - 4 a_0)}_{=:q} \lambda + \lambda^3 = 0. \tag{10}
$$

If $p = 0$, then $\lambda = 0$ is a solution. This means that B is singular and the left-hand side of [\(9\)](#page-5-1) is the product of two linear terms, namely $(-a_1/a_3 + a_3x + y)(a_1/a_3 + y)$ if $a_3 \neq 0$ and $(y + \sqrt{-a_0})(y - y)$ $\sqrt{-a_0}$) if $a_3 = 0$. The problem is therefore reduced to determining the intersection points of the parabola C_1 and straight lines. So let us assume now that $p \neq 0$. Then, [\(10\)](#page-5-3) hat at least two different solutions. Observe that every complex number $\lambda \neq 0$ can be written as $\lambda = \alpha + \beta$ with $\alpha^3 + \beta^3 = -p$. Indeed, for $\beta = \lambda - \alpha$ we have $\beta^3 = \lambda^3 - 3\lambda^2\alpha + 3\lambda\alpha^2 - \alpha^3$ and hence

$$
-p = \alpha^3 + \beta^3 = \lambda(\lambda^2 - 3\lambda\alpha + 3\alpha^2).
$$

This is a quadratic equation for $\alpha \in \mathbb{C}$ with a solution if $\lambda \neq 0$. In particular, a root λ of [\(10\)](#page-5-3) can be written in the form $\lambda = \alpha + \beta$ with $\alpha^3 + \beta^3 = -p$. Using this in [\(10\)](#page-5-3), we find

$$
0 = p + q(\alpha + \beta) + (\alpha + \beta)^3 = (\alpha + \beta)(3\alpha\beta + q)
$$

and hence, since $\alpha + \beta \neq 0$, it follows that $\beta = -\frac{q}{3\alpha}$. This yields

$$
-p=\alpha^3+\beta^3=\alpha^3-\frac{q^3}{27\alpha^3}
$$

which is a quadratic equation in α^3 , and hence we can consider [\(10\)](#page-5-3) as solved. We pick two solutions λ_1, λ_2 . For these values the conics given by $\langle X, (\lambda_j A + B)X \rangle = 0$ are the product of two straight lines

$$
0 = \langle X, (\lambda_j A + B)X \rangle = \langle X, g_j \rangle \langle X, h_j \rangle, \tag{11}
$$

say

$$
g_j = \begin{pmatrix} a_j \\ b_j \\ c_j \end{pmatrix}, \quad h_j = \begin{pmatrix} u_j \\ v_j \\ w_j \end{pmatrix}.
$$

Writing out the matrix we have

$$
\lambda_j A + B = \begin{pmatrix} 2\lambda_j & a_3 & a_1 \\ a_3 & 2 & -\lambda_j \\ a_1 & -\lambda_j & 2a_0 \end{pmatrix}.
$$

If we compare the coefficients in (11) , we obtain:

$$
au = 2\lambda_j \t du + av = 2a_3
$$

\n
$$
bv = 2 \t cu + aw = 2a_1
$$

\n
$$
cw = 2a_0 \t cv + bw = -2\lambda_j
$$

One finds the following solution (up to a nonzero factor):

$$
(u_j, v_j, w_j) = (2\lambda_j, a_3 + \sqrt{\mu_j}, a_1 + q_j \sqrt{\nu_j})
$$

$$
(a_j, b_j, c_j) = (2\lambda_j, a_3 - \sqrt{\mu_j}, a_1 - q_j \sqrt{\nu_j})
$$

where

$$
\mu_j = a_3^2 - 4\lambda_j
$$
, $\nu_j = a_1^2 - 4a_0\lambda_j$

are negative minors of $\lambda_j A + B$. Depending on the choice of the roots of μ_1 and ν_j the sign q_j is

$$
q_j = \frac{a_1 a_3 + 2\lambda_j^2}{\sqrt{\mu_j} \sqrt{\nu_j}} \in \{-1, 1\}.
$$

Observe that

$$
0 = -2\lambda_j \det(\lambda_j A + B) = (a_1 a_3 + 2\lambda_j^2)^2 - \mu_j \nu_j.
$$

If $\mu_j \nu_j = 0$, one can choose either $q_j = 1$ or $q_j = -1$. Now that the lines g_j and h_j are determined, their intersections and hence the solutions x_j are easily computed by the respective cross products, as in the example.

Of course, there are other ways to find the factorization in [\(11\)](#page-5-4). For example, one can diagonalize the matrix $\lambda_1 A + B$ with an orthogonal matrix T such that

$$
T^{\top}(\lambda_1 A + B)T = \text{diag}(\xi_1, \xi_2, 0) =: D
$$

with eigenvalues ξ_1, ξ_2 . In this form, we have

$$
0 = \langle X, DX \rangle = \xi_1 x^2 + \xi_2 y^2 = (\sqrt{\xi_1} x + i \sqrt{\xi_2} y)(\sqrt{\xi_1} x - i \sqrt{\xi_2} y).
$$

The two lines are therefore

$$
\left\langle \begin{pmatrix} \sqrt{\xi_1} \\ \pm i\sqrt{\xi_2} \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \right\rangle = 0.
$$

Backtransformation gives the line

$$
\left\langle T\begin{pmatrix} \sqrt{\xi_1} \\ \pm i\sqrt{\xi_2} \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \right\rangle = 0.
$$

Hence the lines g_1, h_1 are given by $\sqrt{\xi_1}n_1 \pm i\sqrt{\xi_2}n_2$, where n_1, n_2 are the first two columns of T, i.e., the two eigenvectors of T that corrrespond to the eigenvalues ξ_1, ξ_2 . The same can be done with the matrix $\lambda_2 A + B$ in order to determine the lines g_2, h_2 .

References

- [1] Lorenz Halbeisen, Norbert Hungerbühler, and Juan Läuchli. Mit harmonischen Verhältnissen zu Kegelschnitten. Perlen der klassischen Geometrie. Berlin: Springer Spektrum, 2nd edition edition, 2021.
- [2] Norbert Hungerbühler and Juan Läuchli. Construction of a quadrilateral from its vertex angles and the diagonal angle. Elem. Math., online first, 2023.
- [3] Philippe de La Hire. Sectiones conicae. P.Michalet, Parisiis, 1685.
- [4] Ian Stewart. Galois theory. CRC Press, Boca Raton, FL, fourth edition, 2015.
- [5] Jean-Pierre Tignol. Galois' theory of algebraic equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second edition, 2016.