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Abstract

Two conic sections that pass through two given points can generally have two further points
of intersection. It is shown how these can be constructed using a compass and ruler. The idea
of the construction is then used to reduce a general quartic equation to a cubic equation and
to solve it.

1 Introduction

We investigate the problem of finding the intersection points of two conic sections from a geometric
and from an algebraic point of view. The conics are given by quadratic equations in the variables
x and y, in the form

axxx
2 + axyxy + ayyy

2 + axx+ ayy + a = 0, (1)

where the coefficients are real numbers. A system of two such quadratic equations is equivalent
to two quartic equations, one in x alone and one in y alone. This can be seen by applying the
Buchberger algorithm to the two quadratic equations to determine a Gröbner basis. The coefficients
of the two quartic equations are polynomials in the coefficients of the two quadratic equations. If
a point P of one of the conics is known, one can apply a projective transformation to send P to a
point at infinity, and we can therefore assume that one conic is a parabola. Note that in general
the solution of a quadratic equation is required to find such a point P . We may then assume, by a
suitable affine transformation, that one conic is the normal parabola y = x2, and the other conic
is given by (1). In this form the quartic equation in x becomes apparent.

This article is organized as follows. In Section 2, we present a construction of the intersections of
two conics by ruler and compass, provided two intersections are known. In Section 3, we use the
geometric idea to show how a quartic equation can be reduced to a cubic equation by considering
the pencil of two associated conics.

2 Construction of the intersection of two conic sections

As discussed in the introduction, the problem of finding the intersection points of two conic sections
corresponds to a quartic equation. It is therefore in general impossible to construct the intersections
by ruler and compass. However, if two points of intersection are known, the problem reduces to
a quadratic equation, and a construction should be feasible. In [2] such a construction was used
to intersect a circle and a hyperbola in a special position. In this section we want to present a
construction, which works for two arbitrary conics for which two common points are known.

Before we describe the construction, we will prove a lemma concerning quadruples of points forming
harmonic ranges. Recall that four points A,B,X, Y on a line in the real projective plane form a
harmonic range, denoted (A,B;X,Y ), if their cross ratio satisfies cr(A,B;X,Y ) = −1.
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Lemma. Let C1 and C2 be two conics which meet in the four points I1, I2, J1, J2 (see Figure 1).
Let r := I1I2, let P1 and Q2 be the poles of the polar line r with respect to C1 and C2, respectively,
let p2 be the polar line of P1 with respect to C2, and let q1 be the polar line of Q2 with respect to C1.
Furthermore, let s := P1Q2, let R, T1, T2 be the intersection points of s with r, q1, p2, respectively,
and let A1, B1 and A2, B2 be the intersection points of s with C1 and C2, respectively. Finally,
let H1 and H2 be the intersection points of I1J2 with I2J1, and I1J1 with I2J2, respectively.

Then we have the following:

(a) The points A1, B1, A2, B2, H1, H2 are collinear.

(b) (P1, R;A1, B1) and (Q2, T1;A1, B1).

(c) (P1, T2;A2, B2) and (Q2, R;A2, B2).

(d) (A1, B1;H1, H2) and (A2, B2;H1, H2).

Proof. By a projective transformation we can assume that the four points I1, I2, J1, J2 form a
isosceles trapezoid, where the lines I1I2 and J1J2 are parallel. In this situation, the entire config-
uration is mirror symmetric with respect to s. In particular, the lines r, p2, q1 are parallel.
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Figure 1

(a) follows directly from the symmetry. (b), (c) and (d) follow from the following fact (see, e.g., [1,
Satz 4.9]): Let C be a conic, let P be a point not on C, let p be the polar line of P with respect to
C, and let s be a line through P with intersects p at T and the conic C at the two points A and
B. Then the four points P, T,A,B on s form a harmonic range (P, T ;A,B). q.e.d.

Now, we are ready to present a construction of the intersections of two conics C1 and C2 by ruler
and compass, provided that the two conics have four intersection points and that two intersections
I1 and I2 are known.

Construction. Since a conic is determined by five points, assume that C1 and C2 are given by
the points I1, I2, C1,1, C1,2, C1,3 and I1, I2, C2,1, C2,2, C2,3, respectively. Then, we construct the
following points and lines.
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1. Point P1: By Pascal’s Theorem, we can construct by ruler alone the tangents to the conic
C1 at the points I1 and I2 (see Figure 2). The intersection of these two tangents is the point
P1.
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Figure 2: Construction of the tangent in I1: XY is the pascal line in the
hexagon I1I2C1,1C1,2C1,3I1. Hence ZI1 is the tangent to C1 in I1.

2. Point Q2: The point Q2 is constructed as above as the intersection of the tangents in I1
and I2 with respect to the conic C2.

3. Line s: Joining the points P1 and Q2, we obtain the line s.

4. Point R: Intersecting the line r = I1I2 with s gives the point R.

5. Point T2: By Pascal’s Theorem we can construct the intersection point I ′1 of C2 with the
line P1I1. Then T2 is the intersection of I2I

′
1 and s. See Figure 1 and [1, Satz 4.10]).

6. Point T1: The point T1 is constructed in the same way as T2, above, with the point Q2 in
place of P1 and the conic C1 in place of C2.

7. Points A1, B1: By item (b) of the above lemma we have the harmonic ranges (P1, R;A1, B1)
and (Q2, T1;A1, B1). Hence, the pointsA1 andB1 are determined by the points P1, R,Q2, T1—
which we have already constructed—and can be constructed using a compass and ruler (see
Figure 3, and [1, p. 78]).

8. Points A2, B2: The points A2, B2 are constructed as above with respect to the points
P1, T2, Q2, R and using item (c) of the lemma.

9. Points H1,H2: The points H1, H2 are constructed as above with respect to the points
A1, B1, A2, B2 and using item (d) of the lemma.

10. Points J1, J2: Finally, the other two intersection points J1, J2 of C1 and C2 are obtained
as follows: J1 is the intersection of the lines I1H2 and I2H1, and J2 is the intersection of the
lines I1H1 and I2H2.

3 Solving the quartic by conics

It is well known that a quartic equation in the variable z can be reduced to a cubic equation.
The usual procedure is to first get rid of the cubic term in the quartic equation. This is done
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Figure 3: Construction of the points A1, B1. The circle c has P1R as a
diameter. The segments in T1 and Q2 are orthogonal to s.

by a substitution z = x − µ, leading to the depressed quartic in the variable x. Then one can
follow Ferrari’s solution, for example, which leads to a cubic equation (see, e.g., [5, §3.2]). Another
way is to employ Galois theory and factorization to reduce the quartic to a cubic problem (see,
e.g., [4]). In this section, we want to show an alternative way which is inspired by the geometric
considerations of Section 2 to reduce the quartic to a cubic equation. The idea is that the pairs of
lines I1J1, I2J2 and I1J2, I2J1 are degenerate conics in the pencil spanned by C1 and C2. And to
compute theses degenerate conics from the equations of C1, C2 is only a cubic problem. To make
this idea work, we only need to reformulate a given quartic equation as a system of two quadratic
equations in two variables which represent the conics C1 and C2. Before we describe the general
case, we illustrate the method with the following example.

Example. Suppose we want to solve the quartic

z4 + z3 − 45z2 − 97z + 140 = 0. (2)

To have it easier later on, we first remove the quadratic term in the equation. If we substitute
z = x − µ we find the coefficient 3(2µ2 − µ − 15) for x2. This quadratic expression vanishes for
µ = 3. The resulting quartic equation in x is then

x4 − 11x3 + 92x+ 80 = 0. (3)

Now we consider the two conics

C1 : y − x2 = 0 (4)

C2 : y2 − 11xy + 92x+ 80 = 0 (5)

Clearly, if x, y is a solution of the system (4)–(5), then x solves (3), and vice versa, if x is a solution
of (3), then x, y = x2 is a solution of (4)–(5). We can write the first conic (4) as ⟨X,AX⟩ = 0,
where X = (x, y, 1)⊤ and

A =

2 0 0
0 0 −1
0 −1 0

 .

Here, ⟨·, ·⟩ denotes the Euclidean inner product in R3. Similarly, the second conic (5) is given by
the equation ⟨X,BX⟩ = 0 with

B =

 0 −11 92
−11 2 0
92 0 160

 .
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The pencil of the two conics, i.e., the conics whose equations are linear combinations of (4) and
(5), are then given by

⟨X, (λA+B)X⟩ = 0. (6)

Observe that all conics of the pencil pass through the intersections of C1 and C2. The idea is now
to find two values of λ such that the matrix λA+B is singular and hence the corresponding conic
of the pencil degenerates to two straight lines. Then, the intersections of the conics C1 and C2 can
simply be computed by intersecting these lines, see Figure 4.
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Figure 4: The parabola C1 and the hyperbola C2 are shown in red. The
degenerate conics in the pencil of C1, C2 are the blue lines g1, h1 and the
green lines g2, h2.

The point is that finding the degenerate conics in the pencil of C1 and C2 corresponds to the cubic
equation det(λA + B) = −2λ3 + 2664λ − 36288 = 0. Observe that there is no quadratic term,
which makes it quite easy to find the roots in general (see below). In our model case we find the
values λ1 = 18 and λ2 = 24. For these values (6) factors in two straight lines as follows (see below
for the general case):

⟨X, (18A+B)X⟩ = ⟨X, g1⟩⟨X,h1⟩, ⟨X, (24A+B)X⟩ = ⟨X, g2⟩⟨X,h2⟩,

with

g1 =

 9
−1
10

 , h1 =

 4
−2
16

 , g2 =

 8
−1
20

 , h2 =

 6
−2
8

 .

The intersections of these lines can be computed by the respective cross products:

g1 × g2 = −

 10
100
1

 , g1 × h2 = −12

−1
1
1

 , h1 × g2 = 12

−2
4
1

 , h1 × h2 = 4

 4
16
1

 .

We read off the solutions x1 = 10, x2 = −1, x3 = −2, x4 = 4 of the equation (3). Hence, the
solutions of the original equation (2) are z1 = 7, z2 = −4, z3 = −5, z4 = 1.
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The general case of a quartic equation. Let uns now solve the general quartic equation

a0 + a1z + a2z
2 + a3z

3 + z4 = 0.

The coefficients are allowed to be complex numbers, and all subsequent computations are carried
out in C. Substituting z = x−µ yields for the quadratic term of x2 the expression a2−3a3µ+6µ2.
This is a quadratic equation, and we can choose one of its solutions to obtain a quartic equation
without quadratic term. So, from now on we assume that the quartic has the form

a0 + a1x+ a3x
3 + x4 = 0. (7)

Consider the two conics

C1 : y − x2 = 0 (8)

C2 : a0 + a1x+ a3xy + y2 = 0. (9)

As in the example above we have that if x, y is a solution of the system (8)–(9), then x solves (7),
and vice versa, if x is a solution of (7), then x, y = x2 is a solution of (8)–(9). As before, the first
conic (8) is given by ⟨X,AX⟩ = 0, and the second conic by ⟨X,BX⟩ = 0, where now

B =

 0 a3 a1
a3 2 0
a1 0 2a0

 .

The cubic equation to determine the degenerate conics in the pencil of C1, C2 is

det(λA+B) = a21 + a0a
2
3︸ ︷︷ ︸

=:p

+(a1a3 − 4a0)︸ ︷︷ ︸
=:q

λ+ λ3 = 0. (10)

If p = 0, then λ = 0 is a solution. This means that B is singular and the left-hand side of (9) is the
product of two linear terms, namely (−a1/a3 + a3x+ y)(a1/a3 + y) if a3 ̸= 0 and (y +

√
−a0)(y −√

−a0) if a3 = 0. The problem is therefore reduced to determining the intersection points of the
parabola C1 and straight lines. So let us assume now that p ̸= 0. Then, (10) hat at least two
different solutions. Observe that every complex number λ ̸= 0 can be written as λ = α + β with
α3 + β3 = −p. Indeed, for β = λ− α we have β3 = λ3 − 3λ2α+ 3λα2 − α3 and hence

−p = α3 + β3 = λ(λ2 − 3λα+ 3α2) .

This is a quadratic equation for α ∈ C with a solution if λ ̸= 0. In particular, a root λ of (10) can
be written in the form λ = α+ β with α3 + β3 = −p. Using this in (10), we find

0 = p+ q(α+ β) + (α+ β)3 = (α+ β)(3αβ + q)

and hence, since α+ β ̸= 0, it follows that β = − q
3α . This yields

−p = α3 + β3 = α3 − q3

27α3

which is a quadratic equation in α3, and hence we can consider (10) as solved. We pick two
solutions λ1, λ2. For these values the conics given by ⟨X, (λjA+B)X⟩ = 0 are the product of two
straight lines

0 = ⟨X, (λjA+B)X⟩ = ⟨X, gj⟩⟨X,hj⟩, (11)

say

gj =

aj
bj
cj

 , hj =

uj

vj
wj

 .

Writing out the matrix we have

λjA+B =

2λj a3 a1
a3 2 −λj

a1 −λj 2a0

 .
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If we compare the coefficients in (11), we obtain:

au = 2λj du+ av = 2a3

bv = 2 cu+ aw = 2a1

cw = 2a0 cv + bw = −2λj

One finds the following solution (up to a nonzero factor):

(uj , vj , wj) = (2λj , a3 +
√
µj , a1 + qj

√
νj)

(aj , bj , cj) = (2λj , a3 −
√
µj , a1 − qj

√
νj)

where
µj = a23 − 4λj , νj = a21 − 4a0λj

are negative minors of λjA+B. Depending on the choice of the roots of µ1 and νj the sign qj is

qj =
a1a3 + 2λ2

j√
µj

√
νj

∈ {−1, 1}.

Observe that
0 = −2λj det(λjA+B) = (a1a3 + 2λ2

j )
2 − µjνj .

If µjνj = 0, one can choose either qj = 1 or qj = −1. Now that the lines gj and hj are determined,
their intersections and hence the solutions xj are easily computed by the respective cross products,
as in the example.

Of course, there are other ways to find the factorization in (11). For example, one can diagonalize
the matrix λ1A+B with an orthogonal matrix T such that

T⊤(λ1A+B)T = diag(ξ1, ξ2, 0) =: D

with eigenvalues ξ1, ξ2. In this form, we have

0 = ⟨X,DX⟩ = ξ1x
2 + ξ2y

2 = (
√
ξ1x+ i

√
ξ2y)(

√
ξ1x− i

√
ξ2y).

The two lines are therefore 〈 √
ξ1

±i
√
ξ2

0

 ,

x
y
1

〉
= 0.

Backtransformation gives the line 〈
T

 √
ξ1

±i
√
ξ2

0

 ,

x
y
1

〉
= 0.

Hence the lines g1, h1 are given by
√
ξ1n1 ± i

√
ξ2n2, where n1, n2 are the first two columns of T ,

i.e., the two eigenvectors of T that corrrespond to the eigenvalues ξ1, ξ2. The same can be done
with the matrix λ2A+B in order to determine the lines g2, h2.
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