Some implications of Ramsey Choice for families of n-element sets

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
lorenz.halbeisen@math.ethz.ch
Salome Schumacher
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
salome_schumacher@hotmail.com

key-words: Axiom of Choice, weak forms of the Axiom of Choice, Ramsey Choice, Partial Choice for infinite families of n-element sets, Permutation models, Pincus' transfer theorems

2020 Mathematics Subject Classification: 03E25 03E35

Abstract

For $n \in \omega$, the weak choice principle RC_{n} is defined as follows: For every infinite set X there is an infinite subset $Y \subseteq X$ with a choice function on $[Y]^{n}:=\{z \subseteq Y:|z|=n\}$. The choice principle C_{n}^{-}states the following: For every infinite family of n-element sets, there is an infinite subfamily $\mathcal{G} \subseteq \mathcal{F}$ with a choice function. The choice principles LOC_{n}^{-}and WOC_{n}^{-}are the same as C_{n}^{-}, but we assume that the family \mathcal{F} is linearly orderable (for LOC_{n}^{-}) or well-orderable (for WOC_{n}^{-}). In the first part of this paper, for $m, n \in \omega$ we will give a full characterization of when the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}$holds in ZF . We will prove the independence results by using suitable Fraenkel-Mostowski permutation models. In the second part, we will show some generalizations. In particular, we will show that $\mathrm{RC}_{5} \Rightarrow \mathrm{LOC}_{5}^{-}$and that $\mathrm{RC}_{6} \Rightarrow \mathrm{C}_{3}^{-}$, answering two open questions from Halbeisen and Tachtsis [4]. Furthermore, we will show that $\mathrm{RC}_{6} \Rightarrow \mathrm{C}_{9}^{-}$and that $\mathrm{RC}_{7} \Rightarrow \mathrm{LOC}_{7}^{-}$.

1 Definitions and Terminology

The notation we use is standard and follows that of [5]. Now we list some definitions that shall be used in the sequel:

Definition 1.1. Let n be an arbitrary positive natural number.

1. C_{n}^{-}states that every infinite family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function.
2. LOC_{n}^{-}states that every infinite, linearly orderable family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function.
3. WOC_{n}^{-}states that every infinite, well-orderable family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function.
4. RC_{n} states that every infinite set X has an infinite subset $Y \subseteq X$ such that the set

$$
[Y]^{n}=\{z \subseteq Y:|z|=n\}
$$

has a choice function.
5. Let \mathcal{F} be an infinite family of n-element sets. A Kinna-Wagner selection function of \mathcal{F} is a function f with $\operatorname{dom}(f)=\mathcal{F}$ such that for all $p \in \mathcal{F}, \emptyset \neq f(p) \subsetneq p$.
6. KW_{n}^{-}states that every infinite family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a Kinna-Wagner selection function.
7. LOKW_{n}^{-}states that every infinite, linearly orderable family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a Kinna-Wagner selection function.

In 1995, Montenegro proved in [6] that $\mathrm{RC}_{n} \Rightarrow \mathrm{C}_{n}^{-}$for all $n \in\{2,3,4\}$. It is still unknown whether this implication holds for any $n \geq 5$. In 2017, Halbeisen and Tachtsis found interesting results concerning the implications $\mathrm{RC}_{m} \Rightarrow \mathrm{C}_{n}^{-}$and $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ for $m, n \in \omega \backslash\{0,1\}$ (see [4). Among other results they proved that the following statements are consistent with ZF or provable in ZF, respectively:
(α) If $m, n \in \omega \backslash\{0,1\}$ are such that there is a prime p with $p \nmid m$ and $p \mid n$, then

$$
\mathrm{RC}_{m} \nRightarrow \mathrm{RC}_{n} \text { and } \mathrm{RC}_{m} \nRightarrow \mathrm{C}_{n}^{-} .
$$

$(\beta) \mathrm{RC}_{5} \nRightarrow \mathrm{LOC}_{2}^{-}$and $\mathrm{RC}_{5} \nRightarrow \mathrm{LOC}_{3}^{-}$.
(γ) For every $n \in \omega \backslash\{0,1\}$ we have that $\mathrm{C}_{n}^{-} \Rightarrow \mathrm{LOC}_{n}^{-} \Rightarrow \mathrm{WOC}_{n}^{-}$but none of these implications is reversible.
(δ) For every $n \in \omega \backslash\{0,1\}$ the implication $\mathrm{RC}_{2 n} \Rightarrow \mathrm{LOKW}_{n}^{-}$holds. In particular we have that $\mathrm{RC}_{6} \Rightarrow \mathrm{LOC}_{3}^{-}$(notice that $\mathrm{LOKW}_{3}^{-} \Leftrightarrow \mathrm{LOC}_{3}^{-}$).

In Section 2 of this paper, we will give a full characterization of when the implication $\mathrm{RC}_{n} \Rightarrow \mathrm{WOC}_{m}^{-}$ (for $n, m \in \omega \backslash\{0,1\}$) is provable in ZF. To be more precise, it will be shown (see Theorem 2.10) that for every $m, n \in \omega \backslash\{0,1\}, \mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}$is provable in ZF if an only if the following condition holds: Whenever we can write n in the form

$$
n=\sum_{i<k} a_{i} p_{i},
$$

where p_{0}, \ldots, p_{k-1} are prime numbers and $a_{0}, \ldots, a_{k-1} \in \omega \backslash\{0\}$, then we find $b_{0}, \ldots, b_{k-1} \in \omega$ with

$$
m=\sum_{i<k} b_{i} p_{i} .
$$

In order to prove the independence of this implication with ZF, we shall use permutation models (see [5] for an introduction to permutation models and to models of ZFA). With Pincus' transfer theorems (see [7]), we are able to transfer the results obtained in ZFA to ZF. Furthermore, Theorem 2.10 gives us the following three special cases:

1. For all $n \in \omega$ we have that $\mathrm{RC}_{n} \Rightarrow \mathrm{WOC}_{n}^{-}$(see Corollary 2.3).
2. Let p be a prime number, $m \in \omega \backslash\{0\}$ and $n \in \omega \backslash\{0,1\}$. Then

$$
\mathrm{RC}_{p^{m}} \Rightarrow \mathrm{WOC}_{n}^{-}
$$

if and only if $n \mid p^{m}$ or $p=2, m=1$ and $n=4$ (see Corollary 2.12).
3. If $\mathrm{RC}_{m} \nRightarrow \mathrm{WOC}_{n}^{-}$, we also have that $\mathrm{RC}_{m} \nRightarrow \mathrm{RC}_{n}^{-}$and $\mathrm{RC}_{m} \nRightarrow \mathrm{C}_{n}^{-}$(see Corollary 2.11). This generalizes Halbeisens and Tachtsis' result (α).

In Section3, we will give some insights into the question what happens when we weaken the assumption that our family of n-element sets is well-ordered. We will prove that $\mathrm{RC}_{6} \Rightarrow \mathrm{C}_{n}^{-}$for $n \in\{3,9\}$ and that $\mathrm{RC}_{n} \Rightarrow \mathrm{LOC}_{n}^{-}$for $n \in\{5,7\}$.

2 On the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}$

2.1 When is $\mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}$provable in ZF ?

In this section, we will characterise the values m and n for which the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}$ is provable in ZF. However, before we state and prove the main result of this section, we introduce some notation and prove an auxiliary result.

Two finite partitions $\left\{x_{i}: 0 \leq i \leq l\right\}$ and $\left\{y_{j}: 0 \leq j \leq k\right\}$ of sets of the same cardinality are of the same type, if $l=k$ and for each $0 \leq i \leq l$ we have $\left|x_{i}\right|=\left|y_{i}\right|$.
Let k be a positive integer and let $n=\sum_{i<k} a_{i} p_{i}$, where p_{0}, \ldots, p_{k-1} are prime numbers and $a_{0}, \ldots, a_{k-1} \in \omega \backslash\{0\}$. Furthermore, for an infinite, well-ordered set λ, let $\mathcal{F}=\left\{F_{\alpha}: \alpha \in \lambda\right\}$ be an infinite family of pairwise disjoint n-element sets, where for each $\alpha \in \lambda, F_{\alpha}$ is partitioned into sets $F_{\alpha, i}(i<k)$, where $\left|F_{\alpha, i}\right|=a_{i} p_{i}$, i.e.,

$$
F_{\alpha}=\bigcup_{i<k} F_{\alpha, i} \quad \text { and } \quad F_{\alpha, i} \cap F_{\alpha, i^{\prime}}=\emptyset \text { whenever } i \neq i^{\prime} .
$$

In particular, for any $\alpha, \alpha^{\prime} \in \lambda$, the partitions $\left\{F_{\alpha, i}: i<k\right\}$ and $\left\{F_{\alpha^{\prime}, i}: i<k\right\}$ are of the same type.
For $\alpha \in \lambda$ we say that $d \subseteq F_{\alpha}$ diagonalises F_{α} if for all $i<k,\left|F_{\alpha, i} \cap d\right|=1$. Let

$$
\mathcal{D}_{\alpha}:=\left\{d \subseteq F_{\alpha}: d \text { diagonalises } F_{\alpha}\right\}
$$

and for each $\alpha \in \lambda$ let D_{α} be a non-empty subset of \mathcal{D}_{α} such that for any $\alpha, \alpha^{\prime} \in \lambda$ we have $\left|D_{\alpha}\right|=\left|D_{\alpha^{\prime}}\right|$.

Finally, for some positive integer $t \geq 1$ and some prime number p, for each $\alpha \in \lambda$ let $\left\{D_{\alpha, j}^{p}: j<t\right\}$ be a partition of $\left[D_{\alpha}\right]^{p}$ such that for any $\alpha, \alpha^{\prime} \in \lambda$, the partitions $\left\{D_{\alpha, j}^{p}: j<t\right\}$ and $\left\{D_{\alpha^{\prime}, j}^{p}: j<t\right\}$ are of the same type.

Lemma 2.1. Let $n=\sum_{i<k} a_{i} p_{i}, \mathcal{F}=\left\{F_{\alpha}: \alpha \in \lambda\right\}, F_{\alpha}=\bigcup\left\{F_{\alpha, i}: i<k\right\}, D_{\alpha}$, and $\left\{D_{\alpha, j}^{p}: j<t\right\}$ be as above. Furthermore, let $p:=p_{i_{0}}$ for some $p_{i_{0}} \in\left\{p_{0}, \ldots, p_{k-1}\right\}$, and assume that for some integer $l \geq 0$ there is a choice function

$$
h:\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l+p} \rightarrow \bigcup_{\alpha \in \lambda} D_{\alpha} .
$$

Then there is an infinite subset $\lambda^{\prime} \subseteq \lambda$ such that we are in at least one of the following cases:
(a) There is a choice function

$$
h^{\prime}:\left[\bigcup_{\alpha \in \lambda^{\prime}} D_{\alpha}\right]^{l} \rightarrow \bigcup_{\alpha \in \lambda^{\prime}} D_{\alpha}
$$

(b) We can simultaneously refine the partitions on $\left\{F_{\alpha}: \alpha \in \lambda^{\prime}\right\}$ to partitions of the same type (and extend accordingly the corresponding sets D_{α}).
(c) We can simultaneously refine the partitions on $\left\{\left[D_{\alpha}\right]^{p}: \alpha \in \lambda^{\prime}\right\}$ to partitions of the same type.
(d) For each $\alpha \in \lambda^{\prime}$ we can choose a non-empty proper subset D_{α}^{\prime} of D_{α}, i.e.,

$$
\emptyset \neq D_{\alpha}^{\prime} \subsetneq D_{\alpha},
$$

such that for all $\alpha, \beta \in \lambda^{\prime}$ we have $\left|D_{\alpha}^{\prime}\right|=\left|D_{\beta}^{\prime}\right|$.
Proof. Recall that for all $\alpha, \alpha^{\prime} \in \lambda$ we have $\left|D_{\alpha}\right|=\left|D_{\alpha^{\prime}}\right|$. Now, assume that there is a $j_{0}<k$ such that for $n_{j_{0}}:=a_{j_{0}} p_{j_{0}}$ and all $\alpha \in \lambda$ we have

$$
n_{j_{0}} \nmid\left|D_{\alpha}\right| .
$$

For all $\alpha \in \lambda$ and all $z \in F_{\alpha}$ define

$$
\# z:=\left|\left\{X \in D_{\alpha}: z \in X\right\}\right|
$$

Since $\sum_{z \in F_{\alpha, j_{0}}} \# z=\left|D_{\alpha}\right|,\left|F_{\alpha, j_{0}}\right|=n_{j_{0}}$ and $n_{j_{0}} \nmid\left|D_{\alpha}\right|$, it follows that

$$
\emptyset \neq\left\{z \in F_{\alpha, j_{0}}: \forall z^{\prime} \in F_{\alpha, j_{0}}\left(\# z \leq \# z^{\prime}\right)\right\} \subsetneq F_{\alpha, j_{0}}
$$

Therefore, we can simultaneously refine the partition on each F_{α} for $\alpha \in \lambda$. Moreover, notice that since $n_{j_{0}}$ is finite, we find an infinite set $\lambda^{\prime} \subseteq \lambda$ such that for each $\alpha \in \lambda^{\prime}$, the block $F_{\alpha, j_{0}}$ is partitioned into two non-empty blocks $F_{\alpha, j_{1}}$ and $F_{\alpha, j_{2}}$ where for all $\alpha, \beta \in \lambda^{\prime},\left|F_{\alpha, j_{1}}\right|=\left|F_{\beta, j_{1}}\right|$ and $\left|F_{\alpha, j_{2}}\right|=\left|F_{\beta, j_{2}}\right|$. This shows that all the refined partitions are of the same type and we are in Case (b).

So, we can assume that for all $i<k$ and all $\alpha \in \lambda$ we have

$$
n_{i}| | D_{\alpha} \mid
$$

where $n_{i}:=a_{i} p_{i}$.

We consider now the following four cases:
Case 1: There is a $Z_{0} \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$ and an infinite subset $\lambda^{\prime} \subseteq \lambda$ such that

$$
\forall \alpha \in \lambda^{\prime} \forall X \in\left[D_{\alpha}\right]^{p}\left(h\left(Z_{0} \cup X\right) \in X\right) .
$$

By shrinking λ^{\prime} if necessary, we may assume that $Z_{0} \cap \bigcup_{\alpha \in \lambda^{\prime}} D_{\alpha}=\emptyset$. For every $\alpha \in \lambda^{\prime}$ and all $d \in D_{\alpha}$ define

$$
\operatorname{deg}_{\alpha}(d):=\left|\left\{X \in\left[D_{\alpha}\right]^{p}: h\left(Z_{0} \cup X\right)=d\right\}\right| .
$$

Note that $\sum_{d \in D_{\alpha}} \operatorname{deg}_{\alpha}(d)=\left|\left[D_{\alpha}\right]^{p}\right|=\binom{\left|D_{\alpha}\right|}{p}$. Since $p=p_{i_{0}}$ and since $n_{i_{0}}| | D_{\alpha} \mid$, we have $p\left|\left|D_{\alpha}\right|\right.$. Hence, it follows that $\left|D_{\alpha}\right| \nmid\binom{\left|D_{\alpha}\right|}{p}$. To see this, let $D:=\left|D_{\alpha}\right|$ and notice that if $D=a p^{s}$ for some positive integers a, s where $p \nmid a$, then

$$
\binom{D}{p}=\frac{a p^{s} \cdot\left(a p^{s}-1\right) \cdot \ldots \cdot\left(a p^{s}-p+1\right)}{1 \cdot 2 \cdot \ldots \cdot p}=\frac{a p^{s-1} \cdot\left(a p^{s}-1\right) \cdot \ldots \cdot\left(a p^{s}-p+1\right)}{1 \cdot 2 \cdot \ldots \cdot(p-1)} .
$$

Hence, $p^{s} \nmid\binom{D}{p}$ and in particular we have $D \nmid\binom{D}{p}$.
Thus, for each $\alpha \in \lambda^{\prime}$ we can choose

$$
\emptyset \neq D_{\alpha}^{\prime}:=\left\{d \in D_{\alpha}: \forall d^{\prime} \in D_{\alpha}\left(\operatorname{deg}_{\alpha}(d) \leq \operatorname{deg}_{\alpha}\left(d^{\prime}\right)\right)\right\} \subsetneq D_{\alpha} .
$$

Moreover, notice that since D_{α} is finite, by shrinking λ^{\prime} if necessary, we can assume that for all $\alpha, \beta \in \lambda^{\prime}$ we have $\left|D_{\alpha}^{\prime}\right|=\left|D_{\beta}^{\prime}\right|$, and we are in Case (d).

Case 2: There is a set $Z_{0} \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$, a non-negative integer $j_{0}<t$, and an infinite subset $\lambda^{\prime} \subseteq \lambda$ such that $Z_{0} \cap \bigcup_{\alpha \in \lambda^{\prime}} D_{\alpha}=\emptyset$ and

$$
\forall \alpha \in \lambda^{\prime} \exists X, X^{\prime} \in D_{\alpha, j_{0}}^{p}\left(h\left(Z_{0} \cup X\right) \in Z_{0} \wedge h\left(Z_{0} \cup X^{\prime}\right) \in X^{\prime}\right)
$$

In this case, we can simultaneously refine the partition on $\left[D_{\alpha}\right]^{p}$ for each $\alpha \in \lambda^{\prime}$. Moreover, since $\left[D_{\alpha}\right]^{p}$ is finite (for all $\alpha \in \lambda^{\prime}$), by shrinking λ^{\prime} if necessary, we can assume that for all $\alpha, \beta \in \lambda^{\prime}$, the partition on $\left[D_{\alpha}\right]^{p}$ has the same type as the partition on $\left[D_{\beta}\right]^{p}$, and we are in Case (c).
Case 3: There is a set $Z_{0} \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$, a non-negative integer $j_{0}<t$, and an infinite subset $\lambda^{\prime} \subseteq \lambda$ such that $Z_{0} \cap \bigcup_{\alpha \in \lambda^{\prime}} D_{\alpha}=\emptyset$ and

$$
\forall \alpha \in \lambda^{\prime}\left(\left(\forall X \in D_{\alpha, j_{0}}^{p} h\left(Z_{0} \cup X\right) \in Z_{0}\right) \wedge \exists X, X^{\prime} \in D_{\alpha, j}^{p}\left(h\left(Z_{0} \cup X\right) \neq h\left(Z_{0} \cup X^{\prime}\right)\right)\right) .
$$

In this case, we can simultaneously refine the partition on $\left[D_{\alpha}\right]^{p}$ for each $\alpha \in \lambda^{\prime}$. Moreover, by shrinking λ^{\prime} if necessary, we can assume that all partitions are of the same type and we are again in Case (c).
Case 4: For all $Z \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$ and for all but finitely many $\alpha \in \lambda$ we have

$$
\begin{equation*}
\exists j<t \forall X, X^{\prime} \in D_{\alpha, j}^{p}\left(h(Z \cup X)=h\left(Z \cup X^{\prime}\right) \in Z\right) \tag{*}
\end{equation*}
$$

Then, for each $Z \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$ let $\alpha_{Z} \in \lambda$ be the least element with respect to the well-ordering on λ such that ${ }_{*}^{*}$) holds for $\alpha=\alpha_{Z}$. Furthermore, for every $Z \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$ let $j_{Z}<t$ be the least integer such that (*) holds for $\alpha=\alpha_{Z}$ and $j=j_{Z}$. So, for every $Z \in\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l}$ we have

$$
\begin{equation*}
\forall X, X^{\prime} \in D_{\alpha_{Z}, j_{Z}}^{p}\left(h(Z \cup X)=h\left(Z \cup X^{\prime}\right) \wedge h(Z \cup X) \in Z\right) . \tag{类}
\end{equation*}
$$

Finally, we define a function $h^{\prime}:\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l} \rightarrow \bigcup_{\alpha \in \lambda} D_{\alpha}$ by stipulating

$$
\begin{aligned}
h^{\prime}:\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l} & \longrightarrow \bigcup_{\alpha \in \lambda} D_{\alpha} \\
Z & \longmapsto h(Z \cup X)
\end{aligned}
$$

where X is an arbitrary element of $D_{\alpha_{Z}, j_{Z}}^{p}$. Note that by 㥪, h^{\prime} is a well-defined choice function and we are in Case (a).

Now, we are ready to prove the main result of this section.
Proposition 2.2. Let $m, n \in \omega \backslash\{0,1\}$ and assume that whenever we can write n in the form

$$
n=\sum_{i<k} a_{i} p_{i},
$$

where p_{0}, \ldots, p_{k-1} are prime numbers and a_{0}, \ldots, a_{k-1} are positive integers, then we find $b_{0}, \ldots, b_{k-1} \in$ ω with

$$
m=\sum_{i<k} b_{i} p_{i} .
$$

Then, in ZF we have

$$
\mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}
$$

Proof. Let $\mathcal{F}=\left\{F_{\alpha}: \alpha \in \lambda\right\}$ be an infinite, well-ordered family of pairwise disjoint n-element sets. The goal is to construct an infinite subfamily of \mathcal{F} with a choice function.

Applying RC_{m} to the set $X_{0}:=\bigcup_{\alpha \in \lambda} F_{\alpha}$, we obtain an infinite set $Y_{0} \subseteq X_{0}$ such that the set $\left[Y_{0}\right]^{m}$ has a choice function. For $1 \leq j \leq n$, let

$$
\lambda_{j}:=\left\{\alpha \in \lambda:\left|F_{\alpha} \cap Y_{0}\right|=j\right\} .
$$

Since n is finite and λ is infinite, there exists a j_{0} with $1 \leq j_{0} \leq n$ such that $\lambda_{j_{0}} \subseteq \lambda$ is infinite. If $j_{0}=1$ we are done since $\left\{F_{\alpha}: \alpha \in \lambda_{1}\right\} \subseteq \mathcal{F}$ has a choice function. If $1<j_{0}<n$, we apply RC_{m} to the set

$$
X_{1}:=\bigcup\left\{F_{\alpha} \backslash Y_{0}: \alpha \in \lambda_{j_{0}}\right\}
$$

and obtain an infinite set $Y_{1} \subseteq X_{1}$ such the set $\left[Y_{1}\right]^{m}$ has a choice function. As above, for $1 \leq j \leq$ $n-j_{0}$, let

$$
\lambda_{j_{0}, j}:=\left\{\alpha \in \lambda_{j_{0}}:\left|F_{\alpha} \cap Y_{1}\right|=j\right\} .
$$

Then there exists a j_{1} with $1 \leq j_{1} \leq n-j_{0}$ such that $\lambda_{j_{0}, j_{1}} \subseteq \lambda$ is infinite. If $j_{1}=1$, then the infinite family $\left\{F_{\alpha}: \alpha \in \lambda_{j_{0}, 1}\right\} \subseteq \mathcal{F}$ has a choice function. Proceeding this way, we either find an infinite subfamily of \mathcal{F} with a choice function, or for an infinite subset $\lambda_{0} \subseteq \lambda$, for all $\alpha \in \lambda_{0}$ we can simultaneously partition the sets F_{α} into sets $F_{\alpha, i}$ with $i<k$ for some $k \geq 1$. Since for each
$i<k,\left|F_{\alpha, i}\right| \geq 2$, we have $\left|F_{\alpha, i}\right|=a_{i} p_{i}$, where p_{i} is prime and $a_{i}>0$. Finally, for each $\alpha \in \lambda_{0}$, let let $D_{\alpha}:=\left\{d \subseteq F_{\alpha}: d\right.$ diagonalises $\left.F_{\alpha}\right\}$.

Now, since $n=\sum_{i<k} a_{i} p_{i}$, by our assumption we find $b_{0}, \ldots, b_{k-1} \in \omega$ with $m=\sum_{i<k} b_{i} p_{i}$, and since $m \geq 2$, there is an $i_{0}<k$ with $b_{i_{0}} \neq 0$. In particular, we have $m \geq p_{i_{0}}$. Let $p:=p_{i_{0}}$ and $l:=m-p$, where $l \geq 0$. Furthermore, for $t=1,\left\{D_{\alpha, j}: j<t\right\}=\left[D_{\alpha}\right]^{p}$ is the trivial partition of $\left[D_{\alpha}\right]^{p}$. Thus, by RC_{m}, there is an infinite set $\lambda \subseteq \lambda_{0}$ and a choice function

$$
h:\left[\bigcup_{\alpha \in \lambda} D_{\alpha}\right]^{l+p} \rightarrow \bigcup_{\alpha \in \lambda} D_{\alpha} .
$$

So, we have all the requirements to apply Lemma 2.1 iteratively until - after finitely many steps the partitions of the F_{α} 's or of the $\left[D_{\alpha}\right]^{p}$'s contain a block with just one element, or the sets D_{α} are singletons: To see this, notice first that if we are in one of the cases (b), (c), or (d), or if $l=0$, then we can either refine the partition of the F_{α} 's or of the $\left[D_{\alpha}\right]^{p}$'s. Now, if we are in case (a) for $l>0$, then, by the properties of

$$
m=\sum_{i<k} b_{i} p_{i}
$$

and since we start with $l=m-p, l \geq p_{i}$ (for some $i<k$) and we can proceed with $l^{\prime}:=l-p_{i}$.
So, after finitely many steps - in particular after finitely many choices of sets Z_{0} — we are in the situation where the partitions of the F_{α} 's or of the $\left[D_{\alpha}\right]^{p}$'s contain a block with just one element, or the D_{α} 's are reduced to singletons, which gives us an algorithm to select an element from each of the remaining F_{α} 's - where in the case when $\left|D_{\alpha}\right|=1$, we choose the element in $D_{\alpha} \cap F_{\alpha, 0}$. \dashv

Corollary 2.3. For every $n \in \omega$ we have that

$$
\mathrm{RC}_{n} \Rightarrow \mathrm{WOC}_{n}^{-}
$$

2.2 When is $\mathrm{RC}_{m} \nRightarrow \mathrm{WOC}_{n}^{-}$consistent with ZF?

In this section we will show that for all $n, m \in \omega \backslash\{0,1\}$ which do not satisfy the conditions of Proposition 2.2 we get that

$$
\mathrm{RC}_{m} \nRightarrow \mathrm{WOC}_{n}^{-}
$$

is consistent with ZF. In a first step we will construct suitable Fraenkel-Mostowski permutation models - similar to those constructed in [2, Sec.6] - in which we have $\mathrm{RC}_{m} \nRightarrow \mathrm{WOC}_{n}^{-}$. We will then see that both statements, RC_{m} and WOC_{n}^{-}, are injectively boundable. So, by [7, Theorem 3A3] the result is transferable to ZF .
Let p_{0} and p_{1} be two prime numbers. We start with a ground model $\mathcal{M}_{p_{0}, p_{1}}$ of ZFA +AC with a set of atoms

$$
\mathcal{A}:=\bigcup\left\{A_{i}: i \in \omega\right\} \cup \bigcup\left\{B_{j}: j \in \omega\right\}
$$

where for all $i, j \in \omega$ the sets A_{i} and B_{j} are called blocks. These blocks have the following properties:

- For all $i \in \omega, A_{i}=\left\{a_{i, k}: k<p_{0}\right\}$ and $B_{i}=\left\{b_{i, l}: l<p_{1}\right\}$ with $\left|A_{i}\right|=p_{0}$ and $\left|B_{i}\right|=p_{1}$.
- The blocks are pairwise disjoint.

For all $i, j \in \omega$ we define a permutation on \mathcal{A} as follows:

- For all $i \in \omega$ and all $k<p_{0}$ let

$$
\alpha_{i}\left(a_{i, k}\right):= \begin{cases}a_{i, 0} & \text { if } k=p_{0}-1, \\ a_{i, k+1} & \text { if } k<p_{0}-1,\end{cases}
$$

and $\alpha_{i}(a)=a$ for all $a \in \mathcal{A} \backslash A_{i}$. Analogously for all $j \in \omega$ and all $l<p_{1}$ let

$$
\beta_{j}\left(b_{j, l}\right):= \begin{cases}b_{i, 0} & \text { if } l=p_{1}-1 \\ b_{j, l+1} & \text { if } l<p_{1}-1\end{cases}
$$

and $\beta_{j}(b)=b$ for all $b \in \mathcal{A} \backslash B_{j}$.
Now we define an abelian group G of permutations of \mathcal{A} by requiring

$$
\phi \in G \Longleftrightarrow \phi=\alpha \circ \beta,
$$

where

$$
\alpha=\prod_{i \in \omega} \alpha_{i}^{k_{i}} \text { with } k_{i}<p_{0} \text { for each } i \in \omega
$$

and

$$
\beta=\prod_{j \in \omega} \beta_{j}^{l_{j}} \text { with } l_{j}<p_{1} \text { for each } j \in \omega .
$$

Let \mathcal{F} be the normal filter on G generated by the subgroups

$$
\operatorname{fix}_{G}(E)=\{\phi \in G: \forall a \in E(\phi(a)=a)\}
$$

with $E \in \operatorname{fin}(\mathcal{A}):=\{A \subseteq \mathcal{A}:|A| \in \omega\}$. Let $\mathcal{V}_{p_{0}, p_{1}}$ be the class of all hereditarily symmetric sets.
Remark 2.4. We can also work with k blocks of size p_{0}, \ldots, p_{k-1}, where p_{i} is a prime number for every $i<k$. The corresponding permutation model is denoted by $\mathcal{V}_{p_{0}, \ldots, p_{k-1}}$.
Definition 2.5. A set $E \in \operatorname{fin}(\mathcal{A})$ is closed if and only if for all $i, j \in \omega$ we have that

$$
A_{i} \cap E \neq \emptyset \Rightarrow A_{i} \subseteq E \quad \text { and } \quad B_{j} \cap E \neq \emptyset \Rightarrow B_{j} \subseteq E
$$

We now define a well-ordering on the set of closed sets.
Definition 2.6. Let C_{1} and C_{2} be two blocks in $\left\{A_{i}: i \in \omega\right\} \cup\left\{B_{j}: j \in \omega\right\}$. We define

$$
C_{1}<C_{2}: \Longleftrightarrow\left\{\begin{array}{l}
C_{1}=A_{i} \wedge C_{2}=B_{j}, \text { or } \\
C_{1}=A_{i} \wedge C_{2}=A_{j} \wedge i<j, \text { or } \\
C_{1}=B_{i} \wedge C_{2}=B_{j} \wedge i<j .
\end{array}\right.
$$

Moreover, for distinct closed sets $E=\bigcup\left\{F_{0}, \ldots F_{n}\right\} \in \operatorname{fin}(\mathcal{A})$ and $E^{\prime}=\bigcup\left\{F_{0}^{\prime}, \ldots, F_{m}^{\prime}\right\} \in \operatorname{fin}(\mathcal{A})$ with blocks $F_{0}, \ldots, F_{n}, F_{0}^{\prime}, \ldots, F_{m}^{\prime}$ let

$$
\begin{aligned}
& E \prec E^{\prime}: \Longleftrightarrow \text { The<-least block in the symmetric difference } \\
& \qquad\left\{F_{0}, \ldots, F_{n}\right\} \Delta\left\{F_{0}^{\prime}, \ldots, F_{m}^{\prime}\right\} \text { belongs to } E .
\end{aligned}
$$

Note that this defines a well-ordering on the set of closed sets and therefore on the set of all closed supports.

Lemma 2.7. Let $n \in \omega \backslash\{0,1\}$ and let p_{0} and p_{1} be two prime numbers such that

$$
n=c p_{0}+d p_{1} \neq 0
$$

for $c, d \in \omega$. Then we have that

$$
\mathcal{V}_{p_{0}, p_{1}} \models \neg \mathrm{WOC}_{n}^{-}
$$

Proof. Define

$$
\mathcal{F}:=\left\{A_{l} \cup A_{l+1} \cup \cdots \cup A_{l+c-1} \cup B_{l+c} \cup \cdots \cup B_{l+c+d-1}: l=k(c+d) \text { for a } k \in \omega\right\} .
$$

Then \mathcal{F} is an infinite family of pairwise disjoint n-element sets. Since the empty set is a support of \mathcal{F}, we have that $\mathcal{F} \in \mathcal{V}_{p_{0}, p_{1}}$. Moreover, \mathcal{F} is well-orderable in $\mathcal{V}_{p_{0}, p_{1}}$. Assume towards contradiction that there is an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function

$$
g: \mathcal{G} \rightarrow \bigcup \mathcal{G}
$$

in $\mathcal{V}_{p_{0}, p_{1}}$. Let $E_{g} \in \operatorname{fin}(\mathcal{A})$ be a closed support of g. Since E_{g} is finite, there is a $G_{0} \in \mathcal{G}$ such that $G_{0} \cap E_{g}=\emptyset$. Then there are $i, j \in \omega$ with

$$
g\left(G_{0}\right) \in A_{l+i} \cup B_{l+c+j}
$$

Define $\gamma_{0}:=\alpha_{l+i} \circ \beta_{l+c+j}$. We have that

$$
g\left(\gamma_{0}\left(G_{0}\right)\right)=g\left(G_{0}\right) \neq \gamma_{0}\left(g\left(G_{0}\right)\right)
$$

So E_{g} is not a support of g which is a contradiction.
Lemma 2.8. Let $m \in \omega \backslash\{0,1\}$ and let p_{0}, p_{1} be prime numbers such that

$$
m \neq c p_{0}+d p_{1}
$$

for all $c, d \in \omega$. Then we have:

$$
\mathcal{V}_{p_{0}, p_{1}} \models \mathrm{RC}_{m}
$$

Proof. Let $x \in \mathcal{V}_{p_{0}, p_{1}}$ be an infinite set with closed support $E_{x} \in \operatorname{fin}(\mathcal{A})$. If there is an $E \in \operatorname{fin}(\mathcal{A})$ such that

$$
y:=\{z \in x: E \text { is a support of } z\}
$$

is an infinite set, then y can be well-ordered in $\mathcal{V}_{p_{0}, p_{1}}$ and we can define a choice function on $[y]^{m}$ by choosing the least element with respect to that well-ordering.
So, assume that for all $E \in \operatorname{fin}(\mathcal{A})$ there are only finitely many $z \in x$ with support E. For every closed set $E \in \operatorname{fin}(\mathcal{A})$ with $E_{x} \subsetneq E$ define

$$
M_{E}:=\left\{z \in x: E \text { is the minimal closed support of } z \text { with } E_{x} \subseteq E\right\} .
$$

Since E is a support of M_{E}, the sets M_{E} belong to $\mathcal{V}_{p_{0}, p_{1}}$, and by our assumption, the sets M_{E} are finite. Now, for each $z \in M_{E}$ define

$$
[z]:=\left\{\phi(z): \phi \in \operatorname{fix}_{G}\left(E_{x}\right)\right\} \subseteq M_{E} .
$$

To see that $[z] \subseteq M_{E}$, notice that since $E \in \operatorname{fin}(\mathcal{A})$ is closed, for all $\phi \in G$ we have $\phi(E)=E$.
We consider the following two cases:

Case 1: For infinitely many M_{E} there is a $z \in M_{E}$ with

$$
[z]=M_{E} .
$$

Let $y:=\bigcup\left\{M_{E}: E_{x} \subsetneq E \wedge \exists z \in M_{E}\left(M_{E}=[z]\right)\right\}$. The set y is in $\mathcal{V}_{p_{0}, p_{1}}$ because E_{x} is a support of y. Let $t \subseteq y$ with $|t|=m$ and let E be a smallest closed set such that $M_{E} \subseteq y$ and $\left|t \cap M_{E}\right|$ is not of the form $k_{0} p_{0}+k_{1} p_{1}$ with $k_{0}, k_{1} \in \omega$. To see that such a set t exists, notice that for $[z]=M_{E}$ and $\left[z^{\prime}\right]=M_{E^{\prime}}$, if $[z] \cap\left[z^{\prime}\right] \neq \emptyset$, then $M_{E}=M_{E^{\prime}}$.
Define $t_{-1}:=t \cap M_{E}$. Since $E \backslash E_{x} \neq \emptyset$ there are blocks $A_{i_{0}}, \ldots, A_{i_{u-1}}, B_{j_{u}}, \ldots, B_{j_{u+v-1}}$ with

$$
E \backslash E_{x}=\bigcup\left\{A_{i_{0}}, A_{i_{1}} \ldots, A_{i_{u-1}}, B_{j_{u}}, B_{j_{u+1}}, \ldots, B_{j_{u+v-1}}\right\} .
$$

Define

$$
\tilde{G}:=\left\{\prod_{k \in u} \alpha_{i_{k}}^{\kappa_{i_{k}}} \circ \prod_{l \in v} \beta_{j_{u+l}}^{\lambda_{j_{u+l}}}: \forall k<u \forall l<v\left(\kappa_{i_{k}}<p_{0} \wedge \lambda_{j_{u+l}}<p_{1}\right)\right\} .
$$

Let $\phi=\alpha_{i_{0}}^{\kappa_{i_{0}}} \circ \cdots \circ \alpha_{i_{u-1}}^{\kappa_{i_{u-1}}} \circ \beta_{j_{u}}^{\lambda_{j u}} \circ \cdots \circ \beta_{j_{u+v-1}}^{\lambda_{j_{u+v-1}}} \in \tilde{G}$. Define

$$
\left.\phi\right|_{r}:=\kappa_{i_{r}} \text { if } r<u \text { and }\left.\phi\right|_{r}:=\lambda_{j_{r}} \text { if } u \leq r<u+v .
$$

The elements in \tilde{G} can be ordered lexicographically. We call this well-ordering $\leq_{\tilde{G}}$. For all $s, s^{\prime}<t_{-1}$ and all $r<u+v$ define

$$
\operatorname{dist}_{r}\left(\left\langle s, s^{\prime}\right\rangle\right):=\left.\phi\right|_{r},
$$

where ϕ is the $\leq_{\tilde{G}}$-smallest element in \tilde{G} with $\phi(s)=s^{\prime}$.

The rest of the proof can be done as in [2, Proposition 6.6]. For the sake of completeness, we will redo it here:

Claim 1: For all $s, s^{\prime}, s^{\prime \prime}<t_{-1}$ and all $r<u+v$ we have that

$$
\operatorname{dist}_{r}\left(\left\langle s, s^{\prime}\right\rangle\right)+_{p} \operatorname{dist}_{r}\left(\left\langle s^{\prime}, s^{\prime \prime}\right\rangle\right)=\operatorname{dist}_{r}\left(\left\langle s, s^{\prime \prime}\right\rangle\right),
$$

where $p=p_{0}$ if $r<u$ and $p=p_{1}$ if $u \leq r<u+v$. Moreover, $+_{p}$ denotes addition modulo p.
Proof of Claim 1. Let $\phi_{0}, \phi_{1}, \phi \in \tilde{G}$ be $\leq_{\tilde{G}}$-minimal with

$$
\phi_{0}(s)=s^{\prime}, \phi_{1}\left(s^{\prime}\right)=s^{\prime \prime} \text { and } \phi(s)=s^{\prime \prime} .
$$

Assume that $\phi \neq \phi_{1} \circ \phi_{0}$. So we have that $\phi^{-1} \circ \phi_{1} \circ \phi_{0} \neq \mathrm{id}$ and

$$
\phi^{-1} \circ \phi_{1} \circ \phi_{0}(s)=s
$$

Let $l<u+v$ be the largest number such that

$$
\left.\phi^{-1} \circ \phi_{1} \circ \phi_{0}\right|_{l} \neq 0 .
$$

Without loss of generality we assume that $l<u$. Then let $m \in \omega$ with

$$
\left.\left(\phi^{-1} \circ \phi_{1} \circ \phi_{0}\right)^{m}\right|_{l}=1 .
$$

Note that $\left(\phi^{-1} \circ \phi_{1} \circ \phi_{0}\right)^{m} \neq \alpha_{i_{l}}$ because otherwise we would have that $\alpha_{i_{l}}(s)=s$ which is a contradiction to the fact that E is the minimal support of s with $E_{x} \subseteq E$. So there is a $\varphi \in \tilde{G} \backslash\{\mathrm{id}\}$ with

$$
\left(\phi^{-1} \circ \phi_{1} \circ \phi_{0}\right)^{m}=\varphi \circ \alpha_{i_{l}} \text { and } \varphi<_{\tilde{G}} \alpha_{i_{l}} .
$$

Then $\varphi \circ \alpha_{i_{l}}(s)=s \Rightarrow \alpha_{i_{l}}(s)=\varphi^{-1}(s)$. Note that $\varphi^{-1}<_{\tilde{G}} \alpha_{i_{l}}$. We have that $\left.\phi_{0}\right|_{l} \neq 0$ or $\left.\phi_{1}\right|_{l} \neq 0$ or $\left.\phi\right|_{l} \neq 0$. Without loss of generality we assume that $\left.\phi_{0}\right|_{l} \neq 0$. Then

$$
\phi_{0} \circ \alpha_{i_{l}}^{-1} \circ \varphi^{-1}<{ }_{\tilde{G}} \phi_{0}
$$

and

$$
\phi_{0} \circ \alpha_{i_{l}}^{-1} \circ \varphi^{-1}(s)=\phi_{0} \circ \alpha_{i_{l}}^{-1} \circ \alpha_{i_{l}}(s)=\phi_{0}(s)=s^{\prime} .
$$

This contradicts the minimality of ϕ_{0}.
For all $\tilde{t} \subseteq t_{-1}$, all $s<\tilde{t}$ and all $r<u+v$ define

$$
\chi_{r}(s, \tilde{t}):=\left\{\operatorname{dist}_{r}\left(\left\langle s, s^{\prime}\right\rangle\right): s^{\prime} \in \tilde{t}\right\} .
$$

These sets have the following properties:

Claim 2: For all $\tilde{t} \subseteq t_{-1}$ and all $s, s^{\prime}<\tilde{t}$ we have that

1. $1 \leq\left|\chi_{r}(s, \tilde{t})\right| \leq p_{0}$ for all $r<u$ and $1 \leq\left|\chi_{r}(s, \tilde{t})\right| \leq p_{1}$ for all $u \leq r<u+v$.
2. for all $r<u+v$ there is a $k_{r} \in \omega$ such that $\chi_{r}(s, \tilde{t})=\chi_{r}\left(s^{\prime}, \tilde{t}\right)+_{p} k_{r}$, where $p=p_{0}$ if $r<u$ and $p=p_{1}$ if $u \leq r<u+v$.
3. $\left|\chi_{r}(s, \tilde{t})\right|=\left|\chi_{r}\left(s^{\prime}, \tilde{t}\right)\right|$.
4. if $s \neq s^{\prime}$ there is an $r<u+v$ such that $\chi_{r}(s, \tilde{t}) \neq \chi_{r}\left(s^{\prime}, \tilde{t}\right)$.

Proof of Claim 2. 1. Note that $0<\chi_{r}(s, \tilde{t})$ since $\operatorname{dist}_{r}(\langle s, s\rangle)=0$.
2. Set $k_{r}:=\left.\phi\right|_{r}$, where ϕ is $\leq_{\tilde{G}}$-minimal with $\phi(s)=s^{\prime}$ and use Claim 1 .
3. This follows from 2.
4. Let $s, s^{\prime}<\tilde{t}$ and let ϕ be $\leq_{\tilde{G}^{-m i n i m a l}}$ with $\phi(s)=s^{\prime}$. If $\chi_{r}(s, \tilde{t})=\chi_{r}\left(s^{\prime}, \tilde{t}\right)$ for all $r<u+v$ it follows that $\left.\phi\right|_{r}=k_{r}=0$ for all $r<u+v$. So $\phi=\mathrm{id}$ and therefore $s=s^{\prime}$. $\quad \dashv_{\text {Claim } 2}$

We define an ordering \preceq on the sets $\chi_{r}(s, \tilde{t})$ as follows: $\chi_{r}(s, \tilde{t}) \preceq \chi_{r}\left(s^{\prime}, \tilde{t}\right)$ if and only if $\chi_{r}(s, \tilde{t})=$ $\chi_{r}\left(s^{\prime}, \tilde{t}\right)$ or the smallest integer in the symmetric difference $\chi(s, \tilde{t}) \Delta \chi_{r}\left(s^{\prime}, \tilde{t}\right)$ belongs to $\chi_{r}(s, \tilde{t})$.

For all non-empty sets $\tilde{t} \subseteq t_{-1}$, all $r<u+v$ and all natural numbers n define $\lambda_{r, n}(\tilde{t})$ as follows: Let $\lambda_{r, 0}(\tilde{t}):=\emptyset$ and for every $n \in \omega \backslash\{0\}$ let

$$
\lambda_{r, n}(\tilde{t}):=\left\{s \in \tilde{t} \backslash \bigcup_{i=0}^{n-1} \lambda_{r, i}(\tilde{t}): \forall s^{\prime} \in \tilde{t} \backslash \bigcup_{i=0}^{n-1} \lambda_{r, i}(\tilde{t})\left(\chi_{r}(s, \tilde{t}) \preceq \chi_{r}\left(s^{\prime}, \tilde{t}\right)\right)\right\}
$$

Note that $\bigcup_{n \in \omega} \lambda_{r, n}(\tilde{t})=\tilde{t}$ and only finitely many $\lambda_{r, n}(\tilde{t})$ are non-empty. Assume that t_{r-1} is defined for an $r<u+v$. Then let

$$
t_{r}:=\lambda_{r, n_{0}}\left(t_{r-1}\right),
$$

where $n_{0} \in \omega$ is the smallest natural number such that $\lambda_{r, n_{0}}\left(t_{r-1}\right)$ is not of the form

$$
c p_{0}+d p_{1}
$$

with $c, d \in \omega$. By Claim 2, t_{u+v-1} is a one-element set, i.e., there is an $s<t$ with

$$
t_{u+v-1}=\{s\} .
$$

So we choose s from t. This shows that RC_{m} holds in $\mathcal{V}_{p_{0}, p_{1}}$.

Case 2: There are infinitely many M_{E} such that there are $z, z^{\prime} \in M_{E}$ with

$$
[z] \cap\left[z^{\prime}\right]=\emptyset .
$$

Our goal is to reduce this case to Case 1 . For every $E \in \operatorname{fin}(\mathcal{A})$ with $E_{x} \subsetneq E$ define

$$
\left[M_{E}\right]:=\left\{[z]: z \in M_{E}\right\} .
$$

Furthermore, choose a w_{0} in the ground model $\mathcal{M}_{p_{0}, p_{1}} \models \mathrm{ZFA}+\mathrm{AC}$ such that

$$
w_{0} \backslash \bigcup_{\substack{E \in \operatorname{fin}(\mathcal{A}) \\ E_{x} \subsetneq E}}\left[M_{E}\right]=\emptyset
$$

and
for all closed sets $E \in \operatorname{fin}(\mathcal{A})$ with $E_{x} \subsetneq E$ and $M_{E} \neq \emptyset$ we have $\left|w_{0} \cap\left[M_{E}\right]\right|=1$.
In other words, w_{0} picks exactly one element from each non-empty $\left[M_{E}\right]$. Note that E_{x} is a support of w_{0}. So $w_{0} \in \mathcal{V}_{p_{0}, p_{1}}$. Choose

$$
M_{E}^{\prime}:=M_{E} \cap w_{0} .
$$

This reduces Case 2 to Case 1 .
Proposition 2.9. Let $m, n \in \omega \backslash\{0,1\}, k \in \omega$, and let p_{0}, \ldots, p_{k-1} be prime numbers such that

$$
m \neq \sum_{i<k} c_{i} p_{i}
$$

for all $c_{i} \in \omega, i<k$, and

$$
n=\sum_{i<k} d_{i} p_{i}
$$

for some $d_{i} \in \omega, i \in k$. Then

$$
\mathrm{RC}_{m} \nRightarrow \mathrm{WOC}_{n}^{-}
$$

is consistent with $Z F$.

Proof. Similar as in Lemma 2.7 and Lemma 2.8 we can prove that

$$
\begin{equation*}
\mathcal{V}_{p_{0}, \ldots, p_{k-1}} \models \mathrm{RC}_{m} \wedge \neg \mathrm{WOC}_{n}^{-} \tag{1}
\end{equation*}
$$

In order to transfer this statement to ZF , we have to show that RC_{n} and WOC_{n}^{-}are injectively boundable for all $n \in \omega$. Then we can use Pincus' transfer theorem [7. Theorem 3A3]. The terms "boundable" and "injectively boundable" are defined in [7].

For a set x we define the injective cardinality

$$
|x|_{-}:=\{\alpha \in \Omega: \text { there is an injection from } \alpha \text { into } x\},
$$

where Ω is the class of all ordinal numbers. Moreover let $\varphi(x)$ denote the following property:
if x is an infinite set, there is an infinite $y \subseteq x$ with a choice function on $[y]^{n}$.
Note that $\varphi(x)$ is boundable. Since $\varphi(x)$ holds when $|x|_{-}>\omega$, it follows that

$$
\mathrm{RC}_{n} \Longleftrightarrow \forall x\left(|x|_{-} \leq \omega \Rightarrow \varphi(x)\right)
$$

So, RC_{n} is injectively boundable. Furthermore, we have that $\neg \mathrm{WOC}_{n}^{-}$is boundable. So, (1) is transferable into ZF .

Propostion 2.2 together with Propostion 2.9 gives us the following result:
Theorem 2.10. Let $m, n \in \omega \backslash\{0,1\}$. Then RC_{m} implies WOC_{n}^{-}if an only if the following condition holds: For all prime numbers p_{0}, \ldots, p_{k-1} such that there are positive integers a_{0}, \ldots, a_{k-1} with

$$
n=\sum_{i<k} a_{i} p_{i},
$$

we can find $b_{0}, \ldots, b_{k-1} \in \omega$ with

$$
m=\sum_{i<k} b_{i} p_{i} .
$$

We conclude this section by giving a few consequences. Since $\neg \mathrm{WOC}_{n}^{-} \Rightarrow \neg \mathrm{RC}_{n}$, Proposition 2.9 gives us:

Corollary 2.11. Let $m, n \in \omega \backslash\{0,1\}$ and let p_{0}, \ldots, p_{k-1} be $k \in \omega$ prime numbers such that

$$
m \neq \sum_{i<k} c_{i} p_{i}
$$

for all $c_{i} \in \omega, i<k$, and

$$
n=\sum_{i<k} d_{i} p_{i}
$$

for some $d_{i} \in \omega, i<k$. Then

$$
\mathrm{RC}_{m} \nRightarrow \mathrm{RC}_{n}
$$

in $Z F$.

Proof. This follows from $\mathrm{RC}_{n} \Rightarrow \mathrm{WOC}_{n}^{-}$(Corollary 2.3) and $\mathrm{RC}_{m} \nRightarrow \mathrm{WOC}_{n}^{-}$(Proposition 2.9). \dashv Corollary 2.12. Let p be a prime number, let $m \in \omega \backslash\{0\}$ and $n \in \omega \backslash\{0,1\}$. Then we have that

$$
\mathrm{RC}_{p^{m}} \Rightarrow \mathrm{WOC}_{n}^{-}
$$

if and only if $n \mid p^{m}$ or $p=2, m=1$ and $n=4$.
Proof. If n is divisible by a prime $q \neq p$ we have that

$$
\mathcal{V}_{q}=\mathrm{RC}_{p^{m}} \wedge \neg \mathrm{WOC}_{n}^{-} .
$$

Therefore, $\mathrm{RC}_{p^{m}} \nRightarrow \mathrm{WOC}_{n}^{-}$in ZF. So we can assume that $n=p^{k}$ for a $k \in \omega \backslash\{0\}$.

Case 1: $m \geq k$
Let $r \in \omega$ and let $p_{0}, p_{1} \ldots, p_{r-1}$ be prime numbers such that there are $a_{0}, a_{1}, \ldots, a_{r-1} \in \omega$ with

$$
n=p^{k}=\sum_{i<r} a_{i} p_{i} .
$$

Then

$$
p^{m}=p^{m-k} p^{k}=\sum_{i<r} p^{m-k} a_{i} p_{i} .
$$

So by Proposition 2.2 we have that

$$
\mathrm{RC}_{p^{m}} \Rightarrow \mathrm{WOC}_{n}^{-}
$$

Case 2: $m<k$
First, assume that $p \neq 2$. By Bertrand's postulate there is a prime number q_{0} with

$$
p^{m}<q_{0}<2 p^{m} .
$$

Note that $p^{k}-q_{0}>p^{k}-2 p^{m} \geq p$ and $q_{0} \neq p$. So there is a prime number $q_{1} \neq p$ with

$$
q_{1} \mid\left(p^{k}-q_{0}\right)
$$

By construction, p^{k} can be written as a sum of multiples of q_{0} and q_{1}. Since $q_{1} \nmid p^{m}$ and $p^{m}<q_{0}$, we have that

$$
p^{m} \neq a q_{0}+b q_{1} .
$$

for all $a, b \in \omega$. So by Proposition 2.9 we have that

$$
\mathrm{RC}_{p^{m}} \nRightarrow \mathrm{WOC}_{p^{k}}^{-} .
$$

Now, let $p=2$ and $k \geq 3$. Then there is a prime number q_{0} with

$$
2^{k-1}-1<q_{0}<2^{k}-2 .
$$

It follows that

$$
2<2^{k-1}<q_{0}<2^{k}-2 .
$$

So, $2^{k}-q_{0}>2$ and with the same argumentation as above we see that

$$
\mathrm{RC}_{2^{n}} \nRightarrow \mathrm{WOC}_{2^{k}} .
$$

Now we assume that $p=2$ and $k=2$ (i.e., $m=1$). This is the only remaining case. By Proposition 2.2 we have that

$$
\mathrm{RC}_{2} \Rightarrow \mathrm{WOC}_{4}^{-} .
$$

3 Results provable in ZF

In this section we shall prove four results which are provable in ZF. The first two results are about the implications $\mathrm{RC}_{6} \Rightarrow \mathrm{C}_{n}^{-}$for $n \in\{3,9\}$, and the second two results are about the implications $\mathrm{RC}_{n} \Rightarrow \mathrm{LOC}_{m}^{-}$for $m \in\{5,7\}$.

$3.1 \quad \mathrm{RC}_{6}$ implies C_{3}^{-}

In the proof of the next result, we will closely follow the proof of $\mathrm{RC}_{4} \Rightarrow \mathrm{C}_{4}^{-}$given in [6].
Proposition 3.1. $\mathrm{ZF} \vdash \mathrm{RC}_{6} \Rightarrow \mathrm{C}_{3}^{-}$, i.e., it is provable in ZF that RC_{6} implies C_{3}^{-}.
Proof. Let \mathcal{F} be an infinite family of pairwise disjoint sets of size 3 . We apply RC_{6} to the set $\cup \mathcal{F}$. This gives us an infinite subset $Y \subseteq \bigcup \mathcal{F}$ with a choice function on $[Y]^{6}$. For every $i \in\{1,2,3\}$ we define

$$
\mathcal{G}_{i}:=\{u \in \mathcal{F}:|u \cap Y|=i\} .
$$

Without loss of generality we can assume that $\mathcal{G}:=\mathcal{G}_{3}$ is infinite, since otherwise, we can easily define a choice function on an infinite subset of \mathcal{F}. So, there is a choice function

$$
f:[\bigcup \mathcal{G}]^{6} \rightarrow \bigcup \mathcal{G}
$$

We define a directed graph on \mathcal{G} by putting a directed edge from v to u i.e., $v \rightarrow u$), if and only if $f(u \cup v) \in u$. If there is direct edge from v to u we will say that the edge points from v to u. With this graph we carry out the same construction as in [6]. So, there is an infinite subset $\mathcal{H} \subseteq \mathcal{G}$ which is partitioned into finite sets $\left(A_{n}\right)_{n \in \omega}$ such that for every $n \in \omega$, all elements in A_{n} have outdegree n. Moreover, for all $n \in \omega$ we have that $\left|A_{n}\right|$ is odd, and for all $n<m$, the edges between A_{n} and A_{m} all point from A_{m} to A_{n}. We can assume that we are in one of the following two cases:

Case 1: There are infinitely many $n \in \omega$ with $3 \nmid\left|A_{n}\right|$.
In this case we follow the proof of the Claim in [6, p. 60]: Without loss of generality we can assume that $3 \nmid\left|A_{n}\right|$ for every $n \in \omega$. Let $n_{0} \in \omega$ and $p_{0}=\left\{x_{0}, x_{1}, x_{2}\right\} \in A_{n_{0}}$. For each $i \leq 2$ we define

$$
\operatorname{deg}\left(x_{i}\right):=\left|\left\{q \in A_{n_{0}+1}: f\left(q \cup p_{0}\right)=x_{i}\right\}\right| .
$$

Since $3 \nmid\left|A_{n_{0}+1}\right|$ we have that $3 \nmid\left(\operatorname{deg}\left(x_{0}\right)+\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right)\right)$. Therefore, we can choose one element from p_{0}.

Case 2: For all $n \in \omega$ we have that $3\left|\left|A_{n}\right|\right.$.
Let $p_{0} \in \mathcal{H}$ and let $n \in \omega$ be the unique natural number with $p_{0} \in A_{n}$. There is an $s \in \omega$ with $\left|A_{n}\right|=2 s+1$. We want to find the number of elements in A_{n} with edges pointing to p_{0}. There are $\binom{\left|A_{n}\right|}{2}$ edges in A_{n}. Since the number of edges in A_{n} that point to an element in A_{n} is the same for every element of A_{n}, we have that the indegree of p_{0} in A_{n} is given by

$$
\text { indegree }_{A_{n}}\left(p_{0}\right)=\frac{1}{\left|A_{n}\right|}\binom{\left|A_{n}\right|}{2}=\frac{1}{2}\left(\left|A_{n}\right|-1\right)=s .
$$

By assumption we have that $3\left|\left|A_{n}\right|=2 s+1\right.$. Therefore, $3 \nmid s$. Assume that $p_{0}=\left\{x_{0}, x_{1}, x_{2}\right\}$. For every $i \leq 2$ we define

$$
A_{n}^{x_{i}}:=\left\{v \in A_{n}: f\left(v \cup p_{0}\right)=x_{i}\right\} .
$$

Since $3 \nmid\left(\left|A_{n}^{x_{0}}\right|+\left|A_{n}^{x_{1}}\right|+\left|A_{n}^{x_{2}}\right|\right)=s$, we can choose an element from p_{0}.

$3.2 \quad \mathrm{RC}_{6}$ implies C_{9}^{-}

Lemma 3.2. Let \mathcal{F} be an infinite family of pairwise disjoint 4-element sets. If there is a choice function

$$
f:[\bigcup \mathcal{F}]^{6} \rightarrow \bigcup \mathcal{F}
$$

then there is a function h with $h(p \cup q) \in p \cup q$ for all $p \neq q$ in \mathcal{F}.
Proof. Let $p \neq q$ be elements of \mathcal{F}. We will show that we can choose exactly one element from $p \cup q$. There are

$$
\binom{8}{6}=28
$$

6 -element subsets of $p \cup q$. From each of these subsets we can choose one point with the choice function f. Let A be the set of all elements in $p \cup q$ which are chosen the most times. Note that $1 \leq|A| \leq 7$, because 8 does not divide 28 .

- If $|A|=1$ we are done.
- If $|A|=2$, choose $f((p \cup q) \backslash A)$.
- If $|A|=3$ and $A \subseteq p$ or $A \subseteq q$ we are done because we can choose the point in $p \backslash A$ or in $q \backslash A$. Otherwise, $|p \cap A|=1$ or $|q \cap A|=1$ and we are also done.
- If $|A| \in\{5,6,7\}$, replace A by $(p \cup q) \backslash A$. So we are in one of the cases above.
- If $|A|=4$, the set $[(p \cup q) \backslash A]^{2}$ contains $\binom{4}{2}=6$ elements. For each $B \in[(p \cup q) \backslash A]^{2}$ choose $f(A \cup B)$. Let C_{0} and C_{1} be the sets of all elements in $p \cup q$ which are chosen the most and the least often. Note that either C_{0} or C_{1} does not contain 4 elements. By the cases above we are done.

So there is a choice function

$$
h:\{p \cup q: p, q \in \mathcal{F}\} \rightarrow \bigcup \mathcal{F} .
$$

Lemma 3.3. Let $\left\{A_{n}: n \in \omega\right\}$ be a countable family of pairwise disjoint non-empty finite sets of pairwise disjoint sets of size 2 , and let $\mathcal{F}:=\bigcup_{n \in \omega} A_{n}$ be the corresponding infinite family of 2 -element sets. If

$$
f:[\bigcup \mathcal{F}]^{6} \rightarrow \bigcup \mathcal{F}
$$

is a choice function, then there is an infinite subfamily $\mathcal{G} \subseteq \mathcal{F}$ with a choice function.

Proof. By using a bijection between ω and an infinite subset of ω, without loss of generality we are in one of the following four cases:

Case 1: For all $n \in \omega$ we have that $2 \nmid\left|A_{n}\right|$.
Let $k \in \omega$. Then there are natural numbers l_{0}, l_{1} and l_{2} such that

$$
\left|A_{3 k}\right|=2 l_{0}+1,\left|A_{3 k+1}\right|=2 l_{1}+1 \text { and }\left|A_{3 k+2}\right|=2 l_{2}+1 .
$$

For every $a \in A_{3 k} \cup A_{3 k+1} \cup A_{3 k+2}$ define

$$
\# a:=\left|\left\{\left(a_{0}, a_{1}, a_{2}\right) \in A_{3 k} \times A_{3 k+1} \times A_{3 k+2}: f\left(a_{0} \cup a_{1} \cup a_{2}\right) \in a\right\}\right| .
$$

If $\# a$ is odd, we can choose an element from a, for example the element in a we choose more often than the other. Since

$$
2 \nmid \prod_{i \leq 2}\left(2 l_{i}+1\right) \text { and } \sum_{a \in A_{3 k} \cup A_{3 k+1} \cup A_{3 k+2}} \# a=\prod_{i \leq 2}\left(2 l_{i}+1\right),
$$

we have that for every $k \in \omega$ there is at least one $a \in A_{3 k} \cup A_{3 k+1} \cup A_{3 k+2}$ such that $\# a$ is odd. So, we can find a choice function on the infinite set

$$
\mathcal{G}:=\{a \in \mathcal{F}: \# a \text { is odd }\} .
$$

Case 2: For all $n \in \omega$ we have that $\left|A_{n}\right|=2$.
For every $k \in \omega$ let $A_{2 k}=\left\{a_{2 k}, b_{2 k}\right\}$ and $B_{0}:=\left\{a_{2 k}\right\} \cup A_{2 k+1}$ and $B_{1}:=\left\{b_{2 k}\right\} \cup A_{2 k+1}$. For every $a \in A_{2 k} \cup A_{2 k+1}$ we define

$$
\# a:=\left|\left\{i \in\{0,1\}: f\left(\bigcup B_{i}\right) \in a\right\}\right| .
$$

Note that if $\# a=1$, we can choose an element from a and we are done. So, if there are infinitely many $a \in \mathcal{F}$ such that $\# a$ is odd, we are done. Otherwise, there is an infinite subset $I \subseteq \omega$ such that for all $k \in I$ there is a unique $a_{k} \in A_{2 k} \cup A_{2 k+1}$ with $\# a_{k}=2$. Then we are in the first case for the family $\left\{\left\{a_{k}\right\}: k \in I\right\}$.

Case 3: For all $n \in \omega$ we have that $\left|A_{n}\right| \geq 3,4 \nmid\left|A_{n}\right|$ and $2\left|\left|A_{n}\right|\right.$.
Let $n \in \omega$. Then, by the properties of $\left|A_{n}\right|$ we have $\left|A_{n}\right|=2 t$ for some odd t, and therefore we have that $\binom{\left|A_{n}\right|}{2}$ is odd. For every $k \in \omega$ we look at the 4 -element subsets of $A_{2 k} \cup A_{2 k+1}$ with two elements in $A_{2 k}$ and two elements in $A_{2 k+1}$. Note that the number of such subsets, as the product of two odd numbers, is odd. Let h be the choice function we found in Lemma 3.2. Then for every $k \in \omega$ there is at least one $a \in A_{2 k} \cup A_{2 k+1}$ such that

$$
\# a:=\left|\left\{\left(\left\{a_{0}, a_{1}\right\},\left\{b_{0}, b_{1}\right\}\right) \in\left[A_{2 k}\right]^{2} \times\left[A_{2 k+1}\right]^{2}: h\left(a_{0} \cup a_{1} \cup b_{0} \cup b_{1}\right) \in a\right\}\right|
$$

is odd. So again we found a choice function on the infinite set

$$
\mathcal{G}:=\{a \in \mathcal{F}: \# a \text { is odd }\} .
$$

Case 4: For all $n \in \omega$ we have that $\left|A_{n}\right| \geq 3$ and $4\left|\left|A_{n}\right|\right.$.
Let $n \in \omega$. Then there is a $k \in \omega$ with $\left|A_{n}\right|=4 k$. We have that

$$
\begin{equation*}
2\left|A_{n}\right| \nmid\binom{\left|A_{n}\right|}{3}, \tag{2}
\end{equation*}
$$

since otherwise we would have that

$$
\frac{\left|A_{n}\right|\left(\left|A_{n}\right|-1\right)\left(\left|A_{n}\right|-2\right)}{2 \cdot\left|A_{n}\right| \cdot 2 \cdot 3}=\frac{2\left(4 k^{2}-3 k\right)+1}{2 \cdot 3} \in \omega,
$$

but this is not the case since the numerator is odd. We define

$$
\# a:=\left|\left\{\left\{a_{0}, a_{1}, a_{2}\right\} \in\left[A_{n}\right]^{3}: f\left(a_{0} \cup a_{1} \cup a_{2}\right) \in a\right\}\right|
$$

and for all $y \in \bigcup A_{n}$ let

$$
\#(y):=\left|\left\{\left\{a_{0}, a_{1}, a_{2}\right\} \in\left[A_{n}\right]^{3}: f\left(a_{0} \cup a_{1} \cup a_{2}\right)=y\right\}\right| .
$$

Note that by (2)

$$
\left|\left\{y \in \bigcup A_{n}: \#(y)=\max \left\{\#(z): z \in \bigcup A_{n}\right\}\right\}\right|<2\left|A_{n}\right|
$$

If there is an $a=\left\{a_{0}, a_{1}\right\} \in A_{n}$ with

$$
\#\left(a_{0}\right) \neq \#\left(a_{1}\right)
$$

choose the element a_{i} with lower $\#\left(a_{i}\right)$. Otherwise we have that

$$
B_{n}:=\left\{a \in A_{n}: \# a=\max \left\{\# b: b \in A_{n}\right\}\right\} \subsetneq A_{n} .
$$

Repeat the procedure with $A_{n}:=B_{n}$ until either $4 \nmid\left|A_{n}\right|$ or there is an $a=\left\{a_{0}, a_{1}\right\} \in A_{n}$ with

$$
\#\left(a_{0}\right) \neq \#\left(a_{1}\right) .
$$

Note that we have to repeat the procedure at most $\left|A_{n}\right|$ times. In the end we either found a choice function on an infinite subset of \mathcal{F} or we reduced Case 4 to one of the other cases.

Corollary 3.4. Let \mathcal{F} be an infinite family of pairwise disjoint 4 -element sets. If

$$
f:[\bigcup \mathcal{F}]^{6} \rightarrow \bigcup \mathcal{F}
$$

is a choice function, then there is an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function on \mathcal{G}.
Proof. Let h be the choice function we found in Lemma 3.2. We can define a complete, directed graph on \mathcal{F} by putting an edge from p to q if and only if $h(p \cup q) \in q$. With this graph we can do the same construction as in [6]. So, we can find an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ such that we can choose exactly 1 or 2 elements from each $G \in \mathcal{G}$. So either we found a choice function on an infinite subset of \mathcal{G} or we can find an infinite family of 2 -element sets \mathcal{H}. Then we apply Lemma 3.3 to \mathcal{H} and we are done.

Lemma 3.5. Let $\mathcal{F}:=\left\{F_{\lambda}: \lambda \in \Lambda\right\}$ be an infinite family of 10 -element sets. Assume that each $F_{\lambda} \in \mathcal{F}$ is a disjoint union of five 2 -element sets $F_{\lambda, i}, 0 \leq i \leq 4$. Moreover, assume that

$$
f:[\bigcup \mathcal{F}]^{6} \rightarrow \bigcup \mathcal{F}
$$

is a choice function. Then there is an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a Kinna-Wagner selection function.

Proof. For all 4-element sets $A \subseteq \bigcup \mathcal{F}$, we define the degree of A by

$$
\operatorname{deg}(A):=\left|\left\{F_{\lambda, i}: F_{\lambda} \in \mathcal{F} \wedge i \leq 4 \wedge F_{\lambda, i} \cap A=\emptyset \wedge f\left(A \cup F_{\lambda, i}\right) \in F_{\lambda, i}\right\}\right| .
$$

If there is an $A_{0} \in[\bigcup \mathcal{F}]^{4}$ with infinite degree we are done, because then the set

$$
\mathcal{G}:=\left\{F_{\lambda} \in \mathcal{F}: \exists i \leq 4\left(f\left(A_{0} \cup F_{\lambda, i}\right) \in F_{\lambda, i}\right)\right\}
$$

is infinite and from every $G \in \mathcal{G}$ we can choose the set

$$
\left\{f\left(A_{0} \cup G_{i}\right): i \leq 4\right\} \cap G \subsetneq G
$$

Thus, we can assume that each $A \in[\bigcup \mathcal{F}]^{4}$ has finite degree. Define $\mathcal{F}^{2}=\left\{F_{\lambda, i}: F_{\lambda} \in \mathcal{F} \wedge i \leq 4\right\}$ and for all $F_{\lambda} \in \mathcal{F}$ let $F_{\lambda}^{2}:=\left\{F_{\lambda, i}: i \leq 4\right\}$.
Case 1: There is an $n \in \omega$ such that for infinitely many $\lambda \in \Lambda$ there are distinct $A, B \in F_{\lambda}^{2}$ with $\operatorname{deg}(A \cup B)=n$.
Let $\mathcal{G}:=\left\{F_{\lambda} \in \mathcal{F}: \exists A, B \in F_{\lambda}^{2}(\operatorname{deg}(A \cup B)=n)\right\}$. By assumption this is an infinite set. Choose an $(n+3)$-element set $\left\{X_{i}: i \leq n+2\right\} \subseteq \mathcal{F}^{2}$. For all $G \in \mathcal{G}$ and all $A, B \in G^{2}$ with $\operatorname{deg}(A \cup B)=n$ put an edge pointing from A to B if and only if

$$
f\left(A \cup B \cup X_{i_{0}}\right) \in B,
$$

where

$$
i_{0}:=\min \left\{i \leq n+2: f\left(A \cup B \cup X_{i}\right) \notin X_{i}\right\} .
$$

Notice that this gives us a directed graph with at least one edge in each G^{2} with $G \in \mathcal{G}$. If for infinitely many $G \in \mathcal{G}$ not all elements of G^{2} have the same outdegree, we are done. So, we either have a cycle on infinitely many G^{2} or we have a complete graph in which every node has outdegree 2. In the former case we can choose a point in each $A \cup B$, where $A, B \in G^{2}$ are neighbours. Thus, we can choose 5 elements in each $G \in \mathcal{G}$. In the latter case, we can choose 5 edges as follows: For the node $A \in G^{2}$, let $B, C \in G^{2}$ be the two successors of A in the graph. Consider the edge which connects B and C (see Figure 11). If this edge points to C, then we go to B and consider the two successors of B. Proceeding this way, we obtain a cycle on infinitely many G^{2} 's and can again choose 5 elements from G.

Case 2: For all $n \in \omega$ there are only finitely many $\lambda \in \Lambda$ such that there are $A, B \in F_{\lambda}^{2}$ with $\operatorname{deg}(A \cup B)=n$.
Let $A_{-1}:=\emptyset$ and for every $n \in \omega$ define

$$
A_{n}:=\left\{A \in \mathcal{F}^{2}: \exists B \in \mathcal{F}^{2}(\operatorname{deg}(A \cup B)=n)\right\} \backslash A_{n-1} .
$$

Note that these sets are pairwise disjoint families of 2-element sets. So we can apply Lemma 3.3 and we are done.

Figure 1: How to choose the edges

Now, we are ready to prove the following:
Proposition 3.6. $\mathrm{ZF} \vdash \mathrm{RC}_{6} \Rightarrow \mathrm{C}_{9}^{-}$.
Proof. Let \mathcal{F} be an infinite family of pairwise disjoint sets of size 9 . Since RC_{6} holds, there is an infinite set $Y \subseteq \bigcup \mathcal{F}$ with a choice function

$$
f:[Y]^{6} \rightarrow Y
$$

For all $0 \leq i \leq 9$ let

$$
\mathcal{G}_{i}:=\{F \cap Y: F \in \mathcal{F} \wedge|F \cap Y|=i\} .
$$

There is a $1 \leq i \leq 9$ such that \mathcal{G}_{i} is an infinite set.

Case 1: \mathcal{G}_{1} or \mathcal{G}_{8} is infinite.
In the case \mathcal{G}_{8} is infinite, we look at the complements.

Case 2: \mathcal{G}_{3} or \mathcal{G}_{6} is infinite.
Use Proposition 3.1.

Case 3: \mathcal{G}_{4} is infinite.
Use Corollary 3.4

Case 4: \mathcal{G}_{5} is infinite.
Apply RC_{6} to the complements. Then we are either in one of the preceding cases or the complements are partitioned into two sets of size two. We look at the 10 edges between the first 5 elements and the second two elements and use Lemma 3.5 .

Case 5: \mathcal{G}_{7} is infinite.
For all $G \in \mathcal{G}_{7}$ let \bar{G} be the complement of G in the sense that for the $F \in \mathcal{F}$ with $G \subseteq F$ we have that

$$
\bar{G}:=F \backslash G .
$$

Note that $|\bar{G}|=2$. Let

$$
\mathcal{E}:=\left\{\{x, y\}: \exists G \in \mathcal{G}_{7}(x \in G \text { and } y \in \bar{G})\right\} .
$$

Apply RC_{6} to \mathcal{E}. Without loss of generality we can assume that we find a choice function

$$
g:[\mathcal{E}]^{6} \rightarrow \mathcal{E}
$$

because otherwise we are in one of the preceding cases. So, for every $G \in \mathcal{G}_{7}$ there are 14 edges between G and \bar{G}. Hence, there are

$$
\binom{14}{6}=3 \cdot 7 \cdot 11 \cdot 13
$$

6 -element subsets. From each of them g chooses one element. Since $\binom{14}{6}$ is not divisible by 14 , we can choose less than 14 edges and we are in one of the preceding cases.

Case 6: \mathcal{G}_{9} is infinite.
With the choice function f we can choose an element from each 6-element subset of a $G \in \mathcal{G}_{9}$. There are $\binom{9}{6}$ subsets of size 6 . Since $9 \nmid\binom{9}{6}$ we can reduce this case to one of the cases above.

Case 7: \mathcal{G}_{2} is infinite.
We iteratively apply RC_{6} to the complements. So, we can reduce this case to one of the cases above.

$3.3 \quad \mathrm{RC}_{5}$ implies LOC_{5}^{-}

We will now show that RC_{5} implies LOC_{5}^{-}. The beginning of the proof will be as usual: Let \mathcal{F} be an infinite, linearly orderable family of 5 -element sets. We apply RC_{5} to $\cup \mathcal{F}$. This will give us an infinite subfamily $\mathcal{G} \subseteq \mathcal{F}$ such that each $p \in \mathcal{G}$ is partitioned into two parts. If one of these parts is of size one, we have a choice function and we are done. Otherwise, the two parts are of size 2 and 3 . So if we could show that RC_{5} implies LOC_{2}^{-}or LOC_{3}^{-}, the proof would be finished. However, Halbeisen's and Tachtsis' result (β) shows that this idea will not lead to success - which is the reason why we will work with the set of edges between the two parts.

Theorem 3.7. $\mathrm{ZF} \vdash \mathrm{RC}_{5} \Rightarrow \mathrm{LOC}_{5}^{-}$.
Proof. Let \mathcal{F} be an infinite, linearly orderable collection of pairwise disjoint sets of size 5. We fix a linear order on \mathcal{F} and apply RC_{5} on the set $X:=\bigcup \mathcal{F}$ to find an infinite subset $Y \subseteq X$ with a choice function $f:[Y]^{5} \rightarrow Y$. For every $i \leq 5$ we define

$$
\mathcal{F}_{i}:=\{p \in \mathcal{F}:|p \cap Y|=i\} .
$$

The only non-trivial case is when the elements p of an infinite subfamily $\mathcal{G} \subseteq \mathcal{F}$ are partitioned into a set with two elements and a set with three elements, namely $p=\left\{a_{p}, b_{p}, c_{p}\right\} \cup\left\{x_{p}, y_{p}\right\}$.

Now we look at the set Z of all non-directed edges between a point in $\left\{a_{p}, b_{p}, c_{p}\right\}$ and one in $\left\{x_{p}, y_{p}\right\}$. For every $p \in \mathcal{G}$ let p^{*} be the set of all edges in Z belonging to p and for each subset $\mathcal{H} \subseteq \mathcal{F}$ we define $\mathcal{H}^{*}:=\left\{p^{*}: p \in \mathcal{H}\right\}$.

Claim 1: Assume that there is an infinite subset $\mathcal{H} \subseteq \mathcal{G}$ such that we can choose between 1 and 5 elements from each $p^{*} \in \mathcal{H}^{*}$. Then there is a choice function

$$
h: \mathcal{H} \rightarrow \bigcup \mathcal{H} .
$$

Proof of Claim 1. Let $p \in \mathcal{H}$ and assume that we can choose $k \in\{1,2,3,4,5\}$ elements from p^{*}. We look at p as a graph with k edges. If $2 \nmid k, x_{p}$ and y_{p} do not have the same degree and we can choose the element with lower degree. Otherwise we have that $3 \nmid k$ and we can choose an element from $\left\{a_{p}, b_{p}, c_{p}\right\}$.

Now we apply RC_{5} on the set Z. Then there is an infinite subset $Q \subseteq Z$ with a choice function $g:[Q]^{5} \rightarrow Q$. By Claim 1 we can without loss of generality assume that $p^{*} \subseteq Q$ for every p in some infinite $\mathcal{H} \subseteq \mathcal{G}$.

We can partition each $p^{*} \in \mathcal{H}^{*}$ as follows into two sets γ_{0}^{p} and γ_{1}^{p} of size three:

$$
\gamma_{0}^{p}:=\left\{\left\{a_{p}, x_{p}\right\},\left\{b_{p}, x_{p}\right\},\left\{c_{p}, x_{p}\right\}\right\} \text { and } \gamma_{1}^{p}:=\left\{\left\{a_{p}, y_{p}\right\},\left\{b_{p}, y_{p}\right\},\left\{c_{p}, y_{p}\right\}\right\} .
$$

Analogously we can partition p^{*} into three sets $\beta_{0}, \beta_{1}, \beta_{2}$ of size two as follows:

$$
\beta_{0}^{p}:=\left\{\left\{a_{p}, x_{p}\right\},\left\{a_{p}, y_{p}\right\}\right\}, \beta_{1}^{p}:=\left\{\left\{b_{p}, x_{p}\right\},\left\{b_{p}, y_{p}\right\}\right\} \text { and } \beta_{2}^{p}:=\left\{\left\{c_{p}, x_{p}\right\},\left\{c_{p}, y_{p}\right\}\right\} .
$$

Figure 2: The partitions of a p^{*} into $\gamma_{0}^{p}, \gamma_{1}^{p}$ on the left and into $\beta_{0}^{p}, \beta_{1}^{p}$ and β_{2}^{p} on the right.
Let

$$
\mathcal{H}_{3}^{*}:=\left\{\gamma_{i}^{p}: i \leq 1 \wedge p \in \mathcal{H}\right\}
$$

be the sets of size three appearing in the partition of a $p^{*} \in \mathcal{H}^{*}$ and let

$$
\mathcal{H}_{2}^{*}:=\left\{\beta_{i}^{p}: i \leq 2 \wedge p \in \mathcal{H}\right\}
$$

be the family of sets of size two which appear in the partition of a $p^{*} \in \mathcal{H}^{*}$. If there is a $\gamma \in \mathcal{H}_{3}^{*}$ such that for infinitely many $\beta \in \mathcal{H}_{2}^{*}$

$$
\begin{equation*}
g(\gamma \cup \beta) \in \beta, \tag{3}
\end{equation*}
$$

we are done by Claim 1. Otherwise, for every $\gamma \in \mathcal{H}_{3}^{*}$ there are only finitely many $\beta \in \mathcal{H}_{2}^{*}$ with (3) and we define

$$
\operatorname{deg}(\gamma):=\left|\left\{\beta \in \mathcal{H}_{2}^{*}: g(\gamma \cup \beta) \in \beta\right\}\right| \in \omega .
$$

We are in one of the following two cases:

Case 1: There is an $n \in \omega$ such that $\operatorname{deg}(\gamma)=n$ for infinitely many $\gamma \in \mathcal{H}_{3}^{*}$.
Let $\mathcal{I}_{3}^{*}:=\left\{\gamma \in \mathcal{H}_{3}^{*}: \operatorname{deg}(\gamma)=n\right\}$. Choose an $(n+4)$-element set $\left\{\beta_{i}: i \leq n+3\right\} \subseteq \mathcal{H}_{2}^{*}$. For every $\gamma \in \mathcal{I}_{3}^{*}$ we define

$$
j(\gamma):=\min \left\{i \leq n+3: g\left(\gamma \cup \beta_{i}\right) \in \gamma\right\} .
$$

So from every $\gamma \in \mathcal{I}_{3}^{*}$ we choose the element

$$
g\left(\gamma \cup \beta_{j(\gamma)}\right) \in \gamma
$$

and we are done by Claim 1 .

Case 2: For each $n \in \omega$ there are only finitely many $\gamma \in \mathcal{H}_{3}$ with $\operatorname{deg}(\gamma)=n$.
For every $n \in \omega$ we define

$$
A_{n}:=\left\{\gamma \in \mathcal{H}_{3}^{*}: \operatorname{deg}(\gamma)=n\right\} \text { and } B_{n}:=\left\{\beta \in \mathcal{H}_{2}^{*}: \exists \gamma \in A_{n} \exists p^{*} \in \mathcal{H}^{*}\left(\gamma \subseteq p^{*} \wedge \beta \subseteq p^{*}\right)\right\}
$$

If there are infinitely many $p \in \mathcal{H}$ such that $\gamma_{0}^{p} \in A_{n}$ and $\gamma_{1}^{p} \in A_{m}$ with $n \neq m$ we are done by Claim 1 since we can choose three edges from each of these infinitely many p 's. So we can assume that for every $p \in \mathcal{H}$ both, γ_{0}^{p} and γ_{1}^{p}, have the same degree and we define

$$
C_{n}:=\left\{p \in \mathcal{H}:\left\{\gamma_{0}^{p}, \gamma_{1}^{p}\right\} \subseteq A_{n}\right\}
$$

for every $n \in \omega$. Moreover, let

$$
\operatorname{out}(\beta):=\left\{\gamma \in \bigcup_{m>n} A_{m}: g(\beta \cup \gamma) \in \gamma\right\}
$$

for every $n \in \omega$ and every $\beta \in B_{n}$. If there is a $\beta \in \bigcup_{n \in \omega} B_{n}$ with $|\operatorname{out}(\beta)|=\infty$ we are done by Claim 1. So assume that $|\operatorname{out}(\beta)| \in \omega$ for all $\beta \in \bigcup_{n \in \omega} B_{n}$.

Claim 2: We can find an infinite subset $\mathcal{K} \subseteq \mathcal{H}$ with a partition $\mathcal{K}=\bigcup_{n \in \omega} K_{n}$ where each K_{n} is finite and non-empty. Moreover, we can assume that for all natural numbers $n>m$, all $p \in K_{n}$, all $q \in K_{m}$ and all $j \leq 2$

$$
g\left(\gamma_{0}^{p} \cup \beta_{j}^{q}\right)=g\left(\gamma_{1}^{p} \cup \beta_{j}^{q}\right) \in \beta_{j}^{q} .
$$

Proof of Claim 2. For every $n \in \omega$ we define R_{n} to be the set of all $p \in \bigcup_{k>n} C_{k}$ such that there are a $q \in C_{n}$, an $i \in\{0,1\}$ and a $j \in\{0,1,2\}$ with

$$
g\left(\gamma_{i}^{p} \cup \beta_{j}^{q}\right) \in \gamma_{i}^{p}
$$

Since $|\operatorname{out}(\beta)|$ is finite for all $\beta \in \bigcup_{n \in \omega} B_{n}$, the set R_{n} is finite. $J_{n}:=C_{n} \backslash \bigcup_{k<n} R_{n}$. Define S_{n} to be the set of all $p \in \bigcup_{k>n} J_{k}$ such that there are a $q \in J_{n}$, and a $j \in\{0,1,2\}$ with

$$
g\left(\gamma_{0}^{p} \cup \beta_{j}^{q}\right) \neq g\left(\gamma_{1}^{p} \cup \beta_{j}^{q}\right)
$$

First of all assume that there is an $n_{0} \in \omega$ such that $S_{n_{0}}$ is infinite. Since $J_{n_{0}}$ is finite, we can then find a $q_{0} \in J_{n_{0}}$ and a $j_{0} \in\{0,1,2\}$ such that for infinitely many $p \in S_{n_{0}}$

$$
\beta_{j_{0}}^{q_{0}} \ni g\left(\gamma_{0}^{p} \cup \beta_{j_{0}}^{q_{0}}\right) \neq g\left(\gamma_{1}^{p} \cup \beta_{j_{0}}^{q_{0}}\right) \in \beta_{j_{0}}^{q_{0}}
$$

and we can choose the set of edges γ_{0}^{p} or γ_{1}^{p} depending on the choice in $\beta_{j_{0}}^{p_{0}}$. With Claim 1 we are done. Therefore, we can assume that each S_{n} is finite. In this case we define $K_{n}:=J_{n} \backslash \bigcup_{k<n} S_{n}$ for all $n \in \omega$. Infinitely many sets K_{n} are non-empty. By renumbering the sets K_{n} we can assume that each K_{n} is non-empty.

- $_{\text {Claim } 2}$

With the same construction we did in the proof of Claim 2 we can find an infinite subset $\mathcal{I} \subseteq \mathcal{K}$ with a partition $\mathcal{I}=\bigcup_{n \in \omega} I_{n}$, where each I_{n} is finite and non-empty. Moreover, we can assume that for all natural numbers $n>m$, all $p \in I_{n}$, all $q \in I_{m}$ and all $j \leq 2$

$$
g\left(\gamma_{0}^{p} \cup \beta_{j}^{q}\right)=g\left(\gamma_{1}^{p} \cup \beta_{j}^{q}\right) \in \beta_{j}^{q} .
$$

Note: Up to now we nowhere used the assumption that our infinite family \mathcal{F} of sets of size five is linearly ordered. In the last step we will need this assumption.

For each $n \in \omega$, let $p_{n} \in I_{n}$ be the smallest element in I_{n} with respect to the linear order on \mathcal{F}. Note that such a smallest element exists since each I_{n} is finite and non-empty. We define

$$
\begin{aligned}
h^{*}:\left\{p_{n}^{*}: n \in \omega\right\} & \rightarrow\left[\bigcup_{n \in \omega} p_{n}^{*}\right]^{3} \\
p_{n}^{*} & \mapsto\left\{g\left(\gamma_{0}^{p_{n+1}} \cup \beta_{j}^{p_{n}}\right): j \leq 2\right\} .
\end{aligned}
$$

By Claim 1 we are done.

$3.4 \quad \mathrm{RC}_{7}$ implies LOC_{7}^{-}

Before we prove our last result, we shall prove three lemmata.
Lemma 3.8. Let \mathcal{F} be a linearly orderable family of pairwise disjoint 6 -element sets. Assume that we can partition each $p \in \mathcal{F}$ in a unique way into three 2 -element sets $\beta_{0}^{p}, \beta_{1}^{p}$ and β_{2}^{p} and in a unique way into two 3-element sets $\gamma_{0}^{p}, \gamma_{1}^{p}$. Further assume that there is a choice function

$$
f:[\bigcup \mathcal{F}]^{7} \rightarrow \bigcup \mathcal{F}
$$

Then there is an infinite subfamily $\mathcal{G} \subseteq \mathcal{F}$ with a Kinna-Wagner selection function.

Proof. We define

$$
\mathcal{F}_{3}:=\left\{\gamma_{i}^{p}: i \in\{0,1\} \wedge p \in \mathcal{F}\right\}
$$

and

$$
\mathcal{F}_{4}:=\left\{\beta_{i}^{p} \cup \beta_{j}^{p}:\{i, j\} \in[3]^{2} \wedge p \in \mathcal{F}\right\} .
$$

For every $\gamma \in \mathcal{F}_{3}$ let

$$
\operatorname{deg}(\gamma):=\left|\left\{\delta \in \mathcal{F}_{4}: \delta \cap \gamma=\emptyset \wedge f(\delta \cup \gamma) \in \delta\right\}\right| .
$$

If there is a $\gamma \in \mathcal{F}_{3}$ with $\operatorname{deg}(\gamma)=\infty$, then we are done because we can choose between one and three elements from infinitely many $p \in \mathcal{F}$. The rest of the proof is similar to the proof of Theorem 3.7

Lemma 3.9. Let \mathcal{F} be a linearly orderable family of pairwise disjoint 12 -element sets. Assume that we can partition each $p \in \mathcal{F}$ in a unique way into three 4 -element sets δ_{0}, δ_{1} and δ_{2} and in a unique way into four 3 -element sets $\gamma_{0}, \gamma_{1}, \gamma_{2}$ and γ_{3}. Further assume that there is a choice function

$$
f:[\bigcup \mathcal{F}]^{7} \rightarrow \bigcup \mathcal{F}
$$

Then there is an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a Kinna-Wagner selection function.
Proof. The proof is similar to the proof of Theorem 3.7.
Lemma 3.10. Let \mathcal{F} be a linearly orderable family of pairwise disjoint 10 -element sets. Assume that we can partition each $p \in \mathcal{F}$ in a unique way into two 5 -element sets ϵ_{0} and ϵ_{1} and in a unique way into five 2 -element sets $\beta_{i}, i \leq 4$. Further assume that there is a choice function

$$
f:[\bigcup \mathcal{F}]^{7} \rightarrow \bigcup \mathcal{F}
$$

Then there is an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a Kinna-Wagner selection function.
Proof. The proof is similar to the proof of Theorem 3.7.
Proposition 3.11. $\mathrm{ZF} \vdash \mathrm{RC}_{7} \Rightarrow \mathrm{LOC}_{7}^{-}$.
Proof. Let \mathcal{F} be a linearly orderable, infinite family of sets of size 7 . We apply RC_{7} on the set $X:=\bigcup \mathcal{F}$ to find an infinite subset $Y \subseteq X$ with a choice function $f:[Y]^{7} \rightarrow Y$. For every $i \leq 7$ we define

$$
\mathcal{F}_{i}:=\{p \in \mathcal{F}:|p \cap Y|=i\} .
$$

Note that we can without loss of generality assume that \mathcal{F}_{2} or \mathcal{F}_{3} has infinite cardinality.

Case 1: \mathcal{F}_{3} has infinite cardinality.
For every $p \in \mathcal{F}_{3}$ let

$$
p^{*}:=\left\{\{a, x\} \in[p]^{2}: a \in p \cap Y \wedge x \in p \backslash Y\right\}
$$

and apply RC_{7} on the set $X^{*}:=\bigcup\left\{p^{*}: p \in \mathcal{F}_{3}\right\}$. We get an infinite subset $Y^{*} \subseteq X^{*}$ with a choice function $g:\left[Y^{*}\right]^{7} \rightarrow Y^{*}$. For every $1 \leq i \leq 12$ define

$$
\mathcal{F}_{i}^{*}:=\left\{p^{*}: p \in \mathcal{F}_{3} \wedge\left|p^{*} \cap Y^{*}\right|=i\right\} .
$$

Figure 3: Case $i=6$

There is an i with $1 \leq i \leq 12$ such that $\left|\mathcal{F}_{i}^{*}\right|=\infty$. If $i \notin\{6,12\}$ we can choose an element from each p with $p^{*} \in \mathcal{F}_{i}^{*}$ and therefore we are done. If $i=6$, the only case in which we cannot choose an element from all p with $p^{*} \in \mathcal{F}_{6}^{*}$ is the one illustrated in Figure 3;

But in this case we are done by Lemma 3.8. And if $i=12$ we are done by Lemma 3.9.

Case 2: \mathcal{F}_{2} has infinite cardinality.
For every $1 \leq i \leq 10$ we define \mathcal{F}_{i}^{*} as in Case 1 . The only i for which we cannot choose one element from each p with $p^{*} \in \mathcal{F}_{i}^{*}$ or for which we cannot choose three elements from each p with $p^{*} \in \mathcal{F}_{i}^{*}$ in order to reduce it to Case 1 , is $i=10$. But in this case we are done by Lemma 3.10.

4 Open Questions

1. By [6] we have that $\mathrm{RC}_{n} \Rightarrow \mathrm{C}_{n}^{-}$in ZF for every $n \in\{2,3,4\}$. Does this implication hold for any other $n \in \omega \backslash\{0,1\}$?
2. By [6], Proposition 3.11 and Theorem 3.7 we have that $\mathrm{RC}_{n} \Rightarrow \mathrm{LOC}_{n}^{-}$in ZF for any $n \in$ $\{2,3,4,5,7\}$. Does this implication hold for any other $n \in \omega \backslash\{0,1\}$?
3. For every $n \in \omega \backslash\{0,1\}$ the following weak choice principle was introduced in [8]:
$\mathrm{nC}_{<\aleph_{0}}^{-}$: For every infinite family \mathcal{F} of finite sets with cardinality at least n there is an infinite subfamily $\mathcal{G} \subseteq \mathcal{F}$ with a selection function $f: \mathcal{G} \rightarrow[\bigcup \mathcal{G}]^{n}$ such that $f(G) \in[G]^{n}$ for all $G \in \mathcal{G}$.
Moreover, as in [1] we can define a restricted version of $\mathrm{nC}_{<\aleph_{0}}^{-}$as follows:
$\mathrm{nRC}_{\text {fin }}$: Given any infinite set x, there is an infinite subset $y \subseteq x$ and a selection function f that chooses an n-element subset from every $z \subseteq y$ containing at least n elements.

The relationship of RC_{n} and $\mathrm{nRC}_{\text {fin }}$ to $\mathrm{kC}_{<\aleph_{0}}^{-}$and C_{j}^{-}has already been studied in [3]. However, the following question is still open: For every $n \in\{2,3,4,6\}$ we have that $\mathrm{nRC}_{\text {fin }} \Rightarrow \mathrm{nC}_{\aleph_{0}}^{-}$ in ZF. Does this implication hold for any other $n \in \omega \backslash\{0,1\}$?

Acknowledgement: We would like to thank the referee for her or his careful reading and the numerous comments and corrections that helped to improve the quality of this article.

References

[1] Omar De La Cruz and Carlos A. Di Prisco: Weak choice principles. Proceedings of the American Mathematical Society 126 (3) (1998), pp. 867-876.
[2] Lorenz Halbeisen, Norbert Hungerbühler, Nir Lazarovich, Waltraud Lederle, Marc Lischka and Salome Schumacher: Forms of choice in ring theory. Results in Mathematics 74(1) (2019) Article:14.
[3] Lorenz Halbeisen, Riccardo Plati and Salome Schumacher: A new weak choice principle. arXiv: 2101.07840
[4] Lorenz Halbeisen and Eleftherios Tachtsis: On Ramsey choice and partial choice for infinite families of n-element sets. Archive for Mathematical Logik 59(5) (2020), pp. 583-606.
[5] Lorenz J. Halbeisen: Combinatorial Set Theory - With a Gentle Introduction to Forcing. Springer-Verlag London, 2012.
[6] Carlos H. Montenegro: Weak versions of the axiom of choice for families of finite sets. In: Models, Algebras, and Proofs, Selected Papers of the X Latin American Symposium on Mathematical Logic, Bogotà, Colombia, June 24-29, 1995, X. Caicedo, C. Montenegro (eds.), Lecture Notes in Pure and Applied Mathematics, vol. 203, pp. 57-60. Dekker, New York (1999)
[7] David Pincus: Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods. The Journal of Symbolic Logic 37 (1972), pp. 721-743.
[8] Salome Schumacher: The relation between two diminished choice principles. The Journal of Symbolic Logic 86(1) (2021), pp. 415-432.

