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lorenz.halbeisen@math.ethz.ch

Riccardo Plati

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
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Abstract. The Ramsey Choice principle for families of n-element sets, denoted

RCn, states that every infinite set X has an infinite subset Y ⊆ X with a choice

function on [Y ]n := {z ⊆ Y : |z| = n}. We investigate for which positive integersm

and n the implication RCm ⇒ RCn is provable in ZF. It will turn out that beside

the trivial implications RCm ⇒ RCm, under the assumption that every odd integer

n > 5 is the sum of three primes (known as ternary Goldbach conjecture), the

only non-trivial implication which is provable in ZF is RC2 ⇒ RC4.
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1 Introduction

For positive integers n, the Ramsey Choice principle for families of n-element sets,
denoted RCn, is defined as follows: For every infinite set X there is an infinite subset
Y ⊆ X such that the set [Y ]n := {z ⊆ Y : |z| = n} has a choice function. The Ramsey
Choice principle was introduced by Montenegro [5] who showed that for n = 2, 3, 4,
RCn ⇒ C−

n . where C−
n is the statement that every infinite family of n-element has

an infinite subfamily with a choice function. However, the question of whether or not
RCn → C−

n for n ≥ 5 is still open (for partial answers to this question see [2, 3]).

In this paper, we investigate the relation between RCn and RCm for positive integers n
and m. First, for each positive integer m we construct a permutation models MODm

1Research partially supported by the Israel Science Foundation grant no. 1838/19 and by NSF grant
DMS 1833363. Paper 1243 on author’s publication list.
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in which RCm holds, and then we show that RCn fails in MODm for certain integers n.
In particular, assuming the ternary Goldbach conjecture, which states that every odd
integer n > 5 is the sum of three primes, and by the transfer principles of Pincus [6], we
we obtain that for m,n ≥ 2, the implication RCm ⇒ RCn is not provable in ZF except
in the case when m = n, or when m = 2 and n = 4.

Fact 1.1. The implications RCm ⇒ RCm (for m ≥ 1) and RC2 ⇒ RC4 are provable
in ZF.

Proof. The implication RCm ⇒ RCm is trivial. To see that RC2 ⇒ RC4 is provable in
ZF, we assume RC2. If X is an infinite set, then by RC2 there is an infinite subset Y ⊆ X
such that [Y ]2 has a choice function f2. Now, for any z ∈ [Y ]4, [z]2 is a 6-element subset
of [Y ]2, and by the choice function f2 we can select an element from each 2-element
subset of z. For any z ∈ [Y ]4 and each a ∈ z, let νz(a) := |{x ∈ [z]2 : f2(x) = a},
mz := min

{
νz(a) : a ∈ z

}
, and Mz :=

{
a ∈ z : νz(a) = mz

}
. Since f2 is a choice

function, we have
∑

a∈z νz(a) = 6, and since 4 ∤ 6, the function f : [Y ]4 → Y defined by
stipulating

f(z) :=


a if Mz = {a},
b if z \Mz = {b},
c if |Mz| = 2 and f2(Mz) = c,

is a choice function on [Y ]4, which shows that RC4 holds. ⊣

2 A model in which RCm holds

In this section we construct a permutation model MODm in which RCm holds. Accord-
ing to [1, p. 211ff.], the model MODm is a Shelah Model of the Second Type.

Fix an integer m ≥ 2 and let Lm be the signature containing the relation symbol Selm.
Let Tm be the Lm-theory containing the following axiom-schema:

For all pairwise different x1, . . . , xm, there exists a unique index i ∈ {1, . . . ,m}
such that, whenever {b1, . . . , bm} = {1, . . . ,m},

Selm(xb1 , . . . , xbm , xb) ⇐⇒ b = i.

In other words, Selm is a selecting function which selects an element from each m-
element set {x1, . . . , xm}. In any model of the theory Tm, the relation Selm is equivalent
to a function Sel which selects a unique element from any m-element set.

For a model M of Tm with domain M , we will simply write M |= Tm. Let

C̃ = {M : M ∈ fin(ω) ∧M |= Tm}.
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Evidently C̃ ̸= ∅. Partition C̃ into maximal isomorphism classes and let C be a set of
representatives. We proceed with the construction of the set of atoms for our permutation
model. With the next result, taken from [1], we give an explicit construction of the Fräıssé
limit of the finite models of Tm.

Proposition 2.1. Let m ∈ ω \ {0}. There exists a model F |= Tm with domain ω such
that

• Given a non empty M ∈ C, F admits infinitely many submodels isomorphic to M .

• Any isomorphism between two finite submodels of F can be extended to an auto-
morphism of F.

Proof. The construction of F is made by induction. Let F0 = ∅. F0 is trivially a model
of Tm and, for every element M of C with |M | ≤ 0, F0 contains a submodel isomorphic
to M . Let Fn be a model of Tm with a finite initial segment of ω as domain and such
that for every M ∈ C with |M | ≤ n, Fn contains a submodel isomorphic to M . Let

• {Ai : i ≤ p} be an enumeration of [Fn]
≤n,

• {Rk : k ≤ q} be an enumeration of all the M ∈ C such that 1 ≤ |M | ≤ n+ 1,

• {jl : l ≤ u} be an enumeration of all the embeddings jl : Fn|Ai
↪−→ Rk, where i ≤ p,

k ≤ q and |Rk| = |Ai|+ 1.

For each l ≤ u, let al ∈ ω be the least natural number such that al /∈ Fn ∪ {al′ : l′ < l}.
The idea is to add al to Fn, extending Fn|Ai

to a model Fn|Ai
∪ {al} isomorphic to Rk,

where jl : Fn|Ai
↪−→ Rk. Define Fn+1 := Fn ∪ {al : l ≤ u} and make Fn+1 into a model of

Tm by choosing a way of defining the function Sel on the missing subsets. The desired
model is finally given by F =

⋃
n∈ω Fn.

We conclude by showing that every isomorphism between finite submodels can be ex-
tended to an automorphism of F with a back-and-forth argument. Let i0 : M1 → M2

be an isomorphism of Tm-models. Let a1 be the least natural number in ω \M1. Then
M1 ∪ {a1} is contained in some Fn and by construction we can find some a′1 ∈ ω \M2

such that F|M1∪{a1} is isomorphic to F|M2∪{a′1}. Extend i0 to l1 : M1 ∪{a1} → M2 ∪{a′1}
by imposing l1(a1) = a′1. Let b′1 be the least integer in ω \ (M2 ∪ {a′1}) and simi-
larly find some b1 ∈ ω \ (M1 ∪ {a1}) such that we can extend l1 to an isomorphism
i1 : M1 ∪ {a1, b1} → M2 ∪ {a′1, b′1} which maps b1 to b′1. Repeating the process countably
many times, the desired automorphism of F is given by i =

⋃
n∈ω in. ⊣

Remark 1. Let us fix some notations and terminology. The elements of the model F
above constructed will be the atoms of our permutation model. Each element a corre-
sponds to a unique embedding j. We shall call the domain of j the ground of a. Moreover,
given two atoms a and b, we say that a < b in case a <ω b according to the natural
ordering. Notice that this well ordering of the atoms will not exist in the permutation
model.

3



Let A be the domain of the model F of the theory Tm. To build the permutation model
MODm, consider the normal ideal given by all the finite subsets of A and the group of
permutations G defined by

π ∈ G ⇐⇒ ∀X ∈ [ω]m, π(Sel(X)) = Sel(πX).

Theorem 2.2. For every positive integer m, MODm is a model for RCm.

Proof. Let X be an infinite set with support S ′. If X is well ordered, the conclusion
is trivial, so let x ∈ X be an element not supported by S ′ and let S be a support of
x, with S ′ ⊆ S. Let a ∈ S \ S ′. If fixG(S \ {a}) ⊆ symG(x) then S \ {a} is a support
of x, so by iterating the process finitely many times we can assume that there exists
a permutation τ ∈ fixG(S \ {a}) such that τ(x) ̸= x. Our conclusion will follow by
showing that there is a bijection between an infinite set of atoms and a subset of X,
namely between I = {π(a) : π ∈ fixG(S \ {a})} and {π(x) : π ∈ fixG(S \ {a})}. First,
notice that for π ∈ fixG(S \ {a}) the function f : π(a) 7→ π(x) is well defined on I.
Indeed, if for some σ, π ∈ fixG(S \ {a}) we have σ(x) ̸= π(x), then σπ−1(x) ̸= x, which
implies σπ−1(a) ̸= a since S is a support of x. To show that f is also injective, suppose
towards a contradiction that there are two permutations σ, σ′ ∈ fixG(S \ {a}) such that
σ(x) = σ′(x) and σ(a) ̸= σ′(a). Then, by direct computation, the permutation σ−1σ′ is
such that σ−1σ′(a) ̸= a and σ−1σ′(x) = x. Let b = σ−1σ′(a). Now, by assumption there
is a permutation τ ∈ fixG(S \ {a}) such that τ(x) ̸= x. Let y := τ(x), with c = τ(a) and
d = σ−1σ′(c). Notice that from f(a) = f(b) we get f(c) = f(d). Let now e ∈ A be an
atom with ground S ∪ {c} such that e behaves like b with respect to S and like d with
respect to (S \{a})∪{c}. This is possible by construction of the set of atoms since b and
d behave in the same way with respect to S \{a}. It follows that there are permutations
πb ∈ fixG(S) and πd ∈ fixG((S \ {a}) ∪ {c}) with πb(b) = e and πd(d) = e. Let us now
consider f(e). On the one hand, since (S \ {a}) ∪ {c} is a support of y = f(d), we have
y = πd(f(d)) = f(πd(d)) = f(e). On the other hand, since S is a support of x = f(b),
we have x = πb(f(b)) = f(πb(b)) = f(e), contradicting the fact that x ̸= y. ⊣

3 For which n is MODm a model for RCn ?

The following result shows that for positive integers m,n which satisfy a certain condi-
tion, the implication RCm ⇒ RCn is not provable in ZF. Assuming the ternary Goldbach
conjecture, it will turn out that all positive integers m,n satisfy this condition, except
when m = n, or when m = 2 and n = 4.

Definition 3.1. Given n ∈ ω, a decomposition of n is a finite sequence (ni)i∈k with
each ni ∈ ω \ {1} so that n =

∑
i∈k ni.

Definition 3.2. Given two natural numbers n and m, a decomposition (ni)i∈k of n is
said to be beautiful for the pair (m,n) if, given any decomposition (mi)i∈k of m of length
k such that for all i ∈ k we have mi ≤ ni, then there is some j ∈ k with gcd(mj, nj) = 1.
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In what follows, when we refer to a decomposition of some n being beautiful, we mean
that the decomposition is beautiful for (m,n). It will always be clear from the context
to which pair (m,n) we refer.

Proposition 3.3. Let m,n ∈ ω. If there is a decomposition of n which is beautiful,
then the implication RCm ⇒ RCn is not provable in ZF.

Remark 2. The condition on m and n is somewhat similar to the condition given in
Theorem 2.10 of Halbeisen and Schumacher [2]. Let WOC−

n be the statement that every
infinite, well-orderable family F of sets of size n has an infinite subset G ⊆ F with a
choice function. Then for every m,n ∈ ω \ {0, 1}, the implication RCm ⇒ WOC−

n is
provable in ZF if an only if the following condition holds: Whenever we can write n in
the form

n =
∑
i<k

aipi,

where p0, . . . , pk−1 are prime numbers and a0, . . . , ak−1 ∈ ω \ {0}, then we find integers
b0, . . . , bk−1 ∈ ω with

m =
∑
i<k

bipi.

Proof of Propostion 3.3. We show that in MODm, RCn fails. Assume towards a con-
tradiction that RCn holds in MODm and let S be a support of a selection function f
on the n-element subsets of an infinite subset X of the set of atoms A.

By the construction in Proposition 2.1, given any model N of Tm extending S, we can
find a submodel of X ∪ S isomoprhic to N .

Our conclusion can hence follow from finding a model M of Tm which extends S with
|M \ S| = n and such that M admits an auotmorphism σ which fixes pointwise S and
which does not have any other fixed point, since then σ(f(M \ S)) ̸= f(M \ S) but
σ(M \ S) = M \ S. We start with the following claim:

Claim. Given a cyclic permutation π on some set P of cardinality |P | = q, if a non-
trivial power πr of π fixes a proper subset P ′ of P , then gcd(|P ′|, |P |) > 1.

To prove the claim, notice that πr is a disjoint union of cycles of the same length
l = q

gcd(q,r)
. Consider the subgroup of ⟨π⟩ given by ⟨πr⟩. Then P ′ is a disjoint union of

orbits of the form Orb<πr>(e) with e ∈ P ′, all of them with the same cardinality s, with
s being a divisor of l = q

gcd(q,r)
and hence of q, from which we deduce the claim.

Now, given a beautiful decomposition (ni)i∈k of n, we want to show that we can find
a model M of Tm, which extends S with |M \ S| = n and such that it admits an
automorphism σ which fixes pointwise S and acts on M \ S as a disjoint union of
k cycles, each of length ni for i ∈ k. This can be done as follows. Pick an m-element
subset P of M for which Sel(P ) has not been defined yet. If P ∩S ̸= ∅ then let Sel(P ) be
any element in P ∩ S. Otherwise, by our the assumptions, there is a cycle Cj of length
nj for some j ∈ k such that gcd(|P ∩ Cj|, |Cj|) = 1. Define Sel(P ) as an arbitrarily
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fixed element of P ∩Cj and, for all permutations π in the group generated by σ, define
Sel(π(P )) = π(Sel(P )). We need to argue that this is indeed well defined, i.e. that for two
permutations π, π′ ∈ ⟨σ⟩ we have that π(P ) = π′(P ) implies π(Sel(P )) = π′(Sel(P )).
Problems can arise only when P ∩ S = ∅, in which case we notice that π(P ) = π′(P )
implies π(P ∩ Cj) = π′(P ∩ Cj), which in turn by the claim implies that π−1 ◦ π′ fixes
P ∩ Cj pointwise, from which we deduce π(Sel(P )) = π′(Sel(P )). ⊣

Proposition 3.3 allows us to immediately deduce the following results.

Corollary 3.4. If m > n, then RCm does not imply RCn.

Proof. The decomposition n =
∑

i∈1 ni with n0 = n is clearly beautiful, so we can
directly apply Proposition 3.3. ⊣

Corollary 3.5. If there is a prime p for which p | n but p ∤ m, then RCm does not
imply RCn.

Proof. Given the assumption, the decomposition of n given by n =
∑

i∈n
p
ni, where each

ni = p, is beautiful, so we can apply Proposition 3.3. ⊣

Moreover, we can show the following:

Theorem 3.6. For any positive integers m and n, the implication RCm ⇒ RCn is
provable in ZF only in the case when m = n or when m = 2 and n = 4.

The proof of Theorem 3.6 is given in the following results, where in the proofs we use
two well-known number-theoretical results: The first one is Bertrand’s postulate, which
asserts that for every positive integer m ≥ 2 there is a prime p with m < p < 2m, and
the second one is ternary Goldbach conjecture (assumed to be proven by Helfgott [4]),
which asserts that every odd integer n > 5 is the sum of three primes.

Proposition 3.7. If m is prime and n ̸= m with (m,n) ̸= (2, 4), then the implication
RCm ⇒ RCn is not provable in ZF

Proof. Given Corollary 3.5, we can assume that n = mk for some natural number k > 1.
Let p be a prime such that m < p < 2m, whose existence is guaranteed by Bertrand’s
postulate. Then clearly m ∤ n−p, from which, considering that because of parity reasons
n− p ̸= 1, we get that the decomposition n = p+ (n− p) is beautiful. ⊣

Proposition 3.8. If n is odd and m ̸= n, then the implication RCm ⇒ RCn is not
provable in ZF.

Proof. By the ternary Goldbach conjecture, let us write n as sum of three primes n =
p0 + p1 + p2. Given Proposition 3.7, we can assume that m = p0 + p1, since otherwise
the decomposition n = p0 + p1 + p2 would be beautiful.

6



We first deal with the case in which p0 = p1 = p2 holds, for which we rename p = p0. By
hand we can exclude the case p = 2, and now we want to show that the decomposition
n = n0+n1 = (3p−2)+2 is beautiful. Notice that gcd(3p−2, 2p−2) ∈ {1, p}, from which
we deduce that necessarily if m = m0 +m1 is a decomposition of m with m0 ≤ 3p − 2
and m1 ≤ 2, then m1 = 0. To conclude this first case, it suffices to notice that, since p
is a prime grater than 2, gcd(3p− 2, 2p) necessarily equals 1.

We can now assume that it is not true that p0 = p1 = p2. Since n is odd, p0 + p1 ∤ p2. If
p2 ∤ p0 + p1, then the decomposition n = n is actually beautiful. So, given p2 | p0 + p1,
without loss of generality let us assume that p2 < p0. By p2 | p0 + p1 we deduce that
p1 ̸= p2, and we now consider the decomposition n = n0 + n1 = (p1 + p2) + p0. We
can’t have m1 = p0 since gcd(p1, p1 + p2) = 1. On the other hand, we can’t even have
m1 = 0 since p0 + p1 > p1 + p2, which proves that the assumptions of Proposition 3.3
are satisfied. ⊣

Proposition 3.9. Let m > 2 be an even natural number and k ∈ ω such that 2k +1 is
prime. If n = m+ 2k, then the implication RCm ⇒ RCn is not provable in ZF.

Proof. We consider the decomposition n = n0 + n1 = (m − 1) + (2k + 1). It directly
follows from the assumptions of the proposition that in order to have a decomposition
m = m0 +m1 which disproves the fact that the above decomposition of n is beautiful,
since n0 < m, necessarily m1 = 2k + 1, from which we deduce m0 = m − 2k − 1. This
immediately gives a contradiction in the case 2k + 1 > m, so let us assume 2k + 1 < m.
We get again a contradiction by the fact that gcd(m0, n0) = gcd(m − 2k − 1,m −
1) = gcd(2k,m − 1) = 1, where we used that m is even. We can hence conclude that
Proposition 3.3 can be applied. ⊣

Proposition 3.10. Let m and n be even natural numbers such that there is an odd
prime p with m < p < n and n > p + 1. Then the implication RCm ⇒ RCn is not
provable in ZF.

Proof. If n = p+3 or n = p+5 the decomposition n = p+ (n− p) is already beautiful.
Otherwise, by the ternary Goldbach conjecture, write n − p as sum of three primes
n− p = p0+ p1+ p2. Consider now the decomposition n =

∑
i∈4 ni = p+ p0+ p1+ p2. In

order to write m =
∑

i∈4mi, necessarily m0 = 0. If n− p < m we can already conclude
that Proposition 3.3 can be applied. Otherwise, we find ourselves in the assumptions of
Proposition 3.8, which again allows us to conclude that RCm does not imply RCn. ⊣

The following result deals with all the remaining cases and completes the proof of The-
orem 3.6.

Proposition 3.11. Let m and n be even natural numbers with 3 ≤ n
2
≤ m < n such

that if there is a prime p with m < p < n, then p = n − 1. Then the implication
RCm ⇒ RCn is not provable in ZF.
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Proof. By Bertrand’s postulate, let p be a prime with n
2
< p < n. This implies by the

assumption n
2
< p < m or p = n− 1. If we are in the latter case, apply again Bertrand’s

postulate to find a further prime n
2
− 1 < p′ < n − 2 (notice that by our assumption

we have 2 ≤ n
2
− 1). Since m is not prime we necessarily have p′ ̸= m, which together

with the present assumptions makes us able to assume without loss of generality that
n
2
< p < m. Given that n − m is even, by Proposition 3.9 we can assume n − m > 4,

which in turn implies n− p > 5. Since by the ternary Goldbach conjecture we can write
n = p+p0+p1+p2 with m > p0+p1+p2, notice that by the fact that n and m are even,
we can assume that m− p equals some odd prime p′, since otherwise the decomposition
n = p+p0+p1+p2 would already be beautiful. Now, either n = p+(n−p) is beautiful,
or n− p is a multiple of p′. We distinguish two cases, namely when n− p is a power of
p′ and when it is not. In the second case, let p′′ be a prime distinct from p′ such that
p′′ | n − p. The decomposition of n given by n = n0 +

∑
i∈n−p

p′′
ni = p +

∑
i∈n−m

p′′
p′′ is

beautiful, as n−p < m and hence ifm = m0+
∑

i∈n−m
p′

mi thenm0 = p. For the last case,

without loss of generality assume that p0+ p1+ p2 = pk0 for some natural number k > 1.
If p0 = p1 = p2 = 3, we decompose 9 = n−p as 5+2+2, so we can assume pk−1

0 −2 ̸= 1.
Now we get p2 ̸= p0, since otherwise we would have p1 = pk0 − 2p0 = p0(p

k−1
0 − 2), which

is a contradiction, and similarly we obtain p1 ̸= p0. We finally assume wlog that p1 > p0,
which allows us to conclude that the decomposition n = p+ p1+(p0+ p2) is in this case
beautiful, concluding the proof. ⊣

For the sake of completeness, we summarise the proof of our main theorem:

Proof of Theorem 3.6. Let m and n be two distinct positive integers.

ZF ⊢ RCm ⇒ RCn
Cor. 3.2
=⇒ m < n

Prp. 3.6
=⇒ n is even

Cor. 3.3
=⇒ m is even

Now, if m and n are both even, we have the following two cases:

m <
n

2

Prp. 3.8
=⇒ ZF ̸⊢ RCm ⇒ RCn

m ≥ n

2
≥ 3

Prp. 3.9
=⇒

Prp. 3.8
ZF ̸⊢ RCm ⇒ RCn

Thus, by Fact 1.1, the implication RCm ⇒ RCn is provable in ZF if and only if m = n
or m = 2 and n = 4. ⊣

Remark 3. The proof of the implication RC2 ⇒ RC4 (Fact 1.1) is very similar to the
proof of the implication C2 ⇒ C4, where Cn states that every family n-element sets
has a choice function. Moreover, similar to the proof of C2 ∧C3 ⇒ C6 one can proof
the implication RC2 ∧RC3 ⇒ RC6. So, it might be interesting to investigate which
implications of the form

RCm1 ∧ · · · ∧ RCmk
⇒ RCn
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are provable in ZF and compare them with the corresponding implications for Cn’s. Since
C4 ⇒ C2 but RC4 ⇏ RC2, the conditions for the RCn’s are clearly different from the
conditions for the Cn’s (see Halbeisen and Tachtsis [3] for some results in this direction).
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