Implications of Ramsey Choice Principles in ZF

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland lorenz.halbeisen@math.ethz.ch
Riccardo Plati
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
riccardo.plati@math.ethz.ch
Saharon Shelah ${ }^{1}$
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
shelah@math.huji.ac.il
and
Department of Mathematics, Hill Center - Busch Campus, Rutgers, State University of New Jersey
110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, U.S.A.

Abstract

The Ramsey Choice principle for families of n-element sets, denoted RC_{n}, states that every infinite set X has an infinite subset $Y \subseteq X$ with a choice function on $[Y]^{n}:=\{z \subseteq Y:|z|=n\}$. We investigate for which positive integers m and n the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is provable in ZF . It will turn out that beside the trivial implications $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{m}$, under the assumption that every odd integer $n>5$ is the sum of three primes (known as ternary Goldbach conjecture), the only non-trivial implication which is provable in ZF is $\mathrm{RC}_{2} \Rightarrow \mathrm{RC}_{4}$.

key-words: permutation models, consistency results, Ramsey choice, ternary Goldbach conjecture
2010 Mathematics Subject Classification: 03E35 03E25

1 Introduction

For positive integers n, the Ramsey Choice principle for families of n-element sets, denoted RC_{n}, is defined as follows: For every infinite set X there is an infinite subset $Y \subseteq X$ such that the set $[Y]^{n}:=\{z \subseteq Y:|z|=n\}$ has a choice function. The Ramsey Choice principle was introduced by Montenegro [5] who showed that for $n=2,3,4$, $\mathrm{RC}_{n} \Rightarrow \mathrm{C}_{n}^{-}$. where C_{n}^{-}is the statement that every infinite family of n-element has an infinite subfamily with a choice function. However, the question of whether or not $\mathrm{RC}_{n} \rightarrow \mathrm{C}_{n}^{-}$for $n \geq 5$ is still open (for partial answers to this question see $[2,3]$).

In this paper, we investigate the relation between RC_{n} and RC_{m} for positive integers n and m. First, for each positive integer m we construct a permutation models $\mathbf{M O D}_{m}$

[^0]in which RC_{m} holds, and then we show that RC_{n} fails in MOD_{m} for certain integers n. In particular, assuming the ternary Goldbach conjecture, which states that every odd integer $n>5$ is the sum of three primes, and by the transfer principles of Pincus [6], we we obtain that for $m, n \geq 2$, the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF except in the case when $m=n$, or when $m=2$ and $n=4$.
FACT 1.1. The implications $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{m}$ (for $m \geq 1$) and $\mathrm{RC}_{2} \Rightarrow \mathrm{RC}_{4}$ are provable in ZF .

Proof. The implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{m}$ is trivial. To see that $\mathrm{RC}_{2} \Rightarrow \mathrm{RC}_{4}$ is provable in ZF, we assume RC_{2}. If X is an infinite set, then by RC_{2} there is an infinite subset $Y \subseteq X$ such that $[Y]^{2}$ has a choice function f_{2}. Now, for any $z \in[Y]^{4},[z]^{2}$ is a 6 -element subset of $[Y]^{2}$, and by the choice function f_{2} we can select an element from each 2 -element subset of z. For any $z \in[Y]^{4}$ and each $a \in z$, let $\nu_{z}(a):=\mid\left\{x \in[z]^{2}: f_{2}(x)=a\right\}$, $m_{z}:=\min \left\{\nu_{z}(a): a \in z\right\}$, and $M_{z}:=\left\{a \in z: \nu_{z}(a)=m_{z}\right\}$. Since f_{2} is a choice function, we have $\sum_{a \in z} \nu_{z}(a)=6$, and since $4 \nmid 6$, the function $f:[Y]^{4} \rightarrow Y$ defined by stipulating

$$
f(z):= \begin{cases}a & \text { if } M_{z}=\{a\} \\ b & \text { if } z \backslash M_{z}=\{b\} \\ c & \text { if }\left|M_{z}\right|=2 \text { and } f_{2}\left(M_{z}\right)=c,\end{cases}
$$

is a choice function on $[Y]^{4}$, which shows that RC_{4} holds.

2 A model in which RC_{m} holds

In this section we construct a permutation model $\mathbf{M O D}_{m}$ in which RC_{m} holds. According to [1, p. 211 ff .], the model $\mathbf{M O D}_{m}$ is a Shelah Model of the Second Type.

Fix an integer $m \geq 2$ and let \mathcal{L}_{m} be the signature containing the relation symbol Sel_{m}. Let T_{m} be the \mathcal{L}_{m}-theory containing the following axiom-schema:

For all pairwise different x_{1}, \ldots, x_{m}, there exists a unique index $i \in\{1, \ldots, m\}$ such that, whenever $\left\{b_{1}, \ldots, b_{m}\right\}=\{1, \ldots, m\}$,

$$
\operatorname{Sel}_{m}\left(x_{b_{1}}, \ldots, x_{b_{m}}, x_{b}\right) \Longleftrightarrow b=i
$$

In other words, Sel_{m} is a selecting function which selects an element from each melement set $\left\{x_{1}, \ldots, x_{m}\right\}$. In any model of the theory T_{m}, the relation Sel_{m} is equivalent to a function Sel which selects a unique element from any m-element set.

For a model \boldsymbol{M} of T_{m} with domain M, we will simply write $M \models \mathrm{~T}_{m}$. Let

$$
\widetilde{C}=\left\{M: M \in \operatorname{fin}(\omega) \wedge M \models \mathrm{~T}_{m}\right\}
$$

Evidently $\widetilde{C} \neq \emptyset$. Partition \widetilde{C} into maximal isomorphism classes and let C be a set of representatives. We proceed with the construction of the set of atoms for our permutation model. With the next result, taken from [1], we give an explicit construction of the Fraïssé limit of the finite models of T_{m}.
Proposition 2.1. Let $m \in \omega \backslash\{0\}$. There exists a model $\mathbf{F} \models \mathrm{T}_{m}$ with domain ω such that

- Given a non empty $M \in C, \mathbf{F}$ admits infinitely many submodels isomorphic to M.
- Any isomorphism between two finite submodels of \mathbf{F} can be extended to an automorphism of \mathbf{F}.

Proof. The construction of \mathbf{F} is made by induction. Let $F_{0}=\emptyset$. F_{0} is trivially a model of T_{m} and, for every element M of C with $|M| \leq 0, F_{0}$ contains a submodel isomorphic to M. Let F_{n} be a model of T_{m} with a finite initial segment of ω as domain and such that for every $M \in C$ with $|M| \leq n, F_{n}$ contains a submodel isomorphic to M. Let

- $\left\{A_{i}: i \leq p\right\}$ be an enumeration of $\left[F_{n}\right]^{\leq n}$,
- $\left\{R_{k}: k \leq q\right\}$ be an enumeration of all the $M \in C$ such that $1 \leq|M| \leq n+1$,
- $\left\{j_{l}: l \leq u\right\}$ be an enumeration of all the embeddings $j_{l}:\left.F_{n}\right|_{A_{i}} \hookrightarrow R_{k}$, where $i \leq p$, $k \leq q$ and $\left|R_{k}\right|=\left|A_{i}\right|+1$.

For each $l \leq u$, let $a_{l} \in \omega$ be the least natural number such that $a_{l} \notin F_{n} \cup\left\{a_{l^{\prime}}: l^{\prime}<l\right\}$. The idea is to add a_{l} to F_{n}, extending $\left.F_{n}\right|_{A_{i}}$ to a model $\left.F_{n}\right|_{A_{i}} \cup\left\{a_{l}\right\}$ isomorphic to R_{k}, where $j_{l}:\left.F_{n}\right|_{A_{i}} \hookrightarrow R_{k}$. Define $F_{n+1}:=F_{n} \cup\left\{a_{l}: l \leq u\right\}$ and make F_{n+1} into a model of T_{m} by choosing a way of defining the function Sel on the missing subsets. The desired model is finally given by $\mathbf{F}=\bigcup_{n \in \omega} F_{n}$.

We conclude by showing that every isomorphism between finite submodels can be extended to an automorphism of \mathbf{F} with a back-and-forth argument. Let $i_{0}: M_{1} \rightarrow M_{2}$ be an isomorphism of T_{m}-models. Let a_{1} be the least natural number in $\omega \backslash M_{1}$. Then $M_{1} \cup\left\{a_{1}\right\}$ is contained in some F_{n} and by construction we can find some $a_{1}^{\prime} \in \omega \backslash M_{2}$ such that $\left.\mathbf{F}\right|_{M_{1} \cup\left\{a_{1}\right\}}$ is isomorphic to $\left.\mathbf{F}\right|_{M_{2} \cup\left\{a_{1}^{\prime}\right\}}$. Extend i_{0} to $l_{1}: M_{1} \cup\left\{a_{1}\right\} \rightarrow M_{2} \cup\left\{a_{1}^{\prime}\right\}$ by imposing $l_{1}\left(a_{1}\right)=a_{1}^{\prime}$. Let b_{1}^{\prime} be the least integer in $\omega \backslash\left(M_{2} \cup\left\{a_{1}^{\prime}\right\}\right)$ and similarly find some $b_{1} \in \omega \backslash\left(M_{1} \cup\left\{a_{1}\right\}\right)$ such that we can extend l_{1} to an isomorphism $i_{1}: M_{1} \cup\left\{a_{1}, b_{1}\right\} \rightarrow M_{2} \cup\left\{a_{1}^{\prime}, b_{1}^{\prime}\right\}$ which maps b_{1} to b_{1}^{\prime}. Repeating the process countably many times, the desired automorphism of \mathbf{F} is given by $i=\bigcup_{n \in \omega} i_{n}$.
Remark 1. Let us fix some notations and terminology. The elements of the model \mathbf{F} above constructed will be the atoms of our permutation model. Each element a corresponds to a unique embedding j. We shall call the domain of j the ground of a. Moreover, given two atoms a and b, we say that $a<b$ in case $a<_{\omega} b$ according to the natural ordering. Notice that this well ordering of the atoms will not exist in the permutation model.

Let A be the domain of the model \mathbf{F} of the theory T_{m}. To build the permutation model $\mathbf{M O D}_{m}$, consider the normal ideal given by all the finite subsets of A and the group of permutations G defined by

$$
\pi \in G \Longleftrightarrow \forall X \in[\omega]^{m}, \pi(\operatorname{Sel}(X))=\operatorname{Sel}(\pi X)
$$

Theorem 2.2. For every positive integer $m, \mathbf{M O D}_{m}$ is a model for RC_{m}.
Proof. Let X be an infinite set with support S^{\prime}. If X is well ordered, the conclusion is trivial, so let $x \in X$ be an element not supported by S^{\prime} and let S be a support of x, with $S^{\prime} \subseteq S$. Let $a \in S \backslash S^{\prime}$. If fix ${ }_{G}(S \backslash\{a\}) \subseteq \operatorname{sym}_{G}(x)$ then $S \backslash\{a\}$ is a support of x, so by iterating the process finitely many times we can assume that there exists a permutation $\tau \in \operatorname{fix}_{G}(S \backslash\{a\})$ such that $\tau(x) \neq x$. Our conclusion will follow by showing that there is a bijection between an infinite set of atoms and a subset of X, namely between $I=\left\{\pi(a): \pi \in \operatorname{fix}_{G}(S \backslash\{a\})\right\}$ and $\left\{\pi(x): \pi \in \operatorname{fix}_{G}(S \backslash\{a\})\right\}$. First, notice that for $\pi \in \operatorname{fix}_{G}(S \backslash\{a\})$ the function $f: \pi(a) \mapsto \pi(x)$ is well defined on I. Indeed, if for some $\sigma, \pi \in \operatorname{fix}_{G}(S \backslash\{a\})$ we have $\sigma(x) \neq \pi(x)$, then $\sigma \pi^{-1}(x) \neq x$, which implies $\sigma \pi^{-1}(a) \neq a$ since S is a support of x. To show that f is also injective, suppose towards a contradiction that there are two permutations $\sigma, \sigma^{\prime} \in \operatorname{fix}_{G}(S \backslash\{a\})$ such that $\sigma(x)=\sigma^{\prime}(x)$ and $\sigma(a) \neq \sigma^{\prime}(a)$. Then, by direct computation, the permutation $\sigma^{-1} \sigma^{\prime}$ is such that $\sigma^{-1} \sigma^{\prime}(a) \neq a$ and $\sigma^{-1} \sigma^{\prime}(x)=x$. Let $b=\sigma^{-1} \sigma^{\prime}(a)$. Now, by assumption there is a permutation $\tau \in \operatorname{fix}_{G}(S \backslash\{a\})$ such that $\tau(x) \neq x$. Let $y:=\tau(x)$, with $c=\tau(a)$ and $d=\sigma^{-1} \sigma^{\prime}(c)$. Notice that from $f(a)=f(b)$ we get $f(c)=f(d)$. Let now $e \in A$ be an atom with ground $S \cup\{c\}$ such that e behaves like b with respect to S and like d with respect to $(S \backslash\{a\}) \cup\{c\}$. This is possible by construction of the set of atoms since b and d behave in the same way with respect to $S \backslash\{a\}$. It follows that there are permutations $\pi_{b} \in \operatorname{fix}_{G}(S)$ and $\pi_{d} \in \operatorname{fix}_{G}((S \backslash\{a\}) \cup\{c\})$ with $\pi_{b}(b)=e$ and $\pi_{d}(d)=e$. Let us now consider $f(e)$. On the one hand, since $(S \backslash\{a\}) \cup\{c\}$ is a support of $y=f(d)$, we have $y=\pi_{d}(f(d))=f\left(\pi_{d}(d)\right)=f(e)$. On the other hand, since S is a support of $x=f(b)$, we have $x=\pi_{b}(f(b))=f\left(\pi_{b}(b)\right)=f(e)$, contradicting the fact that $x \neq y$.

3 For which n is MOD_{m} a model for RC_{n} ?

The following result shows that for positive integers m, n which satisfy a certain condition, the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF . Assuming the ternary Goldbach conjecture, it will turn out that all positive integers m, n satisfy this condition, except when $m=n$, or when $m=2$ and $n=4$.
Definition 3.1. Given $n \in \omega$, a decomposition of n is a finite sequence $\left(n_{i}\right)_{i \in k}$ with each $n_{i} \in \omega \backslash\{1\}$ so that $n=\sum_{i \in k} n_{i}$.
Definition 3.2. Given two natural numbers n and m, a decomposition $\left(n_{i}\right)_{i \in k}$ of n is said to be beautiful for the pair (m, n) if, given any decomposition $\left(m_{i}\right)_{i \in k}$ of m of length k such that for all $i \in k$ we have $m_{i} \leq n_{i}$, then there is some $j \in k$ with $\operatorname{gcd}\left(m_{j}, n_{j}\right)=1$.

In what follows, when we refer to a decomposition of some n being beautiful, we mean that the decomposition is beautiful for (m, n). It will always be clear from the context to which pair (m, n) we refer.

Proposition 3.3. Let $m, n \in \omega$. If there is a decomposition of n which is beautiful, then the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF .

Remark 2. The condition on m and n is somewhat similar to the condition given in Theorem 2.10 of Halbeisen and Schumacher [2]. Let WOC_{n}^{-}be the statement that every infinite, well-orderable family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function. Then for every $m, n \in \omega \backslash\{0,1\}$, the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{WOC}_{n}^{-}$is provable in ZF if an only if the following condition holds: Whenever we can write n in the form

$$
n=\sum_{i<k} a_{i} p_{i}
$$

where p_{0}, \ldots, p_{k-1} are prime numbers and $a_{0}, \ldots, a_{k-1} \in \omega \backslash\{0\}$, then we find integers $b_{0}, \ldots, b_{k-1} \in \omega$ with

$$
m=\sum_{i<k} b_{i} p_{i} .
$$

Proof of Propostion 3.3. We show that in $\mathbf{M O D}_{m}, \mathrm{RC}_{n}$ fails. Assume towards a contradiction that RC_{n} holds in MOD_{m} and let S be a support of a selection function f on the n-element subsets of an infinite subset X of the set of atoms A.
By the construction in Proposition 2.1, given any model N of T_{m} extending S, we can find a submodel of $X \cup S$ isomoprhic to N.

Our conclusion can hence follow from finding a model M of T_{m} which extends S with $|M \backslash S|=n$ and such that M admits an auotmorphism σ which fixes pointwise S and which does not have any other fixed point, since then $\sigma(f(M \backslash S)) \neq f(M \backslash S)$ but $\sigma(M \backslash S)=M \backslash S$. We start with the following claim:
Claim. Given a cyclic permutation π on some set P of cardinality $|P|=q$, if a nontrivial power π^{r} of π fixes a proper subset P^{\prime} of P, then $\operatorname{gcd}\left(\left|P^{\prime}\right|,|P|\right)>1$.
To prove the claim, notice that π^{r} is a disjoint union of cycles of the same length $l=\frac{q}{\operatorname{gcd}(q, r)}$. Consider the subgroup of $\langle\pi\rangle$ given by $\left\langle\pi^{r}\right\rangle$. Then P^{\prime} is a disjoint union of orbits of the form $\mathrm{Orb}_{\left.<\pi^{r}\right\rangle}(e)$ with $e \in P^{\prime}$, all of them with the same cardinality s, with s being a divisor of $l=\frac{q}{\operatorname{gcd}(q, r)}$ and hence of q, from which we deduce the claim.
Now, given a beautiful decomposition $\left(n_{i}\right)_{i \in k}$ of n, we want to show that we can find a model M of T_{m}, which extends S with $|M \backslash S|=n$ and such that it admits an automorphism σ which fixes pointwise S and acts on $M \backslash S$ as a disjoint union of k cycles, each of length n_{i} for $i \in k$. This can be done as follows. Pick an m-element subset P of M for which $\operatorname{Sel}(P)$ has not been defined yet. If $P \cap S \neq \emptyset$ then let $\operatorname{Sel}(P)$ be any element in $P \cap S$. Otherwise, by our the assumptions, there is a cycle C_{j} of length n_{j} for some $j \in k$ such that $\operatorname{gcd}\left(\left|P \cap C_{j}\right|,\left|C_{j}\right|\right)=1$. Define $\operatorname{Sel}(P)$ as an arbitrarily
fixed element of $P \cap C_{j}$ and, for all permutations π in the group generated by σ, define $\operatorname{Sel}(\pi(P))=\pi(\operatorname{Sel}(P))$. We need to argue that this is indeed well defined, i.e. that for two permutations $\pi, \pi^{\prime} \in\langle\sigma\rangle$ we have that $\pi(P)=\pi^{\prime}(P)$ implies $\pi(\operatorname{Sel}(P))=\pi^{\prime}(\operatorname{Sel}(P))$. Problems can arise only when $P \cap S=\emptyset$, in which case we notice that $\pi(P)=\pi^{\prime}(P)$ implies $\pi\left(P \cap C_{j}\right)=\pi^{\prime}\left(P \cap C_{j}\right)$, which in turn by the claim implies that $\pi^{-1} \circ \pi^{\prime}$ fixes $P \cap C_{j}$ pointwise, from which we deduce $\pi(\operatorname{Sel}(P))=\pi^{\prime}(\operatorname{Sel}(P))$.

Proposition 3.3 allows us to immediately deduce the following results.
Corollary 3.4. If $m>n$, then RC_{m} does not imply RC_{n}.

Proof. The decomposition $n=\sum_{i \in 1} n_{i}$ with $n_{0}=n$ is clearly beautiful, so we can directly apply Proposition 3.3.

Corollary 3.5. If there is a prime p for which $p \mid n$ but $p \nmid m$, then RC_{m} does not imply RC_{n}.

Proof. Given the assumption, the decomposition of n given by $n=\sum_{i \in \frac{n}{p}} n_{i}$, where each $n_{i}=p$, is beautiful, so we can apply Proposition 3.3.

Moreover, we can show the following:
THEOREM 3.6. For any positive integers m and n, the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is provable in ZF only in the case when $m=n$ or when $m=2$ and $n=4$.

The proof of Theorem 3.6 is given in the following results, where in the proofs we use two well-known number-theoretical results: The first one is Bertrand's postulate, which asserts that for every positive integer $m \geq 2$ there is a prime p with $m<p<2 m$, and the second one is ternary Goldbach conjecture (assumed to be proven by Helfgott [4]), which asserts that every odd integer $n>5$ is the sum of three primes.

Proposition 3.7. If m is prime and $n \neq m$ with $(m, n) \neq(2,4)$, then the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF

Proof. Given Corollary 3.5, we can assume that $n=m^{k}$ for some natural number $k>1$. Let p be a prime such that $m<p<2 m$, whose existence is guaranteed by Bertrand's postulate. Then clearly $m \nmid n-p$, from which, considering that because of parity reasons $n-p \neq 1$, we get that the decomposition $n=p+(n-p)$ is beautiful.

Proposition 3.8. If n is odd and $m \neq n$, then the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF.

Proof. By the ternary Goldbach conjecture, let us write n as sum of three primes $n=$ $p_{0}+p_{1}+p_{2}$. Given Proposition 3.7, we can assume that $m=p_{0}+p_{1}$, since otherwise the decomposition $n=p_{0}+p_{1}+p_{2}$ would be beautiful.

We first deal with the case in which $p_{0}=p_{1}=p_{2}$ holds, for which we rename $p=p_{0}$. By hand we can exclude the case $p=2$, and now we want to show that the decomposition $n=n_{0}+n_{1}=(3 p-2)+2$ is beautiful. Notice that $\operatorname{gcd}(3 p-2,2 p-2) \in\{1, p\}$, from which we deduce that necessarily if $m=m_{0}+m_{1}$ is a decomposition of m with $m_{0} \leq 3 p-2$ and $m_{1} \leq 2$, then $m_{1}=0$. To conclude this first case, it suffices to notice that, since p is a prime grater than $2, \operatorname{gcd}(3 p-2,2 p)$ necessarily equals 1 .

We can now assume that it is not true that $p_{0}=p_{1}=p_{2}$. Since n is odd, $p_{0}+p_{1} \nmid p_{2}$. If $p_{2} \nmid p_{0}+p_{1}$, then the decomposition $n=n$ is actually beautiful. So, given $p_{2} \mid p_{0}+p_{1}$, without loss of generality let us assume that $p_{2}<p_{0}$. By $p_{2} \mid p_{0}+p_{1}$ we deduce that $p_{1} \neq p_{2}$, and we now consider the decomposition $n=n_{0}+n_{1}=\left(p_{1}+p_{2}\right)+p_{0}$. We can't have $m_{1}=p_{0}$ since $\operatorname{gcd}\left(p_{1}, p_{1}+p_{2}\right)=1$. On the other hand, we can't even have $m_{1}=0$ since $p_{0}+p_{1}>p_{1}+p_{2}$, which proves that the assumptions of Proposition 3.3 are satisfied.

Proposition 3.9. Let $m>2$ be an even natural number and $k \in \omega$ such that $2^{k}+1$ is prime. If $n=m+2^{k}$, then the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF .

Proof. We consider the decomposition $n=n_{0}+n_{1}=(m-1)+\left(2^{k}+1\right)$. It directly follows from the assumptions of the proposition that in order to have a decomposition $m=m_{0}+m_{1}$ which disproves the fact that the above decomposition of n is beautiful, since $n_{0}<m$, necessarily $m_{1}=2^{k}+1$, from which we deduce $m_{0}=m-2^{k}-1$. This immediately gives a contradiction in the case $2^{k}+1>m$, so let us assume $2^{k}+1<m$. We get again a contradiction by the fact that $\operatorname{gcd}\left(m_{0}, n_{0}\right)=\operatorname{gcd}\left(m-2^{k}-1, m-\right.$ $1)=\operatorname{gcd}\left(2^{k}, m-1\right)=1$, where we used that m is even. We can hence conclude that Proposition 3.3 can be applied.

Proposition 3.10. Let m and n be even natural numbers such that there is an odd prime p with $m<p<n$ and $n>p+1$. Then the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF .

Proof. If $n=p+3$ or $n=p+5$ the decomposition $n=p+(n-p)$ is already beautiful. Otherwise, by the ternary Goldbach conjecture, write $n-p$ as sum of three primes $n-p=p_{0}+p_{1}+p_{2}$. Consider now the decomposition $n=\sum_{i \in 4} n_{i}=p+p_{0}+p_{1}+p_{2}$. In order to write $m=\sum_{i \in 4} m_{i}$, necessarily $m_{0}=0$. If $n-p<m$ we can already conclude that Proposition 3.3 can be applied. Otherwise, we find ourselves in the assumptions of Proposition 3.8, which again allows us to conclude that RC_{m} does not imply RC_{n}.

The following result deals with all the remaining cases and completes the proof of Theorem 3.6.

Proposition 3.11. Let m and n be even natural numbers with $3 \leq \frac{n}{2} \leq m<n$ such that if there is a prime p with $m<p<n$, then $p=n-1$. Then the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is not provable in ZF .

Proof. By Bertrand's postulate, let p be a prime with $\frac{n}{2}<p<n$. This implies by the assumption $\frac{n}{2}<p<m$ or $p=n-1$. If we are in the latter case, apply again Bertrand's postulate to find a further prime $\frac{n}{2}-1<p^{\prime}<n-2$ (notice that by our assumption we have $2 \leq \frac{n}{2}-1$). Since m is not prime we necessarily have $p^{\prime} \neq m$, which together with the present assumptions makes us able to assume without loss of generality that $\frac{n}{2}<p<m$. Given that $n-m$ is even, by Proposition 3.9 we can assume $n-m>4$, which in turn implies $n-p>5$. Since by the ternary Goldbach conjecture we can write $n=p+p_{0}+p_{1}+p_{2}$ with $m>p_{0}+p_{1}+p_{2}$, notice that by the fact that n and m are even, we can assume that $m-p$ equals some odd prime p^{\prime}, since otherwise the decomposition $n=p+p_{0}+p_{1}+p_{2}$ would already be beautiful. Now, either $n=p+(n-p)$ is beautiful, or $n-p$ is a multiple of p^{\prime}. We distinguish two cases, namely when $n-p$ is a power of p^{\prime} and when it is not. In the second case, let $p^{\prime \prime}$ be a prime distinct from p^{\prime} such that $p^{\prime \prime} \mid n-p$. The decomposition of n given by $n=n_{0}+\sum_{i \in \frac{n-p}{p^{\prime \prime}}} n_{i}=p+\sum_{i \in \frac{n-m}{p^{\prime \prime}}} p^{\prime \prime}$ is beautiful, as $n-p<m$ and hence if $m=m_{0}+\sum_{i \in \frac{n-m}{p^{\prime}}} m_{i}$ then $m_{0}=p$. For the last case, without loss of generality assume that $p_{0}+p_{1}+p_{2}=p_{0}^{k}$ for some natural number $k>1$. If $p_{0}=p_{1}=p_{2}=3$, we decompose $9=n-p$ as $5+2+2$, so we can assume $p_{0}^{k-1}-2 \neq 1$. Now we get $p_{2} \neq p_{0}$, since otherwise we would have $p_{1}=p_{0}^{k}-2 p_{0}=p_{0}\left(p_{0}^{k-1}-2\right)$, which is a contradiction, and similarly we obtain $p_{1} \neq p_{0}$. We finally assume wlog that $p_{1}>p_{0}$, which allows us to conclude that the decomposition $n=p+p_{1}+\left(p_{0}+p_{2}\right)$ is in this case beautiful, concluding the proof.

For the sake of completeness, we summarise the proof of our main theorem:

Proof of Theorem 3.6. Let m and n be two distinct positive integers.

$$
\mathrm{ZF} \vdash \mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n} \stackrel{\text { Cor.3. } 2}{\Longrightarrow} m<n \xrightarrow{\text { Prp. 3.6 }} n \text { is even } \xrightarrow{\text { Cor.3. } 3} m \text { is even }
$$

Now, if m and n are both even, we have the following two cases:

$$
\begin{array}{r}
m<\frac{n}{2} \stackrel{\text { Prp. 3.8 }}{\Longrightarrow} \mathrm{ZF} \nvdash \mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n} \\
m \geq \frac{n}{2} \geq 3 \underset{\text { Prp. 3.8 }}{\stackrel{\text { Prp. 3.9 }}{ }} \mathrm{ZF} \nvdash \mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}
\end{array}
$$

Thus, by Fact 1.1, the implication $\mathrm{RC}_{m} \Rightarrow \mathrm{RC}_{n}$ is provable in ZF if and only if $m=n$ or $m=2$ and $n=4$.

Remark 3. The proof of the implication $\mathrm{RC}_{2} \Rightarrow \mathrm{RC}_{4}$ (Fact 1.1) is very similar to the proof of the implication $\mathrm{C}_{2} \Rightarrow \mathrm{C}_{4}$, where C_{n} states that every family n-element sets has a choice function. Moreover, similar to the proof of $\mathrm{C}_{2} \wedge \mathrm{C}_{3} \Rightarrow \mathrm{C}_{6}$ one can proof the implication $\mathrm{RC}_{2} \wedge \mathrm{RC}_{3} \Rightarrow \mathrm{RC}_{6}$. So, it might be interesting to investigate which implications of the form

$$
\mathrm{RC}_{m_{1}} \wedge \cdots \wedge \mathrm{RC}_{m_{k}} \Rightarrow \mathrm{RC}_{n}
$$

are provable in ZF and compare them with the corresponding implications for C_{n} 's. Since $\mathrm{C}_{4} \Rightarrow \mathrm{C}_{2}$ but $\mathrm{RC}_{4} \nRightarrow \mathrm{RC}_{2}$, the conditions for the RC_{n} 's are clearly different from the conditions for the C_{n} 's (see Halbeisen and Tachtsis [3] for some results in this direction).

Acknowledgement: We would like to thank the referee for her or his careful reading and the numerous comments that helped to improve the quality of this article.

References

[1] Lorenz Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, (revised and extended second edition), [Springer Monographs in Mathematics], Springer, London, 2017.
[2] Lorenz Halbeisen and Salome Schumacher, Some implications of Ramsey Choice for families of n-element sets. Archive for Mathematical Logic (to appear), doi:10.1007/s00153-022-00860-4
[3] Lorenz Halbeisen and Eleftherios Tachtsis, On Ramsey Choice and Partial Choice for infinite families of n-element sets. Archive for Mathematical Logic, 59(5) (2020), 583-606.
[4] Harald A. Helfgott, The ternary Goldbach conjecture is true. Annals of Mathematics (to appear).
[5] Carlos H. Montenegro, Weak versions of the axiom of choice for families of finite sets, in Models, algebras, and proofs, Selected papers of the X Latin American symposium on mathematical logic held in Bogot'a, Colombia, June 24-29, 1995 (X. Caicedo and C. Montenegro, eds.), [Lecture Notes in Pure and Applied Mathematics 203], Marcel Dekker, New York • Basel, 1999, pp. 57-60.
[6] David Pincus, Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods, Journal of Symbolic Logic, 37 (1972), 721--743.

[^0]: ${ }^{1}$ Research partially supported by the Israel Science Foundation grant no. 1838/19 and by NSF grant DMS 1833363. Paper 1243 on author's publication list.

