IMPLICATIONS OF RAMSEY CHOICE PRINCIPLES IN ZF

Lorenz Halbeisen

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland lorenz.halbeisen@math.ethz.ch

Riccardo Plati

Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland riccardo.plati@math.ethz.ch

Saharon Shelah¹

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel shelah@math.huji.ac.il

and

Department of Mathematics, Hill Center – Busch Campus, Rutgers, State University of New Jersey 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, U.S.A.

Abstract. The Ramsey Choice principle for families of *n*-element sets, denoted RC_n , states that every infinite set X has an infinite subset $Y \subseteq X$ with a choice function on $[Y]^n := \{z \subseteq Y : |z| = n\}$. We investigate for which positive integers m and n the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is provable in ZF. It will turn out that beside the trivial implications $\mathrm{RC}_m \Rightarrow \mathrm{RC}_m$, under the assumption that every odd integer n > 5 is the sum of three primes (known as ternary Goldbach conjecture), the only non-trivial implication which is provable in ZF is $\mathrm{RC}_2 \Rightarrow \mathrm{RC}_4$.

key-words: permutation models, consistency results, Ramsey choice, ternary Goldbach conjecture

2010 Mathematics Subject Classification: 03E35 03E25

1 Introduction

For positive integers n, the Ramsey Choice principle for families of n-element sets, denoted RC_n , is defined as follows: For every infinite set X there is an infinite subset $Y \subseteq X$ such that the set $[Y]^n := \{z \subseteq Y : |z| = n\}$ has a choice function. The Ramsey Choice principle was introduced by Montenegro [5] who showed that for n = 2, 3, 4, $\mathrm{RC}_n \Rightarrow \mathrm{C}_n^-$, where C_n^- is the statement that every infinite family of n-element has an infinite subfamily with a choice function. However, the question of whether or not $\mathrm{RC}_n \to \mathrm{C}_n^-$ for $n \geq 5$ is still open (for partial answers to this question see [2, 3]).

In this paper, we investigate the relation between RC_n and RC_m for positive integers n and m. First, for each positive integer m we construct a permutation models MOD_m

¹Research partially supported by the *Israel Science Foundation* grant no. 1838/19 and by NSF grant DMS 1833363. Paper 1243 on author's publication list.

in which RC_m holds, and then we show that RC_n fails in MOD_m for certain integers n. In particular, assuming the ternary Goldbach conjecture, which states that every odd integer n > 5 is the sum of three primes, and by the transfer principles of Pincus [6], we we obtain that for $m, n \ge 2$, the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF except in the case when m = n, or when m = 2 and n = 4.

FACT 1.1. The implications $\mathrm{RC}_m \Rightarrow \mathrm{RC}_m$ (for $m \ge 1$) and $\mathrm{RC}_2 \Rightarrow \mathrm{RC}_4$ are provable in ZF.

Proof. The implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_m$ is trivial. To see that $\mathrm{RC}_2 \Rightarrow \mathrm{RC}_4$ is provable in ZF , we assume RC_2 . If X is an infinite set, then by RC_2 there is an infinite subset $Y \subseteq X$ such that $[Y]^2$ has a choice function f_2 . Now, for any $z \in [Y]^4$, $[z]^2$ is a 6-element subset of $[Y]^2$, and by the choice function f_2 we can select an element from each 2-element subset of z. For any $z \in [Y]^4$ and each $a \in z$, let $\nu_z(a) := |\{x \in [z]^2 : f_2(x) = a\}, m_z := \min \{\nu_z(a) : a \in z\}, \text{ and } M_z := \{a \in z : \nu_z(a) = m_z\}$. Since f_2 is a choice function, we have $\sum_{a \in z} \nu_z(a) = 6$, and since $4 \nmid 6$, the function $f : [Y]^4 \to Y$ defined by stipulating

$$f(z) := \begin{cases} a & \text{if } M_z = \{a\}, \\ b & \text{if } z \setminus M_z = \{b\}, \\ c & \text{if } |M_z| = 2 \text{ and } f_2(M_z) = c, \end{cases}$$

is a choice function on $[Y]^4$, which shows that RC_4 holds.

 \dashv

2 A model in which RC_m holds

In this section we construct a permutation model \mathbf{MOD}_m in which RC_m holds. According to [1, p. 211 ff.], the model \mathbf{MOD}_m is a Shelah Model of the Second Type.

Fix an integer $m \ge 2$ and let \mathcal{L}_m be the signature containing the relation symbol Sel_m . Let T_m be the \mathcal{L}_m -theory containing the following axiom-schema:

For all pairwise different x_1, \ldots, x_m , there exists a unique index $i \in \{1, \ldots, m\}$ such that, whenever $\{b_1, \ldots, b_m\} = \{1, \ldots, m\}$,

$$\mathsf{Sel}_m(x_{b_1},\ldots,x_{b_m},x_b) \iff b=i.$$

In other words, Sel_m is a selecting function which selects an element from each *m*-element set $\{x_1, \ldots, x_m\}$. In any model of the theory T_m , the relation Sel_m is equivalent to a function Sel which selects a unique element from any *m*-element set.

For a model M of T_m with domain M, we will simply write $M \models \mathsf{T}_m$. Let

$$C = \{ M : M \in \operatorname{fin}(\omega) \land M \models \mathsf{T}_m \}.$$

Evidently $\widetilde{C} \neq \emptyset$. Partition \widetilde{C} into maximal isomorphism classes and let C be a set of representatives. We proceed with the construction of the set of atoms for our permutation model. With the next result, taken from [1], we give an explicit construction of the Fraissé limit of the finite models of T_m .

PROPOSITION 2.1. Let $m \in \omega \setminus \{0\}$. There exists a model $\mathbf{F} \models \mathsf{T}_m$ with domain ω such that

- Given a non empty $M \in C$, **F** admits infinitely many submodels isomorphic to M.
- Any isomorphism between two finite submodels of **F** can be extended to an automorphism of **F**.

Proof. The construction of \mathbf{F} is made by induction. Let $F_0 = \emptyset$. F_0 is trivially a model of T_m and, for every element M of C with $|M| \leq 0$, F_0 contains a submodel isomorphic to M. Let F_n be a model of T_m with a finite initial segment of ω as domain and such that for every $M \in C$ with $|M| \leq n$, F_n contains a submodel isomorphic to M. Let

- $\{A_i : i \leq p\}$ be an enumeration of $[F_n]^{\leq n}$,
- $\{R_k : k \leq q\}$ be an enumeration of all the $M \in C$ such that $1 \leq |M| \leq n+1$,
- $\{j_l : l \leq u\}$ be an enumeration of all the embeddings $j_l : F_n|_{A_i} \hookrightarrow R_k$, where $i \leq p$, $k \leq q$ and $|R_k| = |A_i| + 1$.

For each $l \leq u$, let $a_l \in \omega$ be the least natural number such that $a_l \notin F_n \cup \{a_{l'} : l' < l\}$. The idea is to add a_l to F_n , extending $F_n|_{A_i}$ to a model $F_n|_{A_i} \cup \{a_l\}$ isomorphic to R_k , where $j_l : F_n|_{A_i} \hookrightarrow R_k$. Define $F_{n+1} := F_n \cup \{a_l : l \leq u\}$ and make F_{n+1} into a model of T_m by choosing a way of defining the function Sel on the missing subsets. The desired model is finally given by $\mathbf{F} = \bigcup_{n \in \omega} F_n$.

We conclude by showing that every isomorphism between finite submodels can be extended to an automorphism of \mathbf{F} with a back-and-forth argument. Let $i_0 : M_1 \to M_2$ be an isomorphism of T_m -models. Let a_1 be the least natural number in $\omega \setminus M_1$. Then $M_1 \cup \{a_1\}$ is contained in some F_n and by construction we can find some $a'_1 \in \omega \setminus M_2$ such that $\mathbf{F}|_{M_1 \cup \{a_1\}}$ is isomorphic to $\mathbf{F}|_{M_2 \cup \{a'_1\}}$. Extend i_0 to $l_1 : M_1 \cup \{a_1\} \to M_2 \cup \{a'_1\}$ by imposing $l_1(a_1) = a'_1$. Let b'_1 be the least integer in $\omega \setminus (M_2 \cup \{a'_1\})$ and similarly find some $b_1 \in \omega \setminus (M_1 \cup \{a_1\})$ such that we can extend l_1 to an isomorphism $i_1 : M_1 \cup \{a_1, b_1\} \to M_2 \cup \{a'_1, b'_1\}$ which maps b_1 to b'_1 . Repeating the process countably many times, the desired automorphism of \mathbf{F} is given by $i = \bigcup_{n \in \omega} i_n$.

REMARK 1. Let us fix some notations and terminology. The elements of the model \mathbf{F} above constructed will be the atoms of our permutation model. Each element *a* corresponds to a unique embedding *j*. We shall call the domain of *j* the *ground* of *a*. Moreover, given two atoms *a* and *b*, we say that a < b in case $a <_{\omega} b$ according to the natural ordering. Notice that this well ordering of the atoms will not exist in the permutation model.

Let A be the domain of the model \mathbf{F} of the theory T_m . To build the permutation model \mathbf{MOD}_m , consider the normal ideal given by all the finite subsets of A and the group of permutations G defined by

$$\pi \in G \iff \forall X \in [\omega]^m, \pi(\mathsf{Sel}(X)) = \mathsf{Sel}(\pi X).$$

THEOREM 2.2. For every positive integer m, MOD_m is a model for RC_m .

Proof. Let X be an infinite set with support S'. If X is well ordered, the conclusion is trivial, so let $x \in X$ be an element not supported by S' and let S be a support of x, with $S' \subseteq S$. Let $a \in S \setminus S'$. If $\operatorname{fix}_G(S \setminus \{a\}) \subseteq \operatorname{sym}_G(x)$ then $S \setminus \{a\}$ is a support of x, so by iterating the process finitely many times we can assume that there exists a permutation $\tau \in \text{fix}_G(S \setminus \{a\})$ such that $\tau(x) \neq x$. Our conclusion will follow by showing that there is a bijection between an infinite set of atoms and a subset of X, namely between $I = \{\pi(a) : \pi \in \text{fix}_G(S \setminus \{a\})\}$ and $\{\pi(x) : \pi \in \text{fix}_G(S \setminus \{a\})\}$. First, notice that for $\pi \in \text{fix}_G(S \setminus \{a\})$ the function $f: \pi(a) \mapsto \pi(x)$ is well defined on I. Indeed, if for some $\sigma, \pi \in \text{fix}_G(S \setminus \{a\})$ we have $\sigma(x) \neq \pi(x)$, then $\sigma \pi^{-1}(x) \neq x$, which implies $\sigma \pi^{-1}(a) \neq a$ since S is a support of x. To show that f is also injective, suppose towards a contradiction that there are two permutations $\sigma, \sigma' \in \text{fix}_G(S \setminus \{a\})$ such that $\sigma(x) = \sigma'(x)$ and $\sigma(a) \neq \sigma'(a)$. Then, by direct computation, the permutation $\sigma^{-1}\sigma'$ is such that $\sigma^{-1}\sigma'(a) \neq a$ and $\sigma^{-1}\sigma'(x) = x$. Let $b = \sigma^{-1}\sigma'(a)$. Now, by assumption there is a permutation $\tau \in \text{fix}_G(S \setminus \{a\})$ such that $\tau(x) \neq x$. Let $y := \tau(x)$, with $c = \tau(a)$ and $d = \sigma^{-1}\sigma'(c)$. Notice that from f(a) = f(b) we get f(c) = f(d). Let now $e \in A$ be an atom with ground $S \cup \{c\}$ such that e behaves like b with respect to S and like d with respect to $(S \setminus \{a\}) \cup \{c\}$. This is possible by construction of the set of atoms since b and d behave in the same way with respect to $S \setminus \{a\}$. It follows that there are permutations $\pi_b \in \operatorname{fix}_G(S)$ and $\pi_d \in \operatorname{fix}_G((S \setminus \{a\}) \cup \{c\})$ with $\pi_b(b) = e$ and $\pi_d(d) = e$. Let us now consider f(e). On the one hand, since $(S \setminus \{a\}) \cup \{c\}$ is a support of y = f(d), we have $y = \pi_d(f(d)) = f(\pi_d(d)) = f(e)$. On the other hand, since S is a support of x = f(b), we have $x = \pi_b(f(b)) = f(\pi_b(b)) = f(e)$, contradicting the fact that $x \neq y$. \neg

3 For which n is MOD_m a model for RC_n ?

The following result shows that for positive integers m, n which satisfy a certain condition, the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF. Assuming the ternary Goldbach conjecture, it will turn out that all positive integers m, n satisfy this condition, except when m = n, or when m = 2 and n = 4.

DEFINITION 3.1. Given $n \in \omega$, a decomposition of n is a finite sequence $(n_i)_{i \in k}$ with each $n_i \in \omega \setminus \{1\}$ so that $n = \sum_{i \in k} n_i$.

DEFINITION 3.2. Given two natural numbers n and m, a decomposition $(n_i)_{i \in k}$ of n is said to be beautiful for the pair (m, n) if, given any decomposition $(m_i)_{i \in k}$ of m of length k such that for all $i \in k$ we have $m_i \leq n_i$, then there is some $j \in k$ with $gcd(m_j, n_j) = 1$. In what follows, when we refer to a decomposition of some n being beautiful, we mean that the decomposition is beautiful for (m, n). It will always be clear from the context to which pair (m, n) we refer.

PROPOSITION 3.3. Let $m, n \in \omega$. If there is a decomposition of n which is beautiful, then the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF.

REMARK 2. The condition on m and n is somewhat similar to the condition given in Theorem 2.10 of Halbeisen and Schumacher [2]. Let WOC_n^- be the statement that every infinite, well-orderable family \mathcal{F} of sets of size n has an infinite subset $\mathcal{G} \subseteq \mathcal{F}$ with a choice function. Then for every $m, n \in \omega \setminus \{0, 1\}$, the implication $RC_m \Rightarrow WOC_n^-$ is provable in ZF if an only if the following condition holds: Whenever we can write n in the form

$$n = \sum_{i < k} a_i p_i,$$

where p_0, \ldots, p_{k-1} are prime numbers and $a_0, \ldots, a_{k-1} \in \omega \setminus \{0\}$, then we find integers $b_0, \ldots, b_{k-1} \in \omega$ with

$$m = \sum_{i < k} b_i p_i.$$

Proof of Proposition 3.3. We show that in \mathbf{MOD}_m , \mathbf{RC}_n fails. Assume towards a contradiction that \mathbf{RC}_n holds in \mathbf{MOD}_m and let S be a support of a selection function f on the *n*-element subsets of an infinite subset X of the set of atoms A.

By the construction in Proposition 2.1, given any model N of T_m extending S, we can find a submodel of $X \cup S$ isomorphic to N.

Our conclusion can hence follow from finding a model M of T_m which extends S with $|M \setminus S| = n$ and such that M admits an auotmorphism σ which fixes pointwise S and which does not have any other fixed point, since then $\sigma(f(M \setminus S)) \neq f(M \setminus S)$ but $\sigma(M \setminus S) = M \setminus S$. We start with the following claim:

Claim. Given a cyclic permutation π on some set P of cardinality |P| = q, if a non-trivial power π^r of π fixes a proper subset P' of P, then gcd(|P'|, |P|) > 1.

To prove the claim, notice that π^r is a disjoint union of cycles of the same length $l = \frac{q}{\gcd(q,r)}$. Consider the subgroup of $\langle \pi \rangle$ given by $\langle \pi^r \rangle$. Then P' is a disjoint union of orbits of the form $\operatorname{Orb}_{<\pi^r>}(e)$ with $e \in P'$, all of them with the same cardinality s, with s being a divisor of $l = \frac{q}{\gcd(q,r)}$ and hence of q, from which we deduce the claim.

Now, given a beautiful decomposition $(n_i)_{i \in k}$ of n, we want to show that we can find a model M of T_m , which extends S with $|M \setminus S| = n$ and such that it admits an automorphism σ which fixes pointwise S and acts on $M \setminus S$ as a disjoint union of k cycles, each of length n_i for $i \in k$. This can be done as follows. Pick an m-element subset P of M for which $\mathsf{Sel}(P)$ has not been defined yet. If $P \cap S \neq \emptyset$ then let $\mathsf{Sel}(P)$ be any element in $P \cap S$. Otherwise, by our the assumptions, there is a cycle C_j of length n_j for some $j \in k$ such that $\gcd(|P \cap C_j|, |C_j|) = 1$. Define $\mathsf{Sel}(P)$ as an arbitrarily fixed element of $P \cap C_j$ and, for all permutations π in the group generated by σ , define $\mathsf{Sel}(\pi(P)) = \pi(\mathsf{Sel}(P))$. We need to argue that this is indeed well defined, i.e. that for two permutations $\pi, \pi' \in \langle \sigma \rangle$ we have that $\pi(P) = \pi'(P)$ implies $\pi(\mathsf{Sel}(P)) = \pi'(\mathsf{Sel}(P))$. Problems can arise only when $P \cap S = \emptyset$, in which case we notice that $\pi(P) = \pi'(P)$ implies $\pi(P \cap C_j) = \pi'(P \cap C_j)$, which in turn by the claim implies that $\pi^{-1} \circ \pi'$ fixes $P \cap C_j$ pointwise, from which we deduce $\pi(\mathsf{Sel}(P)) = \pi'(\mathsf{Sel}(P))$.

Proposition 3.3 allows us to immediately deduce the following results.

COROLLARY 3.4. If m > n, then RC_m does not imply RC_n .

Proof. The decomposition $n = \sum_{i \in I} n_i$ with $n_0 = n$ is clearly beautiful, so we can directly apply Proposition 3.3.

COROLLARY 3.5. If there is a prime p for which $p \mid n$ but $p \nmid m$, then RC_m does not imply RC_n .

Proof. Given the assumption, the decomposition of n given by $n = \sum_{i \in \frac{n}{p}} n_i$, where each $n_i = p$, is beautiful, so we can apply Proposition 3.3. \dashv

Moreover, we can show the following:

THEOREM 3.6. For any positive integers m and n, the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is provable in ZF only in the case when m = n or when m = 2 and n = 4.

The proof of Theorem 3.6 is given in the following results, where in the proofs we use two well-known number-theoretical results: The first one is Bertrand's postulate, which asserts that for every positive integer $m \ge 2$ there is a prime p with m , andthe second one is ternary Goldbach conjecture (assumed to be proven by Helfgott [4]),which asserts that every odd integer <math>n > 5 is the sum of three primes.

PROPOSITION 3.7. If m is prime and $n \neq m$ with $(m, n) \neq (2, 4)$, then the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF

Proof. Given Corollary 3.5, we can assume that $n = m^k$ for some natural number k > 1. Let p be a prime such that $m , whose existence is guaranteed by Bertrand's postulate. Then clearly <math>m \nmid n-p$, from which, considering that because of parity reasons $n - p \neq 1$, we get that the decomposition n = p + (n - p) is beautiful. \dashv

PROPOSITION 3.8. If n is odd and $m \neq n$, then the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF.

Proof. By the ternary Goldbach conjecture, let us write n as sum of three primes $n = p_0 + p_1 + p_2$. Given Proposition 3.7, we can assume that $m = p_0 + p_1$, since otherwise the decomposition $n = p_0 + p_1 + p_2$ would be beautiful.

We first deal with the case in which $p_0 = p_1 = p_2$ holds, for which we rename $p = p_0$. By hand we can exclude the case p = 2, and now we want to show that the decomposition $n = n_0 + n_1 = (3p-2) + 2$ is beautiful. Notice that $gcd(3p-2, 2p-2) \in \{1, p\}$, from which we deduce that necessarily if $m = m_0 + m_1$ is a decomposition of m with $m_0 \leq 3p - 2$ and $m_1 \leq 2$, then $m_1 = 0$. To conclude this first case, it suffices to notice that, since pis a prime grater than 2, gcd(3p-2, 2p) necessarily equals 1.

We can now assume that it is not true that $p_0 = p_1 = p_2$. Since n is odd, $p_0 + p_1 \nmid p_2$. If $p_2 \nmid p_0 + p_1$, then the decomposition n = n is actually beautiful. So, given $p_2 \mid p_0 + p_1$, without loss of generality let us assume that $p_2 < p_0$. By $p_2 \mid p_0 + p_1$ we deduce that $p_1 \neq p_2$, and we now consider the decomposition $n = n_0 + n_1 = (p_1 + p_2) + p_0$. We can't have $m_1 = p_0$ since $gcd(p_1, p_1 + p_2) = 1$. On the other hand, we can't even have $m_1 = 0$ since $p_0 + p_1 > p_1 + p_2$, which proves that the assumptions of Proposition 3.3 are satisfied.

PROPOSITION 3.9. Let m > 2 be an even natural number and $k \in \omega$ such that $2^k + 1$ is prime. If $n = m + 2^k$, then the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF.

Proof. We consider the decomposition $n = n_0 + n_1 = (m - 1) + (2^k + 1)$. It directly follows from the assumptions of the proposition that in order to have a decomposition $m = m_0 + m_1$ which disproves the fact that the above decomposition of n is beautiful, since $n_0 < m$, necessarily $m_1 = 2^k + 1$, from which we deduce $m_0 = m - 2^k - 1$. This immediately gives a contradiction in the case $2^k + 1 > m$, so let us assume $2^k + 1 < m$. We get again a contradiction by the fact that $gcd(m_0, n_0) = gcd(m - 2^k - 1, m - 1) = gcd(2^k, m - 1) = 1$, where we used that m is even. We can hence conclude that Proposition 3.3 can be applied.

PROPOSITION 3.10. Let m and n be even natural numbers such that there is an odd prime p with m and <math>n > p + 1. Then the implication $RC_m \Rightarrow RC_n$ is not provable in ZF.

Proof. If n = p + 3 or n = p + 5 the decomposition n = p + (n - p) is already beautiful. Otherwise, by the ternary Goldbach conjecture, write n - p as sum of three primes $n - p = p_0 + p_1 + p_2$. Consider now the decomposition $n = \sum_{i \in 4} n_i = p + p_0 + p_1 + p_2$. In order to write $m = \sum_{i \in 4} m_i$, necessarily $m_0 = 0$. If n - p < m we can already conclude that Proposition 3.3 can be applied. Otherwise, we find ourselves in the assumptions of Proposition 3.8, which again allows us to conclude that RC_m does not imply RC_n . \dashv

The following result deals with all the remaining cases and completes the proof of Theorem 3.6.

PROPOSITION 3.11. Let m and n be even natural numbers with $3 \leq \frac{n}{2} \leq m < n$ such that if there is a prime p with m , then <math>p = n - 1. Then the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is not provable in ZF.

Proof. By Bertrand's postulate, let p be a prime with $\frac{n}{2} . This implies by the$ assumption $\frac{n}{2} or <math>p = n - 1$. If we are in the latter case, apply again Bertrand's postulate to find a further prime $\frac{n}{2} - 1 < p' < n - 2$ (notice that by our assumption we have $2 \leq \frac{n}{2} - 1$). Since m is not prime we necessarily have $p' \neq m$, which together with the present assumptions makes us able to assume without loss of generality that $\frac{n}{2} . Given that <math>n - m$ is even, by Proposition 3.9 we can assume n - m > 4, which in turn implies n - p > 5. Since by the ternary Goldbach conjecture we can write $n = p + p_0 + p_1 + p_2$ with $m > p_0 + p_1 + p_2$, notice that by the fact that n and m are even, we can assume that m - p equals some odd prime p', since otherwise the decomposition $n = p + p_0 + p_1 + p_2$ would already be beautiful. Now, either n = p + (n - p) is beautiful, or n-p is a multiple of p'. We distinguish two cases, namely when n-p is a power of p' and when it is not. In the second case, let p'' be a prime distinct from p' such that $p'' \mid n-p$. The decomposition of n given by $n = n_0 + \sum_{i \in \frac{n-p}{r''}} n_i = p + \sum_{i \in \frac{n-m}{r''}} p''$ is beautiful, as n-p < m and hence if $m = m_0 + \sum_{i \in \frac{n-m}{p'}} m_i$ then $m_0 = p$. For the last case, without loss of generality assume that $p_0 + p_1 + p_2 = p_0^k$ for some natural number k > 1. If $p_0 = p_1 = p_2 = 3$, we decompose 9 = n - p as 5 + 2 + 2, so we can assume $p_0^{k-1} - 2 \neq 1$. Now we get $p_2 \neq p_0$, since otherwise we would have $p_1 = p_0^k - 2p_0 = p_0(p_0^{k-1} - 2)$, which is a contradiction, and similarly we obtain $p_1 \neq p_0$. We finally assume wlog that $p_1 > p_0$, which allows us to conclude that the decomposition $n = p + p_1 + (p_0 + p_2)$ is in this case beautiful, concluding the proof.

For the sake of completeness, we summarise the proof of our main theorem:

Proof of Theorem 3.6. Let m and n be two distinct positive integers.

$$\mathsf{ZF} \vdash \mathrm{RC}_m \Rightarrow \mathrm{RC}_n \stackrel{\mathrm{Cor.\,3.2}}{\Longrightarrow} m < n \stackrel{\mathrm{Prp.\,3.6}}{\Longrightarrow} n \text{ is even} \stackrel{\mathrm{Cor.\,3.3}}{\Longrightarrow} m \text{ is even}$$

Now, if m and n are both even, we have the following two cases:

$$\begin{split} m &< \frac{n}{2} \quad \stackrel{\mathrm{Prp.\,3.8}}{\Longrightarrow} \quad \mathsf{ZF} \not\vdash \mathrm{RC}_m \Rightarrow \mathrm{RC}_n \\ m &\geq \frac{n}{2} \geq 3 \quad \stackrel{\mathrm{Prp.\,3.9}}{\underset{\mathrm{Prp.\,3.8}}{\Longrightarrow}} \quad \mathsf{ZF} \not\vdash \mathrm{RC}_m \Rightarrow \mathrm{RC}_n \end{split}$$

Thus, by Fact 1.1, the implication $\mathrm{RC}_m \Rightarrow \mathrm{RC}_n$ is provable in ZF if and only if m = n or m = 2 and n = 4.

REMARK 3. The proof of the implication $\mathrm{RC}_2 \Rightarrow \mathrm{RC}_4$ (Fact 1.1) is very similar to the proof of the implication $\mathrm{C}_2 \Rightarrow \mathrm{C}_4$, where C_n states that every family *n*-element sets has a choice function. Moreover, similar to the proof of $\mathrm{C}_2 \wedge \mathrm{C}_3 \Rightarrow \mathrm{C}_6$ one can proof the implication $\mathrm{RC}_2 \wedge \mathrm{RC}_3 \Rightarrow \mathrm{RC}_6$. So, it might be interesting to investigate which implications of the form

$$\mathrm{RC}_{m_1} \wedge \cdots \wedge \mathrm{RC}_{m_k} \Rightarrow \mathrm{RC}_n$$

are provable in ZF and compare them with the corresponding implications for C_n 's. Since $C_4 \Rightarrow C_2$ but $RC_4 \Rightarrow RC_2$, the conditions for the RC_n 's are clearly different from the conditions for the C_n 's (see Halbeisen and Tachtsis [3] for some results in this direction).

Acknowledgement: We would like to thank the referee for her or his careful reading and the numerous comments that helped to improve the quality of this article.

References

- Lorenz Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, (revised and extended second edition), [Springer Monographs in Mathematics], Springer, London, 2017.
- [2] Lorenz Halbeisen and Salome Schumacher, Some implications of Ramsey Choice for families of n-element sets. Archive for Mathematical Logic (to appear), doi:10.1007/s00153-022-00860-4
- [3] Lorenz Halbeisen and Eleftherios Tachtsis, On Ramsey Choice and Partial Choice for infinite families of n-element sets. Archive for Mathematical Logic, 59(5) (2020), 583–606.
- [4] Harald A. Helfgott, *The ternary Goldbach conjecture is true*. Annals of Mathematics (to appear).
- [5] Carlos H. Montenegro, Weak versions of the axiom of choice for families of finite sets, in Models, algebras, and proofs, Selected papers of the X Latin American symposium on mathematical logic held in Bogot'a, Colombia, June 24-29, 1995 (X. Caicedo and C. Montenegro, eds.), [Lecture Notes in Pure and Applied Mathematics 203], Marcel Dekker, New York · Basel, 1999, pp. 57–60.
- [6] David Pincus, Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods, Journal of Symbolic Logic, 37 (1972), 721-743.