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Abstract

For an integer n ≥ 2, Ramsey Choice RCn is the weak choice principle “every infinite set x has an
infinite subset y such that [y]n (the set of all n-element subsets of y) has a choice function”, and C−

n is
the weak choice principle “every infinite family of n-element sets has an infinite subfamily with a choice
function”.

In 1995, Montenegro showed that for n = 2, 3, 4, RCn → C−
n . However, the question of whether or not

RCn → C−
n for n ≥ 5 is still open. In general, for distinct m,n ≥ 2, not even the status of “RCn → C−

m”
or “RCn → RCm” is known.

In this paper, we provide partial answers to the above open problems and among other results, we
establish the following:

1. For every integer n ≥ 2, if RCi is true for all integers i with 2 ≤ i ≤ n, then C−
i is true for all

integers i with 2 ≤ i ≤ n.

2. If m,n ≥ 2 are any integers such that for some prime p we have p - m and p | n, then in ZF:
RCm 9 RCn and RCm 9 C−

n .

3. For n = 2, 3, RC5 + C−
n implies C−

5 , and RC5 implies neither C−
2 nor C−

3 in ZF.

4. For every integer k ≥ 2, RC2k implies “every infinite linearly orderable family of k-element sets has
a partial Kinna–Wagner selection function” and the latter implication is not reversible in ZF (for
any k ∈ ω \ {0, 1}). In particular, RC6 strictly implies “every infinite linearly orderable family of
3-element sets has a partial choice function”.

5. The Chain-AntiChain Principle (“every infinite partially ordered set has either an infinite chain
or an infinite anti-chain”) implies neither RCn nor C−

n in ZF, for every integer n ≥ 2.
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1 Notation and terminology

Notation 1

1. As usual, ω denotes the set of natural numbers.

2. Let n ∈ ω and let X be a set. Then [X]n denotes the set of n-element subsets of X. Furthermore,
[X]<ω denotes the set of finite subsets of X. Clearly [X]<ω =

⋃
{[X]n : n ∈ ω}.

3. ZF is Zermelo–Fraenkel set theory without the Axiom of Choice (AC).

4. ZFC is ZF + AC.

5. ZFA is ZF with the Axiom of Extensionality modified in order to allow the existence of atoms.

Next, we list the statements and notations of the weak choice principles that will be used in this paper.

Definition 1

1. Ramsey’s Theorem (RT): For every infinite set X and for every partition of the set [X]2 of two-
element subsets of X into two sets A and B, there is an infinite subset Y of X such that either
[Y ]2 ⊆ A or [Y ]2 ⊆ B.

2. Let n ∈ ω \ {0, 1}.
Ramsey Choice RCn: For every infinite set X there is an infinite subset Y ⊆ X such that [Y ]n has a
choice function.

Cn: Every family of n-element sets has a choice function.

C−n : Every infinite family A of n-element sets has a partial choice function (i.e., A has an infinite
subfamily B with a choice function).

LOC−n : Every infinite linearly orderable family of n-element sets has a partial choice function.

LOKW−n : Every infinite linearly orderable family A of n-element sets has a partial Kinna–Wagner
selection function, i.e., there exists an infinite subfamily B ofA and a function f such that dom(f) = B
and for all B ∈ B, ∅ 6= f(B) ( B (f is called a Kinna–Wagner selection function for B).

WOC−n : Every infinite well-orderable family of n-element sets has a partial choice function.

3. ACfin: Every family of non-empty finite sets has a choice function.

4. PACfin: Every infinite family of non-empty finite sets has a partial choice function.

5. AC(LO, LO): Every linearly orderable family of non-empty linearly orderable sets has a choice func-
tion.

6. UT(WO, fin,WO): The union of a well-orderable family of finite sets is well-orderable.

7. DF = F: Every Dedekind-finite set is finite (where a set X is called Dedekind-finite if there is no
one-to-one mapping f from ω into X; otherwise, X is called Dedekind-infinite).

8. Axiom of Multiple Choice (MC): For every family A of non-empty sets there is a function f on A
such that for every x ∈ A, f(x) is a nonempty finite subset of x (f is called a multiple choice function
for A).

9. Boolean Prime Ideal Theorem (BPI): Every Boolean algebra has a prime ideal.
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10. Ordering Principle (OP): Every set can be linearly ordered.

11. Chain-AntiChain Principle (CAC): Every infinite partially ordered set has either an infinite chain or
an infinite anti-chain (where for a partially ordered set (P,≤), a set C ⊆ P is called a chain in P if
(C,≤� C) is a linearly ordered set, and a set A ⊆ P is called an anti-chain in P if any two distinct
elements a, b ∈ A are incomparable, i.e., a 6≤ b and b 6≤ a).

12. NA: There are no amorphous sets (where an infinite set X is called amorphous if X cannot be written
as a disjoint union of two infinite sets).

2 Introduction, known and preliminary results

Ramsey Choice RCn was introduced by Montenegro in [7], where it was asked for which n is the implication
“RCn → C−n ” true. In [7], it was observed that RCn implies C−n for n = 2, 3 and it was shown that RC4

implies C−4 , which is a beautiful and highly non-trivial result. The status of “RCn → C−n ” for n ≥ 5 is
(to the best of our knowledge) still an open and (in our opinion) a quite difficult problem. The particular
question of whether RC5 implies C−5 is also addressed in Halbeisen [2] (see [2, Related Result 34, p. 167]).

The research in this paper is motivated by the above open questions of Montenegro’s as well as the
particular question of Halbeisen’s. The answers to these specific questions still elude us. However, we are
able to give a partial answer with regard to the question on the relationship between RC5 and C−5 . In
particular, we shall prove that for n = 2, 3, RC5 + C−n implies C−5 , and that RC5 implies neither C−2 nor
C−3 in ZF set theory. Furthermore, we shall provide a plethora of new results which completely settle open
problems on the status of “RCn implies C−m” for certain distinct natural numbers n,m.

We believe that the results of the current paper shed new light on this area and that they also indicate
possible paths towards further study on the aforementioned open problems.

Before setting out with our main results, we shall provide some known and preliminary results in the
current area of research.

Theorem 1 The following hold:

1. BPI implies OP implies Cn, which in turn implies RCn + C−n , for all n ∈ ω \ {0, 1}. None of the
latter implications is reversible in ZF.

2. DF = F implies RCn + C−n for all n ∈ ω \ {0, 1}. The statement “∀n ∈ ω \ {0, 1}, RCn + C−n ” does
not imply DF = F in ZF. Further, for every m ∈ ω \ {0, 1}, the statement “∀n ∈ ω \ {0, 1}, RCn +
C−n ” does not imply Cm in ZF.

3. ([1], [6], [9]) DF = F implies RT, which in turn implies CAC. None of the latter implications are
reversible in ZF.

4. ([1], [6]) RT implies PACfin, which in turn implies C−n for all n ∈ ω \ {0, 1}. None of the latter
implications is reversible in ZF.

5. ([1]) RT is true in the Basic Fraenkel Model (Model N1 in [4]) and it is false in the Basic Cohen
Model (Model M1 in [4]).

6. ([11]) For every n ∈ ω \ {0, 1}, RCn and C−n are strictly weaker than Cn in ZF.

7. ([7]) For n = 2, 3, 4, RCn implies C−n .

8. ([12]) If for some integer n > 1, [X]n has a choice function, then X is finite or not amorphous.

9. For all m,n ∈ ω \ {0}, C−mn implies both C−m and C−n .
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10. For all m,n ∈ ω \ {0}, LOC−mn implies both LOC−m and LOC−n .

Proof We just show 1, 2, 9, 10.
1. The first implication is well-known (see [4]). The second and third implications are straightforward.

For “RCn + C−n 6→ Cn in ZF”, see the proof of part 2 below. For the rest of the assertions, see [4].
2. The implication is straightforward. For the second assertion, it is known that BPI is true in the

basic Cohen model (Model M1 in [4]), whereas DF = F is false in M1 (see [4]). It follows, by part 1
of the current theorem, that RCn + C−n is true in M1, for all n ∈ ω \ {0, 1}. For the third assertion,
fix m ∈ ω \ {0, 1} and consider, for example, the ZF model M46(m,M) in [4]. Then DF = F is true in
M46(m,M), hence so is “∀n ∈ ω \ {0, 1}, RCn + C−n ”, whereas Cm is false in M46(m,M) (see [4]).

9. Fix n,m ∈ ω \ {0, 1} and assume that C−nm is true. Let A = {Ai : i ∈ I} be a family of m-element
sets (respectively, of n-element sets). Then B = {Ai × n : i ∈ I} (respectively, C = {Ai ×m : i ∈ I}) is
a family of (mn)-element sets and any partial choice function for B (respectively, for C) clearly yields a
partial choice function for A.

10. This can be proved similarly to 9. �

Remark 1 For use in the proofs of our forthcoming independence results, both in this section as well as in
Section 5, we note here that for all n ∈ ω \ {0, 1}, RCn and C−n are injectively boundable (for the definition
of the latter term, see [4, Note 103] or [8]). Indeed, RCn is injectively boundable since

RCn ⇐⇒ (∀x)(|x|− ≤ ω → if x is infinite, then

there is an infinite subset y of x such that [y]n has a choice function),

where |x|− denotes the injective cardinality of x (for the definition of injective cardinality, see [4, Note 103]
or [8]), and C−n is injectively boundable since

C−n ⇐⇒ (∀x)(|x|− ≤ ω → every infinite family of n-element sets whose union is x

has a partial choice function).

Furthermore, we point out that ¬RCn and ¬C−n are boundable statements, thus they are injectively
boundable (see [8] for the fact that “boundable” implies “injectively boundable”).

The above observations together with Pincus’ Transfer Theorem [8, Thm. 3A3] (which states that if Φ
is a conjunction of injectively boundable statements which hold in a Fraenkel–Mostowski model V0, then
there is a model V ⊃ V0 of ZF with the same ordinals and cofinalities as V0 in which Φ holds), show that all
the independence results on RCn and C−n which are obtained in this paper via Fraenkel–Mostowski models
of ZFA + ¬AC are transferable into ZF set theory.

Next, we provide some preliminary results on the connection between RCn, C−n , CAC and NA.

Theorem 2 The following hold:

1. For all n ∈ ω \ {0, 1}, RCn implies NA, and NA does not imply RCn in ZF.

2. RT does not imply RCn in ZF, for all n ∈ ω \ {0, 1}.

3. For all n ∈ ω \ {0, 1}, C−n does not imply RCn in ZF.

Proof 1. Fix n ∈ ω \ {0, 1} and let X be an infinite set. By RCn, there is an infinite subset Y ⊆ X such
that [Y ]n has a choice function. Then, by Theorem 1(8), we have that Y is not amorphous, hence neither
is X.
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For the second assertion, fix n ∈ ω \ {0, 1}. We consider the following permutation model which is a
generalization of the Second Fraenkel Model (Model N2 in [4]): Start with a ground model M of ZFA +
AC with a set A of atoms which is a countable disjoint union

⋃
{Ai : i ∈ ω} of n-element sets. Let G be the

group of all permutations of A which fix each Ai. Let Γ be the filter of subgroups of G which is generated
by the subgroups fixG(E) = {φ ∈ G : ∀e ∈ E(φ(e) = e)}, E ∈ [A]<ω. Let N be the Fraenkel–Mostowski
model determined by M , G, and Γ.

As in the Second Fraenkel Model, one may show that MC is true in N (see also [5, proof of Theorem
9.2(i), p. 135]), hence NA is true in N . However, RCn is false for the infinite set A of the atoms as can be
easily checked via standard Fraenkel–Mostowski techniques.

Now NA is an injectively boundable statement (see [4, Note 103] or [8]) and ¬RCn is boundable, hence
injectively boundable, and N is a permutation model which satisfies the conjunction NA + ¬RCn of two
injectively boundable statements, thus by [8, Theorem 3A3] it follows that there is a ZF model M such
that M |= NA + ¬RCn.

2. From Theorem 1(5) we have that RT is true in the Basic Fraenkel Model (Model N1 in [4]). On
the other hand, the infinite set A of the atoms of N1 is amorphous (see [4], [5]), hence, by part 1 of the
current theorem, we have that RCn is false in N1 for all n ∈ ω \ {0, 1}. The independence result can be
transferred to ZF via Pincus’ transfer theorems, since RT is injectively boundable (see [1], [4, Note 103])
and ¬RCn is boundable, thus injectively boundable.

3. This follows from the proof of part 2 of the current theorem, Theorem 1(4), and Pincus’ Transfer
Theorems. �

Theorem 3 The following hold:

1. For all n ∈ ω \ {0, 1}, CAC and RCn are independent of each other in ZF, and also Cn (and hence
C−n ) does not imply CAC in ZF.

2. CAC does not imply C−2 in ZF.

3. RC2 does not imply C−3 in ZF. Therefore neither does RC2 imply RC3 in ZF.

4. RC2 implies RC4.

Proof 1. In the proof of [9, Theorem 2.1], a Fraenkel–Mostowski model N is constructed, in which it
is shown that CAC is true. Furthermore, in [9], it is shown that, in N , there exist amorphous sets, and
thus—by Theorem 2(1)—it follows that RCn is false in N for all n ∈ ω \ {0, 1}.

To see that for all n ∈ ω \ {0, 1}, RCn does not imply CAC, fix n ∈ ω \ {0, 1}. We consider first the
permutation model N6 in [4]: We start with a ground model M of ZFA + AC with a countably infinite
set of atoms A = {an : n ∈ ω} such that A is a disjoint union A =

⋃
{Pn : n ∈ ω}, where P0 = {a0},

P1 = {a1, a2}, P2 = {a3, a4, a5}, ..., and in general for n > 0, |Pn| = pn, where pn is the nth prime. G is
the group generated by {πn : n ∈ ω}, where if Pn = {am+1, am+2, . . . , am+pn}, then

πn : am+1 7→ am+2 7→ . . . 7→ am+pn 7→ am+1 and πn(x) = x, for all x ∈ A \ Pn.

(G is the weak direct product of ℵ0 cyclic groups of order pn.) The ideal I of supports is the set of all
finite subsets of A. N6 is the permutation model determined by M , G and I.

It is known that for all n ∈ ω \ {0, 1}, Cn is true in N6 (see [4], [5, Theorem 7.11]). (Note also that the
countably infinite family {Pn : n ∈ ω} has no partial choice function in N6.) Thus, RCn and C−n are true
in N6 for all n ∈ ω \ {0, 1}. We show that CAC is false in N6. To this end, define a binary relation ≤ on
A by requiring for all x, y ∈ A,

x ≤ y if and only if x = y, or x ∈ Pn, y ∈ Pm, and n < m.
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It is easy to verify that ≤ is a partial order on A, which is in N6, since it has empty support (i.e., every
permutation of A in G fixes ≤). Clearly, the poset (A,≤) has no infinite anti-chains; the subsets of the Pn’s
are the only anti-chains of (A,≤). Furthermore, since the countable family {Pn : n ∈ ω} has no partial
choice function, it follows that (A,≤) has no infinite chains, either. Thus, CAC is false in N6.

Since CAC, RCn, C−n , as well as their negations, are all injectively boundable (see Remark 1 and [9]), it
follows by Pincus’ Theorem 3A3 in [8] that all of the above ZFA independence results can be transferred
to ZF.

2. In the Fraenkel–Mostowski model N of the proof of [9, Theorem 2.1], CAC is true, whereas there is
a (amorphous) family of pairs of atoms without a (partial) choice function. Thus, C−2 is false in N . The
result is transferable into ZF.

3. For the result, we will use the permutation model N2∗(3) in [4]: The set A of atoms is a countable
disjoint union

⋃
{Ti : i ∈ ω}, where Ti = {ai, bi, ci} for all i ∈ ω. For each i ∈ ω, let ηi be the three-cycle

(ai, bi, ci). Let G be the group of permutations π of A such that for each i ∈ ω, π � Ti is either the identity,
or ηi, or η2i . Let Γ be the finite support filter.

It is known that C2 is true in N2∗(3) (see [4], [5, Example 7.13]), hence RC2 is also true in N2∗(3).
However, the family {Ti : i ∈ ω} has no partial choice function in N2∗(3), hence C−3 is false in N2∗(3).
Hence, by Theorem 1(7), it follows that RC3 is also false in N2∗(3). The independence result can be
transferred to ZF.

4. This can be proved as Tarski’s result that C2 implies C4 (see [5, Example 7.12, p. 107]). �

Remark 2 We would like to point out here that in Example 7.13 of [5] (that we referred to in the proof
of Theorem 3(3)), Jech actually proves that C2 is true in a permutation model V , whose setting is the
same as the one for N2∗(3), except for the smaller (than G) group G , which is generated by the following
permutations πi of A:

πi : ai 7→ bi 7→ ci 7→ ai,

πi(x) = x for all x ∈ A \ Ti.

G is the weak direct product of ℵ0 cyclic groups of order 3, and clearly G ⊂ G, where G is the (unrestricted
wreath product) group (of ℵ0 cyclic groups of order 3) used for the construction of N2∗(3). However, the
two models, N2∗(3) and V , are equal, as we establish below. Similarly, for the proof of Theorem 3(1),
one could argue in the permutation model M whose setting is the same as the one for N6, except for the
larger group G′, which comprises all permutations π of A such that for each n ∈ ω, π is a cycle on Pn;
again, it is true that N6 =M. We now argue that V = N2∗(3). (The proof that N6 =M is identical.)
We prove by ∈-induction that for every x ∈M (the ground model), Φ(x) is true, where

Φ(x) : x ∈ V ⇐⇒ x ∈ N2∗(3).

Clearly Φ(x) is true, if x = ∅, or if x ∈ A. Assume that y ∈ M and that for all x ∈ y, Φ(x) is true. We
will show that Φ(y) is true. Assume that y ∈ V . Then the following hold:

(1) y has a finite support E ⊂ A relative to the group G (i.e., for every ψ ∈ fixG (E), ψ(y) = y);

(2) for every x ∈ y, x ∈ V (V is a transitive class);

(3) for every x ∈ y, x ∈ N2∗(3) (by (2) and the induction hypothesis).

We assert that E is a support of y relative to the group G. It suffices to show that for all φ ∈ fixG(E) and
for all x ∈ y, φ(x) ∈ y (since then φ(y) = y follows from “φ(y) ⊆ y and φ−1(y) ⊆ y”).

Let φ ∈ fixG(E) and let x ∈ y. By (3), x has a finite support E′ ⊂ A relative to G. The permutation φ
may not be in G , but we construct a permutation φ′ ∈ fixG (E) which agrees with φ on E′ as follows: For
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each a ∈ E′, the set {φn(a) : n ∈ Z} is (clearly) finite. Therefore, since E′ is finite, so is D =
⋃
a∈E′{φn(a) :

n ∈ Z}. (Essentially, D is a finite union of Ti’s.) Furthermore, D contains E′ and is closed under φ. We
define a mapping φ′ : A→ A by

φ′(a) =

{
φ(a), if a ∈ D;

a, otherwise.

Then the following hold:

(4) φ′ ∈ G ;

(5) φ′ fixes E pointwise (since φ fixes E pointwise); and

(6) φ′ agrees with φ on E′.

By (4) and (5), φ′ ∈ fixG (E) so φ′(y) = y. It follows that φ′(x) ∈ y. Now, (6) gives us φ′(x) = φ(x), and
hence φ(x) ∈ y.

Conversely, assume that y ∈ N2∗(3) and that y has a support E′ relative to G. Then E′ is a support of
y relative to G since G ⊂ G. By the induction hypothesis, every element of y is in V , so we may conclude
that y ∈ V .

For the reader’s complete information, we would also like to mention here that Howard [3] has shown
that a formally stronger principle than C2, namely the Principle of Consistent Choices for Pairs (see Form
141 in [4]), is true in N2∗(3). For a quite recent study on the set-theoretic strength of the above principle
(as well as of related ones) and its connection to general topology, the reader is referred to Tachtsis [10].

3 Summary of the main results

Below, we list our main results along with their exact placement in this paper.

1. For every integer n ≥ 2, if RCi is true for all integers i with 2 ≤ i ≤ n, then C−i is true for all integers i
with 2 ≤ i ≤ n. (Theorem 4.)

2. Let p0 ≤ . . . ≤ pv be prime numbers and let k be a positive integer. Then there exists a model
Vp0,...,pv of ZFA such that

Vp0,...,pv |= RCk ↔ C−k ↔ LOC−k

and
Vp0,...,pv |= ¬RCk ⇐⇒ k is a multiple of pi for some i ≤ v.

Furthermore, for all integers k ≥ 2 which can be written as a sum of multiples of p0, . . . , pv,

Vp0,...,pv |= ¬Ck.

The result is transferable into ZF. (Theorem 6.)

3. (i) If m,n ≥ 2 are any integers such that for some prime p we have p - m and p | n, then in ZF:
RCm 9 RCn and RCm 9 C−n .

(ii) There is a model M of ZF such that for every positive integer n, M |= RC2n+1 ∧ C−2n+1 ∧
¬RC2n ∧ ¬LOC−2n. Hence, for every odd integer n ≥ 3 and for every even integer m ≥ 2, M |=
RCn ∧ C−n ∧ ¬RCm ∧ ¬LOC−m.

(iii) For k = 2, 4, the principles RCk and RC3 are independent of each other in ZF.

(Corollary 1.)
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4. For n = 2, 3, RC5 + C−n implies C−5 , and RC5 implies neither C−2 nor C−3 in ZF. (Theorem 7.)

5. CAC does not imply C−n in ZF, for every n ∈ ω \ {0, 1}. (Theorem 8.)

6. For every n ∈ ω \ {0, 1}, C−n implies LOC−n , which in turn implies WOC−n . Furthermore, for every
n ∈ ω \ {0, 1}, none of the previous implications is reversible in ZF. (Theorem 9.)

7. (i) For every n ∈ ω \ {0, 1}, RC2n implies LOKW−n and the latter implication is not reversible in ZF.
In particular, RC6 strictly implies LOC−3 in ZF.

(ii) LOC−4 is equivalent to LOC−2 + LOKW−4 . Furthermore, LOC−2 does not imply LOKW−4 in ZF,
hence neither does it imply LOC−4 in ZF.

(iii) RC6 + LOC−2 implies LOC−6 . Hence, RC6 + LOC−2n implies LOC−6 for all n ∈ ω \ {0}.
(iv) RC6 + LOC−2 implies LOC−4 . Hence, RC6 + LOC−2n implies LOC−4 for all n ∈ ω \ {0}.
(v) RC6 does not imply LOC−5 in ZF, hence it does not imply C−5n in ZF, for all n ∈ ω \ {0}.
(vi) RC6 implies WOC−2 .

(Theorem 10.)

4 Classes of Fraenkel–Mostowski models for the main results

In this section, we construct certain classes of Fraenkel–Mostowski permutation models of ZFA + ¬AC,
suitable for our independence results. The most important class which provides us with a plethora of results
on the relationship between RCk and C−l for certain natural numbers k and l, will be the one consisting of
the models Vn,m, where n,m ∈ ω. We begin this section with the construction of this class of models and
then prove some facts about them that will be the main apparatus for our independence results. We shall
then provide some classes of variant models and start the investigation on RCk and C−k for various natural
numbers k.

The reader should recall here Remark 1 that in order to establish our forthcoming independence results
in ZF, it suffices to establish them via a suitable permutation model of ZFA + ¬AC.

The construction of permutation models is traditionally based on certain groups of permutations of
atoms and normal filters of subgroups, which is the approach taken here. Another approach, which is
less common, is based on automorphism groups of certain ℵ0-categorical structures (see, for example,
Halbeisen [2, p. 211ff.]). Even though the latter approach makes the construction of the models slightly
shorter, we prefer the more constructive flavor of the former approach.

Fix n,m ∈ ω \ {0, 1}. We start with a model M of ZFA + AC with a set of atoms

A =
⋃
{Aq ∪Bq : q ∈ Q},

where Q is the set of rational numbers, such that for all q and r in Q:

1. Aq = {aq1, aq2, . . . , aqn} and Bq = {bq1, bq2, . . . , bqm}, so that |Aq| = n and |Bq| = m,

2. Aq ∩Bq = ∅, and if q 6= r, then (Aq ∪Bq) ∩ (Ar ∪Br) = ∅.

The sets Aq and Br (where q, r ∈ Q) are called blocks. By 1. and 2., we have that the blocks are
pairwise disjoint finite sets.

We let G be the group of all permutations η of A such that η permutes the blocks Aq and Br indepen-
dently ; preserves the linear ordering on the q’s and r’s; and is a cyclic permutation when restricted to any
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Aq or Br. We make this more explicit as follows: If ψ is an order automorphism of (Q,≤) (where ≤ is the
usual dense linear order on Q), then we let φψ and σψ be the permutations of A defined by:

∀q ∈ Q ∀j ∈ {1, . . . , n} (φψ(aqj) = aψ(q)j), and φψ fixes
⋃
{Br : r ∈ Q} pointwise,

and
∀r ∈ Q ∀k ∈ {1, . . . ,m} (σψ(brk) = bψ(r)k), and σψ fixes

⋃
{Aq : q ∈ Q} pointwise.

Note that if ψ1 and ψ2 are two order automorphisms of (Q,≤), then φψ1φψ2 = φψ1ψ2 and σψ1σψ2 = σψ1ψ2 .
Then we require

η ∈ G, if and only if, η = φψσψ′ρ, (1)

where ψ and ψ′ are order automorphisms of (Q,≤), φψ and σψ′ are respectively the (above) corresponding
permutations of A, and ρ is a permutation of A with the following property:

∀q ∈ Q ∃j ∈ {1, 2, . . . , n} ∃k ∈ {1, 2, . . . ,m} (ρ � Aq = τ jq and ρ � Bq = σkq ),

where for q ∈ Q, τq is the n-cycle aq1 7→ aq2 7→ · · · 7→ aqn 7→ aq1, and σq is the m-cycle bq1 7→ bq2 7→ · · · 7→
bqm 7→ bq1. (It is clear that ρ fixes each of {Aq : q ∈ Q} and {Bq : q ∈ Q} pointwise.)

Note: When no confusion is likely to arise, we will also denote by ‘τq’ and ‘σq’ the permutations of A
which, respectively, extend the above cycles τq and σq, and fix A \Aq and A \Bq pointwise. Also, for a set
X, we will denote by 1X the identity mapping on X.

Let F be the filter of subgroups of G which is generated by the subgroups fixG(E), where E =
⋃
{Aq :

q ∈ S} ∪
⋃
{Br : r ∈ T} for finite S, T ⊆ Q. (Note that E can be written as

⋃
{Fq : q ∈ K}, where

K ∈ [Q]<ω and Fq ∈ {Aq, Bq, Aq∪Bq} for every q ∈ K.) Let Vn,m be the Fraenkel–Mostowski model which
is determined by M , G and F . If x ∈ Vn,m, then there is a set E =

⋃
{Aq : q ∈ S} ∪

⋃
{Br : r ∈ T} (where

S, T ∈ [Q]<ω) such that for all φ in fixG(E), φ(x) = x, that is, φ ∈ SymG(x) = {η ∈ G : η(x) = x}. Such a
(finite) set E ⊂ A is called a support of x.

Below, we list some key facts about the model Vn,m.

Fact 1 Each of A = {Aq : q ∈ Q} and B = {Bq : q ∈ Q} is a linearly orderable set in Vn,m.

Proof Note that A,B ∈ Vn,m since both of these sets have empty support (i.e. every permutation of A
in G fixes them (setwise)). Furthermore, since every permutation of A in G permutes the blocks (i.e. the
elements of A and B) preserving the ordering on Q, it follows that the induced (by Q) linear orders on A
and B (i.e. Aq �A Aq′ ⇔ q ≤ q′ and similarly for B) are in the model (for they have empty support). �

Note: We point out that C = {Aq ∪ Bq : q ∈ Q} 6∈ Vn,m (which is naturally expected since the blocks
Aq and Br are permuted independently). If not, then let E =

⋃
{Aq : q ∈ S} ∪

⋃
{Br : r ∈ T} (where

S, T ∈ [Q]<ω) be a support of C. Let q, q′ ∈ Q be such that max(S ∪ T ) < q < q′, and also let ψ be an
order automorphism of (Q,≤) such that ψ(r) = r for all r ∈ S ∪ T , and ψ(q) = q′. Then φψ ∈ fixG(E), so
φψ(C) = C. However, Aq ∪Bq ∈ C, whereas φψ(Aq ∪Bq) = Aq′ ∪Bq 6∈ C = φψ(C), a contradiction.

Fact 2 (i) Neither A = {Aq : q ∈ Q} nor B = {Bq : q ∈ Q} has a partial Kinna–Wagner selection function
in Vn,m. In particular, if an integer k ≥ 2 is a multiple of n or m, then LOC−k is false in Vn,m. Hence, if
k ≥ 2 is a sum of multiples of n and m, then Ck is false in Vn,m.

(ii) If D is an infinite subset of A in Vn,m, then there exists an infinite subset I ⊆ Q such that, in
Vn,m,

⋃
{Aq : q ∈ I} ⊆ D or

⋃
{Bq : q ∈ I} ⊆ D.
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Proof (i) By way of contradiction, assume that there exists an infinite subfamily W (respectively, V) of
A (respectively, of B) with a Kinna–Wagner function in Vn,m, f say. Let E =

⋃
{Aq : q ∈ S} ∪

⋃
{Br :

r ∈ T} (where S, T ∈ [Q]<ω) be a support of W (respectively, of V) and f . Since S ∪ T is finite and W
(respectively, V) is infinite, there exists q∗ ∈ Q such that Aq∗ ∈ W (respectively, Bq∗ ∈ V) and q∗ /∈ S ∪ T .
Then τq∗ ∈ fixG(E) (respectively, σq∗ ∈ fixG(E)), and hence τq∗(f) = f (respectively, σq∗(f) = f).
However, τq∗(Aq∗) = Aq∗ (respectively, σq∗(Bq∗) = Bq∗), whereas τq∗(f(Aq∗)) 6= f(Aq∗) (respectively,
σq∗(f(Bq∗)) 6= f(Bq∗)), which means that f is not supported by E. This is a contradiction.

The second assertion follows immediately from the first one and Theorem 1(10).
For the third assertion, fix an integer k ≥ 2 such that k = l1n+ l2m. Then

R := {(Aq × l1) ∪ (Br × l2) : q, r ∈ Q}

is an element of Vn,m (since it has empty support), consists of k-element sets, and from the first assertion
of the current fact, we may conclude that R has no choice function in Vn,m.

(ii) This follows immediately from part (i). �

Note: The family U = {Aq ∪ Br : q, r ∈ Q}, which is in Vn,m (having ∅ as its support) and consists
of (n + m)-element sets, does have a partial choice function in Vn,m. (If W = {Aq ∪ B0 : q ∈ Q}, then
W ∈ Vn,m since it has B0 as its support, and W ⊆ U . Clearly, f = {(Aq ∪ B0, b01) : q ∈ Q} is a choice
function for W which is in Vn,m, since it is supported by B0.)

Fact 3 If x ∈ Vn,m and E1, E2 are two supports of x, then E1 ∩ E2 is a support of x. Hence, every
x ∈ Nn,m has a minimum support Ex and for all η, η′ ∈ G, if η(Ex) 6= η′(Ex), then η(x) 6= η′(x).

Proof We may write E1 and E2 as
⋃
{Fq : q ∈ S1} and

⋃
{Gq : q ∈ S2}, respectively, where S1, S2 ∈ [Q]<ω

and Fq, Gq ∈ {Aq, Bq, Aq ∪Bq} for every q ∈ S1 ∪ S2. We will show that fixG(E1 ∩E2) ⊆ SymG(x), where
E1 ∩ E2 =

⋃
{Fq ∩Gq : q ∈ S1 ∩ S2}. To this end, let η ∈ fixG(E1 ∩ E2). By the definition of G, we have

η = φψσψ′ρ (see equation (1)). Note that both ψ and ψ′ must fix S1 ∩S2 pointwise and ρ must fix E1 ∩E2

pointwise. Let ρ1 and ρ2 be the elements of G defined by

ρ1(c) =

{
ρ(c) if c ∈ E1 \ E2

c otherwise
, ρ2(c) =

{
c if c ∈ E1 \ E2

ρ(c) otherwise
.

Then ρ = ρ1ρ2, ρ1 ∈ fixG(E2) and ρ2 ∈ fixG(E1). Therefore, ρ(x) = ρ1ρ2(x) = x. Now, using the same
arguments as in the ordered Mostowski model (see for example [5, Proof of Lemma 4.5(a), p. 50]), ψ and
ψ′ can be respectively written as ψ1ψ2 · · ·ψm and ψ′1ψ

′
2 · · ·ψ′k, where for 1 ≤ i ≤ m and 1 ≤ j ≤ k, each

of ψi and ψ′j is an order automorphism of (Q,≤), which either fixes S1 pointwise, or fixes S2 pointwise.
It follows that φψi , σψ′j ∈ fixG(E1) ∪ fixG(E2) for all i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ k. Thus

φψ(x) = φψ1ψ2···ψm(x) = φψ1φψ2 · · ·φψm(x) = x, and similarly σψ′(x) = x. From these two equations and
the fact that ρ(x) = x, it follows that η(x) = φψσψ′ρ(x) = x, and so η ∈ SymG(x).

The second assertion of Fact 3 follows immediately from the first one. �

Fact 4 Let x ∈ Vn,m be a non-well-orderable set. Then x has an infinite subset y ∈ Vn,m which has a
linearly orderable partition into r-element sets, where r is a divisor of n or a divisor of m.

Proof Assume the hypotheses on x. Let E be a support of x. Then we may write E as
⋃
{Hq : q ∈ K}

where K = {q1, q2, . . . , q`} ∈ [Q]<ω \ {∅}, q1 < q2 < . . . < q`, and Hq ∈ {Aq, Bq, Aq ∪ Bq} for every
q ∈ K. Without loss of generality we may assume that for every q ∈ K, we have Hq = Aq ∪ Bq. Since x
is not well-orderable, there exists z ∈ x which is not supported by E. Let Ez =

⋃
{Fq : q ∈ K ′}, where

K ′ ∈ [Q]<ω, be a support of z. It follows that Ez \ E 6= ∅ and without loss of generality, we may assume
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that E ( Ez. Let such K ′ be of minimal size, and pick r0 ∈ K ′ \ K. By replacing if necessary E by
{Ar ∪ Br : r ∈ K ′ \ {r0}} (which contains the original E, and is hence a support of x), we may assume
that K ′ \K = {r0}. We also assume that if Fr0 = Ar0 ∪Br0 then E ∪Ar0 and E ∪Br0 are not supports of
z. Now there are ` + 1 intervals determined by q1, q2, . . . , q` in which r0 may lie, all of which are treated
similarly. Assume for instance that q` < r0.

There are three possibilities for the set Fr0 : (a) Fr0 = Ar0 ; (b) Fr0 = Br0 ; (c) Fr0 = Ar0 ∪Br0 .

Case a. Fr0 = Ar0 . We define

f = {(φ(z), φ(Ar0)) : φ ∈ fixG(Ez \Ar0)}.

Then f ∈ Vn,m, since Ez \ Ar0 is a support of f . Furthermore, f is a function with dom(f) ⊆ x and
ran(f) = {Aq : q > q`}. We have dom(f) ⊆ x since E ⊆ Ez \ Ar0 , z ∈ x and E is a support of x, and
ran(f) = {φ(Ar0) : φ ∈ fixG(Ez \ Ar0)} = {Aq : q > q`}, since q` < r0 and every element of fixG(Ez \ Ar0)
fixes Aq` and permutes the blocks Aq preserving the ordering on q’s. We argue by contradiction that f is a
function, so there exist φ, η ∈ fixG(Ez \Ar0) such that φ(z) = η(z), but φ(Ar0) 6= η(Ar0). Then η−1φ(z) = z
and η−1φ(Ar0) = Aq for some q ∈ Q \K ′. Since Ez supports z, η−1φ(Ez) supports η−1φ(z) = z. Thus, by
Fact 3, η−1φ(Ez)∩Ez = Ez\Ar0 also supports z, contradicting the minimality of K ′. Thus φ(Ar0) = η(Ar0),
so f is a function.

Let y = dom(f) and Y = {f−1({Aq}) : q > q`} (= {f−1({φ(Ar0)}) : φ ∈ fixG(Ez \Ar0)}). Clearly Y is a
partition of the infinite set y, which is linearly orderable in Vn,m, since it is indexed by the linearly orderable
set {Aq : q > q`} (see Fact 1). Furthermore, for any φ ∈ fixG(Ez \Ar0), f−1({φ(Ar0)}) ⊆ {φτkr0(z) : k < n},
and hence |f−1({φ(Ar0)})| ≤ n. Indeed, if π(z) ∈ f−1({φ(Ar0)}), then φ−1π(Ar0) = Ar0 , so there exists
k < n such that φ−1π and τkr0 agree on Ar0 . Thus (φ−1π)−1τkr0 ∈ fixG(Ez), so φ−1π(z) = τkr0(z), and hence
π(z) = φτkr0(z). Therefore,

Y = {Uφ : φ ∈ fixG(Ez \Ar0)},

where for φ ∈ fixG(Ez \Ar0),

Uφ = {ηz : η ∈ fixG(Ez \Ar0), φ−1η(Ar0) = Ar0} ⊆ {φτkr0(z) : k < n}.

Now fix an arbitrary φ in fixG(Ez \ Ar0) and let L = {φ−1η : η ∈ fixG(Ez \ Ar0), φ−1η(Ar0) = Ar0}. We
assert that L is a subgroup of G. To see this, note firstly that 1A ∈ L, so L 6= ∅. Now let φ−1η1, φ

−1η2 ∈ L.
Then η1φ

−1η2 ∈ fixG(Ez \ Ar0) and [φ−1(η1φ
−1η2)](Ar0) = φ−1η1(φ

−1η2(Ar0)) = φ−1η1(Ar0) = Ar0 , so
φ−1η1φ

−1η2 ∈ L. Also, if φ−1η ∈ L, then φ(φ−1η)−1 ∈ fixG(Ez \ Ar0) and (φ−1η)−1 fixes Ar0 (setwise),
so φ−1(φ(φ−1η)−1) ∈ L, and thus L is closed under inverses. Now L induces an action on Ar0 which
is a subgroup, H say, of the cyclic group S = {τkr0 : k < n} (which is isomorphic to Zn). Clearly
H = {π ∈ S : π(z) = z} (see also the above argument that Uφ ⊆ {φτkr0(z) : k < n}), and it is also easy to
see that |Uφ| = (S : H) (the index of H in S), so |Uφ| divides n. Since φ was arbitrary, we conclude that
all elements of Y have the same cardinality, which is a divisor of n.

Case b. Fr0 = Br0 . This can be treated in much the same way as Case a (except that n is replaced by m
and τr0 by σr0).

Case c. Fr0 = Ar0 ∪Br0 . Let f be given as in Case a, f = {(φ(z), φ(Ar0)) : φ ∈ fixG(Ez \Ar0)}. This is a
function as before, this time using the assumption that Ez ∪ Br0 is not a support of z. The remainder of
the argument is as in Case a. �

Variants of the models Vn,m
The models Vn,m can be generalized and modified as follows:
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(V1) Instead of working with just two types of blocks Aq and Br (where q, r ∈ Q) of size n and m
respectively, we can work with arbitrarily many types of blocks. Indeed, for a positive integer k
and positive integers m0, . . . ,mk−1 we may define the model Vm0,...,mk−1

whose set of atoms A is
partitioned into blocks Aq,0, . . . , Aq,(k−1), where q ∈ Q and for each l < k, |Aq,l| = ml.

The group G of permutations of A and the filter F of subgroups of G are defined analogously.

In fact, we may also have infinitely many blocks by setting k = ω; the corresponding model is denoted
by Vm....
We note that the corresponding Facts 1–4 also hold for the models Vm0,...,mk−1

and Vm....

(V2) A variant model of Vn,m can be produced if we require that the blocks Aq and Br are not permuted
independently and that every order automorphism of (Q,≤) moves for each q ∈ Q the blocks Aq
and Bq simultaneously to the respective blocks Ar and Br for some r ∈ Q. That is, we start again
with a model M of ZFA + AC with a set of atoms A =

⋃
{Aq ∪ Bq : q ∈ Q} where for every

q ∈ Q, Aq = {aq1, aq2, . . . , aqn} and Bq = {bq1, bq2, . . . , bqm} (so that |Aq| = n and |Bq| = m) and
{Aq : q ∈ Q}∪{Bq : q ∈ Q} is disjoint. The group G of permutations of A consists of all permutations
η of A such that η = φψρ, where ψ is an order automorphism of (Q,≤), φψ(aqj) = aψ(q)j and
φψ(bqk) = bψ(q)k (q ∈ Q, 1 ≤ j ≤ n, 1 ≤ k ≤ m), and ρ is a cyclic permutation when restricted
to any Aq or Br. The filter F of subgroups of G is generated by the subgroups fixG(E), where
E =

⋃
{Aq ∪Bq : q ∈ S} for finite S ⊆ Q.

We denote by Nn,m the permutation model which is determined by M , G and F .

Facts 1, 2, 3 hold for Nn,m, and a similar Fact 4 also holds true, namely if x ∈ Nn,m is a non-well-
orderable set, then x has an infinite subset y ∈ Nn,m which has a linearly orderable partition into
sets of the same cardinality r ≤ n ·m (the proof is much that same as the proof of Fact 4).

Furthermore, note that in contrast with Vn,m, the family C = {Aq ∪Bq : q ∈ Q} is an element of the
model Nn,m and it is linearly orderable in Nn,m. In addition, LOC−n+m (and hence C−n+m) is false in
Nn,m for C.
As with Vn,m, the models Nn,m can be generalized and modified to models Nm0,...,mk−1

and Nm....
We also note here that if n ·m = 0, then Vi = Ni where i = max{n,m}.

5 Main results

We start this section by proving that given any integer n ≥ 2, if RCi is true for all integers i with 2 ≤ i ≤ n,
then so is C−i for all i with 2 ≤ i ≤ n.

Theorem 4 For every integer n ≥ 2, if RCi is true for all integers i with 2 ≤ i ≤ n, then C−i is true for
all integers i with 2 ≤ i ≤ n.

Proof Let 2 ≤ i ≤ n and let A = {Aj : j ∈ J} be an infinite family of i-element sets. Let k be chosen
minimal between 1 and i such that for some infinite Y ⊆ A =

⋃
A, {j ∈ J : |Y ∩Aj | = k} is infinite (this

holds for i, so such k certainly exists). If k = 1, we already have a partial choice function for A. Otherwise,
we apply RCk to

⋃
{Y ∩Aj : |Y ∩Aj | = k} to find an infinite Z ⊆ Y so that [Z]k has a choice function f .

There is l such that 1 ≤ l ≤ k and J1 = {j ∈ J : |Z ∩Aj | = l} is infinite. By minimality of k, k = l. Thus
f restricts to a choice function for {Z ∩Aj : j ∈ J1} and this provides a partial choice function for A. �

Our next result provides an infinite set of pairs (m,n) of distinct positive integers m and n such that
RCm and C−m do not imply RCn and LOC−n in ZF.
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Theorem 5 Let p be a prime number. Then for every m ∈ ω \ {0, 1} which is not a multiple of p, and for
every r ∈ ω \ {0},

Vp |= RCm ∧ C−m ∧ ¬RCpr ∧ ¬LOC−pr.

The result is transferable into ZF.

Proof From Fact 2(i) (of Section 4) we know that LOC−k is false in Vp for every integer k which is a
multiple of p. Furthermore, using Fact 2(ii) and a similar argument to the one given for Fact 2(i), we may
easily conclude that for all r in ω \ {0}, RCpr is false in Vp for the set of atoms A =

⋃
{Aq : q ∈ Q}. Fix

r ∈ ω \ {0} and assume, towards a contradiction, that A has an infinite subset y ∈ Vp such that [y]pr has a
choice function, say f with support E =

⋃
{Aq : q ∈ S}, where S ∈ [Q]<ω. By Fact 2(ii), y =

⋃
{Aq : q ∈ I}

for some infinite subset I of Q such that {Aq : q ∈ I} ∈ Vp. Then there is an r-element subset W of I
such that the (pr)-element set F =

⋃
{Aq : q ∈W} is disjoint from E. Assuming that f(F ) ∈ Aw for some

w ∈W , we have τw ∈ fixG(E), but τw(f) 6= f , which is a contradiction.
We proceed now with the proofs of the rest of the assertions of the theorem.

Claim 1 RCm is true in Vp for every integer m which is not a multiple of p.

Proof Let x be an infinite set in Vp. If x is well-orderable, then RCm is vacously true for x. So we assume
that x is non-well-orderable. Let E =

⋃
{Aq : q ∈ K}, z, Ez =

⋃
{Aq : q ∈ K ′}, and r0 ∈ K ′ \K, be as in

the argument for Case a of the proof of Fact 4 of Section 4. Thus K ′ = K ∪ {r0}, and as there we assume
that q` < r0, and we get the function f , and its domain y = {φ(z) : fixG(Ez \ Ar0)}. By that proof, we
know that Y, which may be written as {Uφ : φ ∈ fixG(Ez \Ar0)} where Uφ ⊆ {φ(z), φτr0(z), . . . , φτp−1r0 (z)},
is a partition of y into r-element sets for some r dividing p, which is equipped with a linear order induced
from that on {Aq : q > q`} (also see Fact 1); we denote this linear order on Y by �. We will show that
[y]m has a choice function in Vp. If r = 1, then y is linearly orderable, so this is immediate. Otherwise, as

p is prime, r = p. Thus Uφ = {φ(z), φτr0(z), . . . , φτp−1r0 (z)} for all φ ∈ fixG(Ez \Ar0).
Since Ez \Ar0 is a support of (Y,�) and of y, it is also a support of [y]m. Thus [y]m can be written as a

disjoint union of the fixG(Ez \Ar0)-orbits of its elements, i.e., [y]m =
⋃{

OrbEz\Ar0 (w) : w ∈ [y]m
}

, where
OrbEz\Ar0 (w) = {φ(w) : φ ∈ fixG(Ez \Ar0)}. (Note that {OrbEz\Ar0 (w) : w ∈ [y]m} is well-orderable in Vp
since Ez \Ar0 is a support of OrbEz\Ar0 (w) for all w ∈ [y]m.)

In the ground model M which satisfies AC, we let F be a choice function for the family

O = {OrbEz\Ar0 (w) : w ∈ [y]m}.

Let Y ∈ O and also let VF (Y ) = min{R ∈ Y : 1 ≤ |R ∩ F (Y )| < p}. Note that VF (Y ) is definable since
F (Y ) ∈ [y]m (so F (Y ) is finite), (Y,�) is linearly ordered, and m is not a multiple of p. Invoking AC again
in M , for each Y ∈ O pick aF (Y ) ∈ VF (Y ) ∩ F (Y ). Let

H = {(φ(F (Y )), φ(aF (Y ))) : Y ∈ O, φ ∈ fixG(Ez \Ar0)}.

It is clear that H is a binary relation with domain
⋃
O = [y]m. Furthermore, H is a function. To see this,

let Y ∈ O and also let φ, ψ ∈ fixG(Ez \ Ar0) such that φ(F (Y )) = ψ(F (Y )) (so φ−1ψ(F (Y )) = F (Y )).
Since for every η ∈ fixG(Ez \Ar0), Uη = {ητ jr0(z) : j < p}, and p is prime, and |VF (Y )∩F (Y )| < p, it is easy
to see that φ−1ψ � VF (Y ) is necessarily the identity mapping, and thus φ−1ψ fixes VF (Y ) ∩F (Y ) pointwise.
Since aF (Y ) ∈ VF (Y ) ∩ F (Y ), φ−1ψ(aF (Y )) = aF (Y ), and thus φ(aF (Y )) = ψ(aF (Y )).

Finally, H is a choice function of [y]m, which is in Vp since it is supported by Ez \ Ar0 . Thus RCm is
true in Vp. �

Claim 2 C−m is true in Vp for every integer m which is not a multiple of p.
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Proof Assume the result for smaller m. Let Z = {Zi : i ∈ I} be a disjoint infinite family of m-element
sets in Vp, and Z =

⋃
Z. By RCm in Vp, there is an infinite y ⊆ Z such that [y]m has a choice function

f . Then for some t with 1 ≤ t ≤ m, St = {i ∈ I : |Zi ∩ y| = t} is infinite. If t = m, f provides a choice
function for {Zi : i ∈ St}. Otherwise, 1 ≤ t < m and so either t or m− t is not a multiple of p. If t is not
a multiple of p, then as we assumed the result for values less than m, {Zi ∩ y : i ∈ St}, and hence also Z,
has a partial choice function. Otherwise, we apply the same argument to {Zi \ y : i ∈ St}. �

The above arguments complete the proof of the theorem. �

With essentially the same arguments as in the proof of Theorem 5 above (and using Facts 2(i) and 4
of Section 4), one can prove a much more general and stronger result than Theorem 5. Indeed, we have
the following theorem.

Theorem 6 Let p0 ≤ . . . ≤ pv be prime numbers and let k be a positive integer. Then

Vp0,...,pv |= RCk ↔ C−k ↔ LOC−k

and
Vp0,...,pv |= ¬RCk ⇐⇒ k is a multiple of pi for some i ≤ v.

Furthermore, for all integers k ≥ 2 which can be written as a sum of multiples of p0, . . . , pv,

Vp0,...,pv |= ¬Ck.

The result is transferable into ZF.

Part (iii) of the subsequent corollary to Theorems 3 and 6 completely settles the open problem on the
relationship between RCk and RC3, where k ∈ {2, 4}.

Corollary 1 The following hold:
(i) If m,n ≥ 2 are any positive integers such that for some prime p we have p - m and p | n, then in

ZF: RCm 9 RCn and RCm 9 C−n .

(ii) There is a model M of ZF such that for every positive integer n, M |= RC2n+1 ∧ C−2n+1 ∧ ¬RC2n ∧
¬LOC−2n. Hence, for every odd integer n ≥ 3 and for every even integer m ≥ 2, M |= RCn ∧ C−n ∧¬RCm ∧
¬LOC−m.

(iii) For k = 2, 4, the principles RCk and RC3 are independent of each other in ZF.

Proof (i) Use model Vp and the result of Theorem 5.
(ii) Use model V2 and the result of Theorem 5 (or Theorem 6). The result is transferable into ZF via

Pincus’ transfer theorems.
(iii) This follows easily from Theorem 3 (parts 3. and 4.) and part (ii) of the current corollary. �

Theorem 7 For n = 2, 3, RC5 + C−n implies C−5 , and RC5 implies neither C−2 nor C−3 in ZF.

Proof Assume that RC5 + C−2 is true. Let U = {Ui : i ∈ I} be a disjoint infinite family of 5-elements
sets. By way of contradiction, assume that U has no partial choice function. Let y be an infinite subset
of
⋃
U such that [y]5 has a choice function. Since U has no partial choice function, we have that the set

{i ∈ I : |y∩Ui| ≥ 4 or |y∩Ui| = 1} is finite. It follows that at least one of the sets Y1 = {i ∈ I : |y∩Ui| = 2}
and Y2 = {i ∈ I : |y ∩ Ui| = 3} is infinite. If Y1 is infinite, then, by C−2 , the family Y1 = {y ∩ Ui : i ∈ Y1},
and hence U , has a partial choice function, which is a contradiction. If Y2 is infinite, then by C−2 again, we
have Y2 = {Ui \ (y ∩ Ui) : i ∈ Y2} has a partial choice function, which again contradicts the assumption
that U has no partial choice function.

The proof that RC5 + C−3 implies C−5 is similar.
The third assertion (that RC5 implies neither C−2 nor C−3 in ZF) follows easily from Theorem 5. �
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Remark 3 By Facts 1 and 2 (of section 4), we have that the family of 5-element sets of atoms, C =
{Aq ∪Bq : q ∈ Q}, is linearly orderable in the permutation model N3,2 (which was constructed in (V2) of
Section 4), and has no partial choice function in N3,2.

On the other hand, it is straightforward to verify that the infinite subset y =
⋃
{Bq : q ∈ Q} ⊂ A

(which is an element of N3,2 since it has empty support) is such that [y]5 has a choice function in N3,2. (It
is also true that the subset u =

⋃
{Aq : q ∈ Q} ⊂ A is such that [u]5 has a choice function in N3,2; follow

the argument for Claim 1 of the proof of Theorem 5.)
It is therefore tempting to think that N3,2 may serve as the appropriate setting in order to answer (in

the negative) the question of whether RC5 implies C−5 . However, this is not the case. In particular, Ramsey
Choice RC5 is false in N3,2 (while, by Theorem 6, it is true in V3,2). To see this, let

x = {{aqm, bqn} : q ∈ Q,m ∈ {1, 2, 3}, n ∈ {1, 2}}.

Then x ∈ N3,2 since ∅ is a support of x. We assert that x has no infinite subset y in N3,2 such that [y]5

has a choice function. Assume the contrary; then we may let y ∈ N3,2 be an infinite subset of x such that
[y]5 has a choice function f ∈ N3,2. Let E =

⋃
{Aq ∪Bq : q ∈ S}, where S ∈ [Q]<ω, be a support of y and

f . It is easy to see that there exist distinct rational numbers q and r such that {q, r} ∩ S = ∅ (and hence
E ∩ (Aq ∪Bq ∪Ar ∪Br) = ∅) and

w = {{aq1, bq1}, {aq2, bq1}, {aq3, bq1}, {ar1, br1}, {ar1, br2}} ∈ [y]5.

Clearly, τq, σr ∈ fixG(E), hence τq(f) = σr(f) = f , and also τq(w) = σr(w) = w. If f(w) = {aqk, bq1} for
some k ∈ {1, 2, 3}, then τq(f(w)) 6= f(w) so (w, τq(f(w))) 6∈ f , and if f(w) = {ar1, brl} for some l ∈ {1, 2},
then σr(f(w)) 6= f(w) so (w, σr(f(w))) 6∈ f . Since each of the above two possibilities for f(w) leads to a
contradiction to the fact that E is a support of f , we conclude that x has no infinite subset y in N3,2 such
that [y]5 has a choice function. Therefore RC5 is false in N3,2.

Next, we prove that CAC (Chain-AntiChain Principle) does not imply C−n in ZF for any natural number
n ≥ 2. The permutation model that will be constructed in the proof of the subsequent result will also be
useful in the proof of the forthcoming Theorem 9.

Theorem 8 For every natural number n ≥ 2, there is a model M of ZF such that M |= CAC ∧ ¬C−n .

Proof Fix a natural number n ≥ 2. Since CAC∧¬C−n is a conjunction of injectively boundable statements,
it follows—by Pincus’ Theorem 3A3 in [8]—that we only need to construct a Fraenkel–Mostowski model of
ZFA with the required properties. Our model will be a generalization of the permutation model constructed
in the proof of Theorem 2.1 of Tachtsis [9] (where Theorem 2.1 of [9] states that CAC does not imply
Ramsey’s Theorem in ZFA). Since all the required arguments for the proof of the current theorem are
almost identical to the ones given for the proof of Theorem 2.1 of [9], we refer the interested reader to [9]
for the details.

The description of the model: We start with a model M of ZFA + AC with a set of atoms A =
⋃
{Ai :

i ∈ ω} which is a denumerable disjoint union of n-element sets Ai = {ai1, ai2, . . . , ain} (where i ∈ ω).
The group G of permutations of A is defined as follows: Firstly, for all i ∈ ω, let τi be the n-cycle

ai1 7→ ai2 7→ · · · 7→ ain 7→ ai1. Also, for every permutation ψ of ω which moves only finitely many
natural numbers, let φψ be the permutation of A which is defined by φψ(aij) = aψ(i)j for all i ∈ ω and
j ∈ {1, 2, . . . , n}.

Now, we require η ∈ G, if and only if, η = φψρ, where ψ is a permutation of ω which moves only finitely
many natural numbers and ρ is a permutation of A for which there is a finite subset F ⊆ ω such that for
every k ∈ F we have that ρ � Ak = τ jk for some j < n, and ρ fixes Am pointwise for every m ∈ ω \ F .

From the definition of the group G, it follows that if η ∈ G, then η moves only finitely many atoms,
and for all i ∈ ω there is k ∈ ω such that η(Ai) = Ak.
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Let Γ be the filter of subgroups of G which is generated by the subgroups fixG(E), where E ∈ [A]<ω.
Let N be the Fraenkel–Mostowski model which is determined by M , G, and Γ.

The following hold in N (see [9, proof of Theorem 2.1]):

1. The set A = {Ai : i ∈ ω} is amorphous and has no infinite subfamily B with a Kinna–Wagner
selection function. Furthermore, A is also amorphous. It follows that C−n (as well as RCn—see also
Theorem 2(1)) is false in N for A.

2. Every element x ∈ N is either well-orderable or has an infinite subset y with a partition into sets
each of size at most n, indexed by a cofinite subset of A, thus indexed by an amorphous set (note
that the proof of Fact 4 of Section 4 goes through here with minor adjustments). In the second case,
it follows that y is an amorphous subset of x.

3. Every linearly orderable set in N is well-orderable. This follows immediately from item 2.

4. The union of a well-orderable family of well-orderable sets in N is well-orderable.

5. AC(LO, LO) is true in N . This follows from items 3 and 4.

6. CAC is true in N .

The above completes the (outline of the) proof of the theorem. �

Next, we completely clarify the relationship between C−n , LOC−n and WOC−n in ZF.

Theorem 9 For every n ∈ ω \ {0, 1}, C−n implies LOC−n , which in turn implies WOC−n . Furthermore, for
every n ∈ ω \ {0, 1}, none of the previous implications are reversible in ZF.

Proof The implications in the statement of the theorem are straightforward.

For the second assertion of the theorem, fix n ∈ ω \ {0, 1}. Firstly, we note that each of C−n , LOC−n
and WOC−n is an injectively boundable statement, so in view of Pincus’ Theorem 3A3 in [8], it suffices to
establish our independence results using Fraenkel–Mostowski permutation models.

We shall prove something stronger than “LOC−n does not imply C−n ”, namely that there is a model of
ZFA in which AC(LO, LO) is true, whereas C−n is false. For our purpose, we will use the permutation model
N of the proof of Theorem 8. From its proof we know that AC(LO, LO) is true in N , whereas C−n is false
in N . Thus, LOC−n is also true in N .

Now, we shall also prove something stronger than “WOC−n does not imply LOC−n ”, namely that there
is a model V of ZFA in which UT(WO, fin,WO) is true, whereas LOC−n is false in V. We will use the model
Vn of Section 4 (so that the set of atoms is A =

⋃
{Aq : q ∈ Q}, where Aq = {aq1, aq2, . . . , aqn} for every

q ∈ Q, and Aq ∩Ar = ∅ for distinct rationals q and r).
By Facts 1 and 2(i), we have that B = {Aq : q ∈ Q} is a linearly orderable family of n-element sets,

which admits no partial choice function in Vn. Thus, LOC−n is false in Vn.
Now we prove that UT(WO, fin,WO) is true in Vn. To this end, let U = {Uα : α < κ}, where κ is an

infinite well-ordered cardinal number, be a disjoint family of finite sets in Vn. Let E =
⋃
{Aq : q ∈ S}

(where S ∈ [Q]<ω) be a support of Uα for each α < κ. We will show that E is a support of every element
in
⋃
U . Assuming the contrary, there exist α < κ and u ∈ Uα such that u is not supported by E. Let

Eu =
⋃
{Aq : q ∈ S′}, where S′ ∈ [Q]<ω, be the minimum support of u, whose existence is guaranteed

by Fact 3 of section 4. Since u is not supported by E, there exists an element r ∈ S′ \ S (and hence
Ar ⊆ Eu and Ar ∩ E = ∅). Furthermore, it is not hard to verify that there is an infinite subset P ⊆ Q
such that for all p in P , there exists an order automorphism ψp of (Q,≤) which fixes S pointwise, and
ψp(r) = p. It follows that for all p, p′ in P , if p 6= p′ then ψp(S

′) 6= ψp′(S
′). Thus, for all p, p′ in P ,

if p 6= p′ then φψp(Eu) 6= φψp′ (Eu), and consequently, by the second part of the statement of Fact 3 of
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Section 4, φψp(u) 6= φψp′ (u). Since for all p in P , ψp fixes S pointwise, we have φψp ∈ fixG(E), and hence
φψp(Uα) = Uα. It follows that the infinite set {φψp(u) : p ∈ P} is a subset of Uα, contradicting Uα’s being
finite. Thus

⋃
U is well-orderable. �

In Theorem 10 below, we elucidate the relationship of RC6 with certain instances of LOC−n . The results
of Theorem 10 provide partial answers to the open problem of whether RC6 implies C−i for i = 2, 3, 4, 6.
In part (i) of Theorem 10, we shall provide a general result, namely that for every k ∈ ω \ {0, 1}, RC2k

implies LOKW−k and that the latter implication is not reversible in ZF (for any k ∈ ω \ {0, 1}). The latter
result gives us, in particular, that RC6 strictly implies LOC−3 in ZF. Our proof of (i) (of Theorem 10), uses
ideas from Montenegro’s ingenious proof that RC4 implies C−4 (see [7]). Since the subsequent theorem is
centered around RC6, we also have incorporated in the theorem’s list of results, a fact which immediately
follows from Theorem 5, namely that RC6 does not imply C−5n in ZF, for all n ∈ ω \ {0}. The latter result
completely settles the corresponding open problems.

We would also like to point out here that Theorems 5, 6 and 10, indicate the limitations of the permu-
tation models Vn,m and Nn,m of Section 4 with regard to the aforementioned open problems on RC6.

Theorem 10 The following hold:
(i) For every k ∈ ω \ {0, 1}, RC2k implies LOKW−k and the latter implication is not reversible in ZF. In

particular, RC6 strictly implies LOC−3 in ZF.

(ii) LOC−4 is equivalent to LOC−2 + LOKW−4 . Furthermore, LOC−2 does not imply LOKW−4 in ZF, hence
neither does it imply LOC−4 in ZF.

(iii) RC6 + LOC−2 implies LOC−6 . Hence, RC6 + LOC−2n implies LOC−6 for all n ∈ ω \ {0}.

(iv) RC6 + LOC−2 implies LOC−4 . Hence, RC6 + LOC−2n implies LOC−4 for all n ∈ ω \ {0}.

(v) RC6 does not imply LOC−5 in ZF, hence it does not imply C−5n in ZF, for all n ∈ ω \ {0}.

(vi) RC6 implies WOC−2 .

Proof (i) Fix k ∈ ω \ {0, 1} and assume that RC2k is true. Let A = {Ai : i ∈ I} be a disjoint infinite
family of k-element sets indexed by the set I, which is equipped with some prescribed linear order. Towards
a proof by contradiction assume that A has no infinite subfamily with a Kinna–Wagner selection function.
By RC2k, let Y be an infinite subset of A =

⋃
A such that [Y ]2k has a choice function, say f . Since A

has no partial Kinna–Wagner function, we may assume, without loss of generality, that there is an infinite
subset J of I such that Y =

⋃
{Aj : j ∈ J}. We define a binary relation R on J by requiring for all

j, j′ ∈ J ,
j R j′, if and only if, f(Aj ∪Aj′) ∈ Aj′ .

(Note that if (j, j′) ∈ R, then (j′, j) 6∈ R.)
For every j ∈ J , we let

Kj = {r ∈ J : j R r} = {r ∈ J : f(Aj ∪Ar) ∈ Ar}.

Since A has no partial choice function, it follows that for all j in J , the set Kj is finite; otherwise, if for
some j ∈ J , Kj is infinite, then we let B = {Ar : r ∈ Kj} and we define a choice function g on B by
requiring for all r ∈ Kj , g(Ar) = f(Aj ∪Ar). Since B is an infinite subset of A with a choice function, we
have arrived at a contradiction. Therefore, for all j in J , Kj is finite.

For each n ∈ ω, let Cn = {j ∈ J : |Kj | = n}. It is clear that the family C = {Cn : n ∈ ω} is a partition
of the linearly ordered set J .

We assert that for all n ∈ ω, Cn is finite and, in particular, |Cn| ≤ 2n + 1. To this end, it suffices
to show that for all n ∈ ω, if U is any finite subset of Cn, then |U | ≤ 2n + 1 (and hence Cn cannot be
infinite, otherwise it would have finite subsets of arbitrarily large finite cardinality). Fix n ∈ ω and a finite
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subset U ⊆ Cn. For every two-element subset {j, j′} of U , either (j, j′) ∈ R or (j′, j) ∈ R, but not both.
Therefore, |R � U | =

(|U |
2

)
, where R � U is the restriction of R on U . Since for each j ∈ Cn we have that

|Kj | = n, it readily follows that
(|U |

2

)
≤ n|U |, which yields that |U | ≤ 2n+ 1 as required.

Since J is linearly ordered and for all n in ω, Cn ∈ [J ]<ω, it follows that J =
⋃
{Cn : n ∈ ω} is

denumerable (i.e., countably infinite), thus, so is the (disjoint) family D = {Aj : j ∈ J}. Let (Dn)n∈ω be
an enumeration of the elements of D. Then f � E , where E = {D2n ∪D2n+1 : n ∈ ω}, is a choice function
for the disjoint family E which consists of (2k)-element subsets of Y . Since for every n ∈ ω, f(D2n∪D2n+1)
is an element of exactly one of the sets D2n and D2n+1 and D is a denumerable subfamily of A, it readily
follows that A has a partial choice function. This contradicts our assumption on A having no partial
Kinna–Wagner selection function.

For the second assertion of (i), we may use the Fraenkel–Mostowski model N which was constructed
in the proof of Theorem 8 (with n any natural number greater than or equal to 2). From the proof of
Theorem 8, we have that AC(LO, LO) is true in N from which LOKW−k follows, whereas RCk is false for
any integer k ≥ 2, since there are amorphous sets in N .

The third assertion is, in view of the above, straightforward.

(ii) The implication “LOC−4 → LOKW−4 ” is evident and the implication “LOC−4 → LOC−2 ” follows from
Theorem 1(10).

Conversely, assume that LOC−2 + LOKW−4 is true and let A = {Ai : i ∈ I} be a linearly orderable,
disjoint, infinite family of 4-element sets. Let, by LOKW−4 , B = {Aj : j ∈ J} be an infinite subfamily of
A with a Kinna–Wagner function, say f . Then there exists an infinite subset J ′ ⊆ J such that either for
all j in J ′, |f(Aj)| = 3, or for all j in J ′, |f(Aj)| = 2, or for all j in J ′, |f(Aj)| = 1. In the first case, we
let g = {(Aj ,

⋃
(Aj \ f(Aj))) : j ∈ J ′}; then g is a partial choice function for A. In the second case, we

apply LOC−2 to the family {f(Aj) : j ∈ J ′}, thus obtaining a partial choice function for A. The third case
is evident.

For the second assertion of (ii), we only need to establish the independence result using a suitable
Fraenkel–Mostowski permutation model, since via Pincus’ Transfer Theorems, the result can be transferred
into ZF (see also Remark 1 of Section 2). To this end, first let κ be any infinite well-ordered cardinal
number. We start with a model M of ZFA + AC with a κ-sized set A of atoms which is a disjoint union
A =

⋃
{Aα : α < κ}, where for α < κ, Aα = {aα,1, aα,2, aα,3, aα,4} so that |Aα| = 4, for all α < κ.

For each α < κ, let Gα be the alternating group on Aα and let G be the weak direct product of the
Gα’s. Hence, a permutation η of A is an element of G if and only if for every α < κ, η � Aα ∈ Gα, and
η � Aα = 1Aα for all but finitely many ordinals α < κ (and thus every element η ∈ G moves only finitely
many atoms).

Let Γ be the filter of subgroups of G which is generated by the subgroups fixG(E) of G, where E ∈ [A]<ω.
Let M be the permutation model which is determined by M , G and Γ.

We first show that LOKW−4 is false in M for the well-ordered family A = {Aα : α < κ} of M (the
enumeration α 7→ Aα, α < κ, has empty support). Assume the contrary and let B be an infinite subfamily
of A having a Kinna–Wagner selection function f ∈ M with support some finite set E ⊂ A. Then there
exists an ordinal α0 < κ such that Aα0 ∈ B and Aα0 ∩ E = ∅. There are three possibilities for f(Aα0):

(a) |f(Aα0)| = 1. Let t be the unique element of f(Aα0) and let Aα0 \ f(Aα0) = {x, y, z}. Let η be
the permutation of A in G which is defined by η � Aα0 = (t, x)(y, z) and η � A \ Aα0 = 1A\Aα0 . Clearly,
η ∈ fixG(E), hence η(f) = f . However, η(Aα0) = Aα0 , but η(f(Aα0)) 6= f(Aα0), which contradicts the fact
that f is supported by E.

Similarly to (a), the remaining two possibilities, namely (b) |f(Aα0)| = 2 and (c) |f(Aα0)| = 3 lead to
a contradiction, so we leave the verification of the details as an easy exercise for the interested reader.

Next, we assert that every linearly orderable set in M is well-orderable (in M). Indeed, let (x,≤) be
a linearly ordered set in M with support E ∈ [A]<ω. By way of contradiction, assume that x is not well-
orderable in M, and hence there exists an element z ∈ x which is not supported by E. This means that
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there is an element φ ∈ fixG(E) such that φ(z) 6= z. Since ≤ is a linear order on x (and φ(z) ∈ φ(x) = x),
we must have that either φ(z) < z or z < φ(z). Without loss of generality, we assume that φ(z) < z
(the case where z < φ(z) can be treated as in the argument below). Since every element of G moves only
finitely many atoms, it follows that every permutation of A in G has finite order, thus there is m ∈ ω such
that φm = 1A. Then we have z = φm(z) < φm−1(z) < . . . < φ2(z) < φ(z) < z, hence z < z, which is
impossible. Therefore, E supports every element of x, and hence x can be well-ordered in M.

Our final step in the proof is to show that LOC−2 is true in M. To this end, let U = {Ui : i ∈ I} be a
disjoint infinite family of pairs inM, which is indexed by the linearly orderable set I. In view of the result
of the previous paragraph, we have that I is well-orderable, so we may assume that I = λ for some infinite
well-ordered cardinal number λ. Let E ∈ [A]<ω be a support of Ui, for all i < λ. Without loss of generality,
we assume that E = Aα1 ∪ Aα2 ∪ · · · ∪ Aαm , where for i = 1, 2, . . . ,m, αi < κ and α1 < α2 < . . . < αm.
We will show that

⋃
U is well-orderable by proving that E supports every element of

⋃
U . Assume the

contrary; then there exist i ∈ λ, u ∈ Ui, and η ∈ fixG(E) such that η(u) 6= u. Let Eu be a support of
u and, without loss of generality, assume that Eu = E ∪ Aµ, where µ ∈ κ \ {αj : 1 ≤ j ≤ m}, and that
η � A \Aµ = 1A\Aµ .

Let G =
∏w
α<κ Gα, i.e., G is the weak direct product of the groups Gα, where for α < κ, Gα = Gµ if

α = µ and Gα = {1Aα} if α ∈ κ \ {µ}. Clearly, G is a subgroup of G which is isomorphic to the alternating
group Gµ on Aµ. Let H = {ρ ∈ G : ρ(u) = u}. Then H is a subgroup of G, which is proper, for η ∈ G \ H.
Since |Ui| = 2 and η ∈ G \ H, we conclude that the index (G : H) of H in G is 2. As |G| = |Gµ| = 12, we
have |H| = 6. This contradicts the well-known group-theoretic fact that the alternating group on 4 letters
has no subgroups of order 6. Therefore, E supports every element of

⋃
U , and so

⋃
U is well-orderable.

Thus U has a choice function in M, and consequently LOC−2 is true in M.

(iii) Assume RC6 + LOC−2 . Let A = {Ai : i ∈ I} be a linearly orderable, disjoint, infinite family of
6-element sets. By RC6, let y be an infinite subset of A =

⋃
A such that [y]6 has a choice function. If the

set Z1 = {i ∈ I : |y∩Ai| ≥ 5 or |y∩Ai| = 1} is infinite, then we easily conclude that A has a partial choice
function. If Z2 = {i ∈ I : |y ∩ Ai| = 4} is infinite, then by LOC−2 , the family B = {Ai \ (y ∩ Ai) : i ∈ Z2}
has a partial choice function, hence A has a partial choice function too. If Z3 = {i ∈ I : |y ∩ Ai| = 3} is
infinite, then the conclusion follows from part (i) of the current theorem, and if Z4 = {i ∈ I : |y ∩Ai| = 2}
is infinite, then the conclusion follows from LOC−2 again.

(iv) Assume RC6 + LOC−2 . Let A = {Ai : i ∈ I} be a linearly orderable, disjoint, infinite family of
4-element sets. Then B = {[Ai]2 : i ∈ I} is a linearly orderable disjoint family of 6-element sets. By our
assumption and part (iii) of the current theorem, we have that LOC−6 is true, and thus there exists an
infinite subfamily C = {[Aj ]2 : j ∈ J} of B, where J ⊆ I is infinite, with a choice function, say f . Since for
every j ∈ J , f([Aj ]

2) is a 2-element subset of Aj , we apply LOC−2 to the linearly orderable infinite family
D = {f([Aj ]

2) : j ∈ J} in order to obtain a partial choice function g for D. Using g, we immediately obtain
a partial choice function for A.

(v) This follows from Theorem 5; in particular, the permutation model V5 satisfies RC6 + ¬C−5 , and
the result is transferable into ZF.

(vi) Assume RC6. Let A = {Aα : α < κ}, where κ is an infinite well-ordered cardinal number, be
a family of 2-element sets. By RC6, let y be an infinite subset of A =

⋃
A such that [y]6 has a choice

function, say f . Without loss of generality, assume that the set {α : α < κ and |y ∩ Aα| = 1} is finite.
Therefore, since y is infinite and κ is an infinite well-ordered cardinal, it follows that there exists a strictly
increasing sequence (αn)n∈ω of ordinals in κ such that Aαn ⊂ y, for all n < ω. Then f � B, where
B = {Aα3n ∪ Aα3n+1 ∪ Aα3n+2 : n < ω}, is a choice function for the disjoint family B which consists of
6-element sets. Clearly, this yields that A has a partial choice function. �
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6 Open questions

1. Does RC5 imply either of LOC−5 and C−5 ?

2. Does RC4 imply RC2? (Recall that RC2 implies RC4 (see Theorem 3(4)). Also, note that RC4 implies
C−2 , since (from [7]) RC4 implies C−4 , which in turn implies C−2 .)

3. Is there a model of ZF which satisfies RC6 + ¬C−i , where i ∈ {2, 3, 4, 6}? Same question for RC6 and
LOC−i , where i ∈ {2, 4, 6}.
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