On Ramsey Choice and Partial Choice for infinite families of n-element sets

Lorenz Halbeisen
Department of Mathematics
ETH Zürich, Switzerland
E-mail address: lorenz.halbeisen@math.ethz.ch
Eleftherios Tachtsis
Department of Statistics and Actuarial-Financial Mathematics
University of the Aegean
Karlovassi 83200, Samos, Greece
E-mail address: ltah@aegean.gr

October 29, 2019

Abstract

For an integer $n \geq 2$, Ramsey Choice RC_{n} is the weak choice principle "every infinite set x has an infinite subset y such that $[y]^{n}$ (the set of all n-element subsets of y) has a choice function", and C_{n}^{-}is the weak choice principle "every infinite family of n-element sets has an infinite subfamily with a choice function".

In 1995, Montenegro showed that for $n=2,3,4, \mathrm{RC}_{n} \rightarrow \mathrm{C}_{n}^{-}$. However, the question of whether or not $\mathrm{RC}_{n} \rightarrow \mathrm{C}_{n}^{-}$for $n \geq 5$ is still open. In general, for distinct $m, n \geq 2$, not even the status of " $\mathrm{RC}_{n} \rightarrow \mathrm{C}_{m}^{-}$" or " $\mathrm{RC}_{n} \rightarrow \mathrm{RC}_{m}$ " is known.

In this paper, we provide partial answers to the above open problems and among other results, we establish the following: 1. For every integer $n \geq 2$, if RC_{i} is true for all integers i with $2 \leq i \leq n$, then C_{i}^{-}is true for all integers i with $2 \leq i \leq n$. 2. If $m, n \geq 2$ are any integers such that for some prime p we have $p \nmid m$ and $p \mid n$, then in ZF: $\mathrm{RC}_{m} \nrightarrow \mathrm{RC}_{n}$ and $\mathrm{RC}_{m} \nrightarrow \mathrm{C}_{n}^{-}$. 3. For $n=2,3, \mathrm{RC}_{5}+\mathrm{C}_{n}^{-}$implies C_{5}^{-}, and RC_{5} implies neither C_{2}^{-}nor C_{3}^{-}in ZF . 4. For every integer $k \geq 2, \mathrm{RC}_{2 k}$ implies "every infinite linearly orderable family of k-element sets has a partial Kinna-Wagner selection function" and the latter implication is not reversible in ZF (for any $k \in \omega \backslash\{0,1\}$). In particular, RC_{6} strictly implies "every infinite linearly orderable family of 3-element sets has a partial choice function". 5. The Chain-AntiChain Principle ("every infinite partially ordered set has either an infinite chain or an infinite anti-chain") implies neither RC_{n} nor C_{n}^{-}in ZF, for every integer $n \geq 2$.

Keywords Axiom of Choice, weak forms of the Axiom of Choice, Ramsey Choice, Partial Choice for infinite families of n-element sets, Ramsey's Theorem, Chain-AntiChain Principle, Fraenkel-Mostowski permutation models of ZFA $+\neg$ AC, Pincus' Transfer Theorems.

Mathematics Subject Classification (2010) Primary 03E25; Secondary 03E35.

1 Notation and terminology

Notation 1

1. As usual, ω denotes the set of natural numbers.
2. Let $n \in \omega$ and let X be a set. Then $[X]^{n}$ denotes the set of n-element subsets of X. Furthermore, $[X]^{<\omega}$ denotes the set of finite subsets of X. Clearly $[X]^{<\omega}=\bigcup\left\{[X]^{n}: n \in \omega\right\}$.
3. ZF is Zermelo-Fraenkel set theory without the Axiom of Choice (AC).
4. ZFC is $\mathrm{ZF}+\mathrm{AC}$.
5. ZFA is ZF with the Axiom of Extensionality modified in order to allow the existence of atoms.

Next, we list the statements and notations of the weak choice principles that will be used in this paper.

Definition 1

1. Ramsey's Theorem (RT): For every infinite set X and for every partition of the set $[X]^{2}$ of twoelement subsets of X into two sets A and B, there is an infinite subset Y of X such that either $[Y]^{2} \subseteq A$ or $[Y]^{2} \subseteq B$.
2. Let $n \in \omega \backslash\{0,1\}$.

Ramsey Choice RC_{n} : For every infinite set X there is an infinite subset $Y \subseteq X$ such that $[Y]^{n}$ has a choice function.
C_{n} : Every family of n-element sets has a choice function.
C_{n}^{-}: Every infinite family \mathcal{A} of n-element sets has a partial choice function (i.e., \mathcal{A} has an infinite subfamily \mathcal{B} with a choice function).
LOC $_{n}^{-}$: Every infinite linearly orderable family of n-element sets has a partial choice function.
LOKW $_{n}^{-}$: Every infinite linearly orderable family \mathcal{A} of n-element sets has a partial Kinna-Wagner selection function, i.e., there exists an infinite subfamily \mathcal{B} of \mathcal{A} and a function f such that $\operatorname{dom}(f)=\mathcal{B}$ and for all $B \in \mathcal{B}, \emptyset \neq f(B) \subsetneq B(f$ is called a Kinna-Wagner selection function for $\mathcal{B})$.
WOC_{n}^{-}: Every infinite well-orderable family of n-element sets has a partial choice function.
3. $\mathrm{AC}_{\text {fin }}$: Every family of non-empty finite sets has a choice function.
4. $\mathrm{PAC}_{\text {fin }}$: Every infinite family of non-empty finite sets has a partial choice function.
5. AC(LO, LO): Every linearly orderable family of non-empty linearly orderable sets has a choice function.
6. $\mathrm{UT}(\mathrm{WO}$, fin, WO): The union of a well-orderable family of finite sets is well-orderable.
7. $\mathrm{DF}=\mathrm{F}$: Every Dedekind-finite set is finite (where a set X is called Dedekind-finite if there is no one-to-one mapping f from ω into X; otherwise, X is called Dedekind-infinite).
8. Axiom of Multiple Choice (MC): For every family \mathcal{A} of non-empty sets there is a function f on \mathcal{A} such that for every $x \in \mathcal{A}, f(x)$ is a nonempty finite subset of x (f is called a multiple choice function for \mathcal{A}).
9. Boolean Prime Ideal Theorem (BPI): Every Boolean algebra has a prime ideal.
10. Ordering Principle (OP): Every set can be linearly ordered.
11. Chain-AntiChain Principle (CAC): Every infinite partially ordered set has either an infinite chain or an infinite anti-chain (where for a partially ordered set (P, \leq), a set $C \subseteq P$ is called a chain in P if $(C, \leq\lceil C)$ is a linearly ordered set, and a set $A \subseteq P$ is called an anti-chain in P if any two distinct elements $a, b \in A$ are incomparable, i.e., $a \not \leq b$ and $b \not \leq a)$.
12. NA: There are no amorphous sets (where an infinite set X is called amorphous if X cannot be written as a disjoint union of two infinite sets).

2 Introduction, known and preliminary results

Ramsey Choice RC_{n} was introduced by Montenegro in [7], where it was asked for which n is the implication " $\mathrm{RC}_{n} \rightarrow \mathrm{C}_{n}^{-}$" true. In [7], it was observed that RC_{n} implies C_{n}^{-}for $n=2,3$ and it was shown that RC_{4} implies C_{4}^{-}, which is a beautiful and highly non-trivial result. The status of " $R C_{n} \rightarrow C_{n}^{-}$" for $n \geq 5$ is (to the best of our knowledge) still an open and (in our opinion) a quite difficult problem. The particular question of whether RC_{5} implies C_{5}^{-}is also addressed in Halbeisen [2] (see [2, Related Result 34, p. 167]).

The research in this paper is motivated by the above open questions of Montenegro's as well as the particular question of Halbeisen's. The answers to these specific questions still elude us. However, we are able to give a partial answer with regard to the question on the relationship between RC_{5} and C_{5}^{-}. In particular, we shall prove that for $n=2,3, \mathrm{RC}_{5}+\mathrm{C}_{n}^{-}$implies C_{5}^{-}, and that RC_{5} implies neither C_{2}^{-}nor C_{3}^{-}in ZF set theory. Furthermore, we shall provide a plethora of new results which completely settle open problems on the status of " RC_{n} implies C_{m}^{-}" for certain distinct natural numbers n, m.

We believe that the results of the current paper shed new light on this area and that they also indicate possible paths towards further study on the aforementioned open problems.

Before setting out with our main results, we shall provide some known and preliminary results in the current area of research.

Theorem 1 The following hold:

1. BPI implies OP implies C_{n}, which in turn implies $\mathrm{RC}_{n}+\mathrm{C}_{n}^{-}$, for all $n \in \omega \backslash\{0,1\}$. None of the latter implications is reversible in ZF .
2. $\mathrm{DF}=\mathrm{F}$ implies $\mathrm{RC}_{n}+\mathrm{C}_{n}^{-}$for all $n \in \omega \backslash\{0,1\}$. The statement $\forall n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}+\mathrm{C}_{n}^{-}$" does not imply $\mathrm{DF}=\mathrm{F}$ in ZF. Further, for every $m \in \omega \backslash\{0,1\}$, the statement " $\forall n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}+$ C_{n}^{-}" does not imply C_{m} in ZF.
3. ([1], [6], [9]) DF $=\mathrm{F}$ implies RT , which in turn implies CAC. None of the latter implications are reversible in ZF .
4. ([1], [6]) RT implies PAC $_{\text {fin }}$, which in turn implies C_{n}^{-}for all $n \in \omega \backslash\{0,1\}$. None of the latter implications is reversible in ZF .
5. ([1]) RT is true in the Basic Fraenkel Model (Model $\mathcal{N} 1$ in [4]) and it is false in the Basic Cohen Model (Model M1 in [4]).
6. ([11]) For every $n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}$ and C_{n}^{-}are strictly weaker than C_{n} in ZF .
7. ([7]) For $n=2,3,4, \mathrm{RC}_{n}$ implies C_{n}^{-}.
8. ([12]) If for some integer $n>1,[X]^{n}$ has a choice function, then X is finite or not amorphous.
9. For all $m, n \in \omega \backslash\{0\}, \mathrm{C}_{m n}^{-}$implies both C_{m}^{-}and C_{n}^{-}.
10. For all $m, n \in \omega \backslash\{0\}$, $\mathrm{LOC}_{m n}^{-}$implies both LOC_{m}^{-}and LOC_{n}^{-}.

Proof We just show 1, 2, 9, 10.

1. The first implication is well-known (see [4]). The second and third implications are straightforward. For " $\mathrm{RC}_{n}+\mathrm{C}_{n}^{-} \nrightarrow \mathrm{C}_{n}$ in ZF ", see the proof of part 2 below. For the rest of the assertions, see [4].
2. The implication is straightforward. For the second assertion, it is known that BPI is true in the basic Cohen model (Model $\mathcal{M} 1$ in [4]), whereas $D F=F$ is false in $\mathcal{M} 1$ (see [4]). It follows, by part 1 of the current theorem, that $\mathrm{RC}_{n}+\mathrm{C}_{n}^{-}$is true in $\mathcal{M} 1$, for all $n \in \omega \backslash\{0,1\}$. For the third assertion, fix $m \in \omega \backslash\{0,1\}$ and consider, for example, the ZF model $\mathcal{M} 46(m, M)$ in [4]. Then DF $=\mathrm{F}$ is true in $\mathcal{M} 46(m, M)$, hence so is " $\forall n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}+\mathrm{C}_{n}^{-}$", whereas C_{m} is false in $\mathcal{M} 46(m, M)$ (see [4]).
3. Fix $n, m \in \omega \backslash\{0,1\}$ and assume that $\mathrm{C}_{n m}^{-}$is true. Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a family of m-element sets (respectively, of n-element sets). Then $\mathcal{B}=\left\{A_{i} \times n: i \in I\right\}$ (respectively, $\mathcal{C}=\left\{A_{i} \times m: i \in I\right\}$) is a family of $(m n)$-element sets and any partial choice function for \mathcal{B} (respectively, for \mathcal{C}) clearly yields a partial choice function for \mathcal{A}.
4. This can be proved similarly to 9 .

Remark 1 For use in the proofs of our forthcoming independence results, both in this section as well as in Section 5, we note here that for all $n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}$ and C_{n}^{-}are injectively boundable (for the definition of the latter term, see [4, Note 103] or [8]). Indeed, RC_{n} is injectively boundable since

$$
\mathrm{RC}_{n} \Longleftrightarrow(\forall x)\left(|x|_{-} \leq \omega \rightarrow \text { if } x\right. \text { is infinite, then }
$$

$$
\text { there is an infinite subset } y \text { of } x \text { such that }[y]^{n} \text { has a choice function), }
$$

where $|x|_{-}$denotes the injective cardinality of x (for the definition of injective cardinality, see [4, Note 103] or [8]), and C_{n}^{-}is injectively boundable since

$$
\mathrm{C}_{n}^{-} \Longleftrightarrow(\forall x)\left(|x|_{-} \leq \omega \rightarrow \text { every infinite family of } n \text {-element sets whose union is } x\right.
$$

> has a partial choice function).

Furthermore, we point out that $\neg \mathrm{RC}_{n}$ and $\neg \mathrm{C}_{n}^{-}$are boundable statements, thus they are injectively boundable (see [8] for the fact that "boundable" implies "injectively boundable").

The above observations together with Pincus' Transfer Theorem [8, Thm. 3A3] (which states that if Φ is a conjunction of injectively boundable statements which hold in a Fraenkel-Mostowski model V_{0}, then there is a model $V \supset V_{0}$ of ZF with the same ordinals and cofinalities as V_{0} in which Φ holds), show that all the independence results on RC_{n} and C_{n}^{-}which are obtained in this paper via Fraenkel-Mostowski models of ZFA $+\neg$ AC are transferable into ZF set theory.

Next, we provide some preliminary results on the connection between $\mathrm{RC}_{n}, \mathrm{C}_{n}^{-}, \mathrm{CAC}$ and NA .
Theorem 2 The following hold:

1. For all $n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}$ implies NA , and NA does not imply RC_{n} in ZF .
2. RT does not imply RC_{n} in ZF , for all $n \in \omega \backslash\{0,1\}$.
3. For all $n \in \omega \backslash\{0,1\}, \mathrm{C}_{n}^{-}$does not imply RC_{n} in ZF .

Proof 1. Fix $n \in \omega \backslash\{0,1\}$ and let X be an infinite set. By RC_{n}, there is an infinite subset $Y \subseteq X$ such that $[Y]^{n}$ has a choice function. Then, by Theorem 1(8), we have that Y is not amorphous, hence neither is X.

For the second assertion, fix $n \in \omega \backslash\{0,1\}$. We consider the following permutation model which is a generalization of the Second Fraenkel Model (Model $\mathcal{N} 2$ in [4]): Start with a ground model M of ZFA + AC with a set A of atoms which is a countable disjoint union $\bigcup\left\{A_{i}: i \in \omega\right\}$ of n-element sets. Let G be the group of all permutations of A which fix each A_{i}. Let Γ be the filter of subgroups of G which is generated by the subgroups fix ${ }_{G}(E)=\{\phi \in G: \forall e \in E(\phi(e)=e)\}, E \in[A]^{<\omega}$. Let \mathcal{N} be the Fraenkel-Mostowski model determined by M, G, and Γ.

As in the Second Fraenkel Model, one may show that MC is true in \mathcal{N} (see also [5, proof of Theorem 9.2(i), p. 135]), hence NA is true in \mathcal{N}. However, RC_{n} is false for the infinite set A of the atoms as can be easily checked via standard Fraenkel-Mostowski techniques.

Now NA is an injectively boundable statement (see [4, Note 103] or [8]) and $\neg \mathrm{RC}_{n}$ is boundable, hence injectively boundable, and \mathcal{N} is a permutation model which satisfies the conjunction $N A+\neg R C_{n}$ of two injectively boundable statements, thus by [8, Theorem 3A3] it follows that there is a ZF model \mathcal{M} such that $\mathcal{M}=\mathrm{NA}+\neg \mathrm{RC}_{n}$.
2. From Theorem 1(5) we have that RT is true in the Basic Fraenkel Model (Model $\mathcal{N} 1$ in [4]). On the other hand, the infinite set A of the atoms of $\mathcal{N} 1$ is amorphous (see [4], [5]), hence, by part 1 of the current theorem, we have that RC_{n} is false in $\mathcal{N} 1$ for all $n \in \omega \backslash\{0,1\}$. The independence result can be transferred to ZF via Pincus' transfer theorems, since RT is injectively boundable (see [1], [4, Note 103]) and $\neg \mathrm{RC}_{n}$ is boundable, thus injectively boundable.
3. This follows from the proof of part 2 of the current theorem, Theorem 1(4), and Pincus' Transfer Theorems.

Theorem 3 The following hold:

1. For all $n \in \omega \backslash\{0,1\}, \mathrm{CAC}$ and RC_{n} are independent of each other in ZF , and also C_{n} (and hence C_{n}^{-}) does not imply CAC in ZF.
2. CAC does not imply C_{2}^{-}in ZF .
3. RC_{2} does not imply C_{3}^{-}in ZF . Therefore neither does RC_{2} imply RC_{3} in ZF .
4. RC_{2} implies RC_{4}.

Proof 1. In the proof of [9, Theorem 2.1], a Fraenkel-Mostowski model \mathcal{N} is constructed, in which it is shown that CAC is true. Furthermore, in [9], it is shown that, in \mathcal{N}, there exist amorphous sets, and thus-by Theorem 2(1)-it follows that RC_{n} is false in \mathcal{N} for all $n \in \omega \backslash\{0,1\}$.

To see that for all $n \in \omega \backslash\{0,1\}, \mathrm{RC}_{n}$ does not imply CAC, fix $n \in \omega \backslash\{0,1\}$. We consider first the permutation model $\mathcal{N} 6$ in [4]: We start with a ground model M of ZFA + AC with a countably infinite set of atoms $A=\left\{a_{n}: n \in \omega\right\}$ such that A is a disjoint union $A=\bigcup\left\{P_{n}: n \in \omega\right\}$, where $P_{0}=\left\{a_{0}\right\}$, $P_{1}=\left\{a_{1}, a_{2}\right\}, P_{2}=\left\{a_{3}, a_{4}, a_{5}\right\}, \ldots$, and in general for $n>0,\left|P_{n}\right|=p_{n}$, where p_{n} is the nth prime. G is the group generated by $\left\{\pi_{n}: n \in \omega\right\}$, where if $P_{n}=\left\{a_{m+1}, a_{m+2}, \ldots, a_{m+p_{n}}\right\}$, then

$$
\pi_{n}: a_{m+1} \mapsto a_{m+2} \mapsto \ldots \mapsto a_{m+p_{n}} \mapsto a_{m+1} \text { and } \pi_{n}(x)=x, \text { for all } x \in A \backslash P_{n}
$$

(G is the weak direct product of \aleph_{0} cyclic groups of order p_{n}.) The ideal \mathcal{I} of supports is the set of all finite subsets of $A . \mathcal{N} 6$ is the permutation model determined by M, G and \mathcal{I}.

It is known that for all $n \in \omega \backslash\{0,1\}, C_{n}$ is true in $\mathcal{N} 6$ (see [4], [5, Theorem 7.11]). (Note also that the countably infinite family $\left\{P_{n}: n \in \omega\right\}$ has no partial choice function in $\mathcal{N} 6$.) Thus, RC_{n} and C_{n}^{-}are true in $\mathcal{N} 6$ for all $n \in \omega \backslash\{0,1\}$. We show that CAC is false in $\mathcal{N} 6$. To this end, define a binary relation \leq on A by requiring for all $x, y \in A$,

$$
x \leq y \text { if and only if } x=y, \text { or } x \in P_{n}, y \in P_{m}, \text { and } n<m .
$$

It is easy to verify that \leq is a partial order on A, which is in $\mathcal{N} 6$, since it has empty support (i.e., every permutation of A in G fixes $\leq)$. Clearly, the poset (A, \leq) has no infinite anti-chains; the subsets of the P_{n} 's are the only anti-chains of (A, \leq). Furthermore, since the countable family $\left\{P_{n}: n \in \omega\right\}$ has no partial choice function, it follows that (A, \leq) has no infinite chains, either. Thus, CAC is false in $\mathcal{N} 6$.

Since CAC, $\mathrm{RC}_{n}, \mathrm{C}_{n}^{-}$, as well as their negations, are all injectively boundable (see Remark 1 and [9]), it follows by Pincus' Theorem 3A3 in [8] that all of the above ZFA independence results can be transferred to ZF .
2. In the Fraenkel-Mostowski model \mathcal{N} of the proof of [9, Theorem 2.1], CAC is true, whereas there is a (amorphous) family of pairs of atoms without a (partial) choice function. Thus, C_{2}^{-}is false in \mathcal{N}. The result is transferable into ZF.
3. For the result, we will use the permutation model $\mathcal{N} 2^{*}(3)$ in [4]: The set A of atoms is a countable disjoint union $\bigcup\left\{T_{i}: i \in \omega\right\}$, where $T_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ for all $i \in \omega$. For each $i \in \omega$, let η_{i} be the three-cycle $\left(a_{i}, b_{i}, c_{i}\right)$. Let G be the group of permutations π of A such that for each $i \in \omega, \pi \upharpoonright T_{i}$ is either the identity, or η_{i}, or η_{i}^{2}. Let Γ be the finite support filter.

It is known that C_{2} is true in $\mathcal{N} 2^{*}(3)$ (see [4], [5, Example 7.13]), hence RC_{2} is also true in $\mathcal{N} 2^{*}(3)$. However, the family $\left\{T_{i}: i \in \omega\right\}$ has no partial choice function in $\mathcal{N} 2^{*}(3)$, hence C_{3}^{-}is false in $\mathcal{N} 2^{*}(3)$. Hence, by Theorem 1(7), it follows that RC_{3} is also false in $\mathcal{N} 2^{*}(3)$. The independence result can be transferred to ZF.
4. This can be proved as Tarski's result that C_{2} implies C_{4} (see [5, Example 7.12, p. 107]).

Remark 2 We would like to point out here that in Example 7.13 of [5] (that we referred to in the proof of Theorem 3(3)), Jech actually proves that C_{2} is true in a permutation model \mathscr{V}, whose setting is the same as the one for $\mathcal{N} 2^{*}(3)$, except for the smaller (than G) group \mathscr{G}, which is generated by the following permutations π_{i} of A :

$$
\begin{gathered}
\pi_{i}: a_{i} \mapsto b_{i} \mapsto c_{i} \mapsto a_{i}, \\
\pi_{i}(x)=x \text { for all } x \in A \backslash T_{i} .
\end{gathered}
$$

\mathscr{G} is the weak direct product of \aleph_{0} cyclic groups of order 3 , and clearly $\mathscr{G} \subset G$, where G is the (unrestricted wreath product) group (of \aleph_{0} cyclic groups of order 3) used for the construction of $\mathcal{N} 2^{*}(3)$. However, the two models, $\mathcal{N} 2^{*}(3)$ and \mathscr{V}, are equal, as we establish below. Similarly, for the proof of Theorem 3(1), one could argue in the permutation model \mathcal{M} whose setting is the same as the one for $\mathcal{N} 6$, except for the larger group G^{\prime}, which comprises all permutations π of A such that for each $n \in \omega, \pi$ is a cycle on P_{n}; again, it is true that $\mathcal{N} 6=\mathcal{M}$. We now argue that $\mathscr{V}=\mathcal{N} 2^{*}(3)$. (The proof that $\mathcal{N} 6=\mathcal{M}$ is identical.) We prove by \in-induction that for every $x \in M$ (the ground model), $\Phi(x)$ is true, where

$$
\Phi(x): x \in \mathscr{V} \Longleftrightarrow x \in \mathcal{N} 2^{*}(3) .
$$

Clearly $\Phi(x)$ is true, if $x=\emptyset$, or if $x \in A$. Assume that $y \in M$ and that for all $x \in y, \Phi(x)$ is true. We will show that $\Phi(y)$ is true. Assume that $y \in \mathscr{V}$. Then the following hold:
(1) y has a finite support $E \subset A$ relative to the group \mathscr{G} (i.e., for every $\psi \in \operatorname{fix} \mathscr{G}(E), \psi(y)=y$);
(2) for every $x \in y, x \in \mathscr{V}$ (\mathscr{V} is a transitive class);
(3) for every $x \in y, x \in \mathcal{N} 2^{*}(3)$ (by (2) and the induction hypothesis).

We assert that E is a support of y relative to the group G. It suffices to show that for all $\phi \in \operatorname{fix}_{G}(E)$ and for all $x \in y, \phi(x) \in y$ (since then $\phi(y)=y$ follows from " $\phi(y) \subseteq y$ and $\phi^{-1}(y) \subseteq y$ ").

Let $\phi \in \operatorname{fix}_{G}(E)$ and let $x \in y$. By (3), x has a finite support $E^{\prime} \subset A$ relative to G. The permutation ϕ may not be in \mathscr{G}, but we construct a permutation $\phi^{\prime} \in \operatorname{fix}_{\mathscr{G}}(E)$ which agrees with ϕ on E^{\prime} as follows: For
each $a \in E^{\prime}$, the set $\left\{\phi^{n}(a): n \in \mathbb{Z}\right\}$ is (clearly) finite. Therefore, since E^{\prime} is finite, so is $D=\bigcup_{a \in E^{\prime}}\left\{\phi^{n}(a)\right.$: $n \in \mathbb{Z}\}$. (Essentially, D is a finite union of T_{i} 's.) Furthermore, D contains E^{\prime} and is closed under ϕ. We define a mapping $\phi^{\prime}: A \rightarrow A$ by

$$
\phi^{\prime}(a)= \begin{cases}\phi(a), & \text { if } a \in D \\ a, & \text { otherwise }\end{cases}
$$

Then the following hold:
(4) $\phi^{\prime} \in \mathscr{G}$;
(5) ϕ^{\prime} fixes E pointwise (since ϕ fixes E pointwise); and
(6) ϕ^{\prime} agrees with ϕ on E^{\prime}.

By (4) and (5), $\phi^{\prime} \in \operatorname{fix}_{\mathscr{G}}(E)$ so $\phi^{\prime}(y)=y$. It follows that $\phi^{\prime}(x) \in y$. Now, (6) gives us $\phi^{\prime}(x)=\phi(x)$, and hence $\phi(x) \in y$.

Conversely, assume that $y \in \mathcal{N} 2^{*}(3)$ and that y has a support E^{\prime} relative to G. Then E^{\prime} is a support of y relative to \mathscr{G} since $\mathscr{G} \subset G$. By the induction hypothesis, every element of y is in \mathscr{V}, so we may conclude that $y \in \mathscr{V}$.

For the reader's complete information, we would also like to mention here that Howard [3] has shown that a formally stronger principle than C_{2}, namely the Principle of Consistent Choices for Pairs (see Form 141 in [4]), is true in $\mathcal{N} 2^{*}(3)$. For a quite recent study on the set-theoretic strength of the above principle (as well as of related ones) and its connection to general topology, the reader is referred to Tachtsis [10].

3 Summary of the main results

Below, we list our main results along with their exact placement in this paper.

1. For every integer $n \geq 2$, if RC_{i} is true for all integers i with $2 \leq i \leq n$, then C_{i}^{-}is true for all integers i with $2 \leq i \leq n$. (Theorem 4.)
2. Let $p_{0} \leq \ldots \leq p_{v}$ be prime numbers and let k be a positive integer. Then there exists a model $\mathcal{V}_{p_{0}, \ldots, p_{v}}$ of ZFA such that

$$
\mathcal{V}_{p_{0}, \ldots, p_{v}}=\mathrm{RC}_{k} \leftrightarrow \mathrm{C}_{k}^{-} \leftrightarrow \mathrm{LOC}_{k}^{-}
$$

and

$$
\mathcal{V}_{p_{0}, \ldots, p_{v}} \models \neg \mathrm{RC}_{k} \Longleftrightarrow k \text { is a multiple of } p_{i} \text { for some } i \leq v
$$

Furthermore, for all integers $k \geq 2$ which can be written as a sum of multiples of p_{0}, \ldots, p_{v},

$$
\mathcal{V}_{p_{0}, \ldots, p_{v}} \models \neg \mathrm{C}_{k} .
$$

The result is transferable into ZF. (Theorem 6.)
3. (i) If $m, n \geq 2$ are any integers such that for some prime p we have $p \nmid m$ and $p \mid n$, then in ZF : $\mathrm{RC}_{m} \nrightarrow \mathrm{RC}_{n}$ and $\mathrm{RC}_{m} \nrightarrow \mathrm{C}_{n}^{-}$.
(ii) There is a model \mathcal{M} of ZF such that for every positive integer $n, \mathcal{M} \vDash \mathrm{RC}_{2 n+1} \wedge \mathrm{C}_{2 n+1}^{-} \wedge$ $\neg \mathrm{RC}_{2 n} \wedge \neg \mathrm{LOC}_{2 n}^{-}$. Hence, for every odd integer $n \geq 3$ and for every even integer $m \geq 2, \mathcal{M} \models$ $\mathrm{RC}_{n} \wedge \mathrm{C}_{n}^{-} \wedge \neg \mathrm{RC}_{m} \wedge \neg \mathrm{LOC}_{m}^{-}$.
(iii) For $k=2,4$, the principles RC_{k} and RC_{3} are independent of each other in ZF .
(Corollary 1.)
4. For $n=2,3, \mathrm{RC}_{5}+\mathrm{C}_{n}^{-}$implies C_{5}^{-}, and RC_{5} implies neither C_{2}^{-}nor C_{3}^{-}in ZF . (Theorem 7.)
5. CAC does not imply C_{n}^{-}in ZF, for every $n \in \omega \backslash\{0,1\}$. (Theorem 8.)
6. For every $n \in \omega \backslash\{0,1\}, \mathrm{C}_{n}^{-}$implies LOC_{n}^{-}, which in turn implies WOC_{n}^{-}. Furthermore, for every $n \in \omega \backslash\{0,1\}$, none of the previous implications is reversible in ZF. (Theorem 9.)
7. (i) For every $n \in \omega \backslash\{0,1\}, \mathrm{RC}_{2 n}$ implies LOKW $_{n}^{-}$and the latter implication is not reversible in ZF. In particular, RC_{6} strictly implies LOC_{3}^{-}in ZF .
(ii) LOC_{4}^{-}is equivalent to $\mathrm{LOC}_{2}^{-}+\mathrm{LOKW}_{4}^{-}$. Furthermore, LOC_{2}^{-}does not imply LOKW_{4}^{-}in ZF , hence neither does it imply LOC_{4}^{-}in ZF .
(iii) $\mathrm{RC}_{6}+\mathrm{LOC}_{2}^{-}$implies LOC_{6}^{-}. Hence, $\mathrm{RC}_{6}+\mathrm{LOC}_{2 n}^{-}$implies LOC_{6}^{-}for all $n \in \omega \backslash\{0\}$.
(iv) $\mathrm{RC}_{6}+\mathrm{LOC}_{2}^{-}$implies LOC_{4}^{-}. Hence, $\mathrm{RC}_{6}+\mathrm{LOC}_{2 n}^{-}$implies LOC_{4}^{-}for all $n \in \omega \backslash\{0\}$.
(v) RC_{6} does not imply LOC_{5}^{-}in ZF , hence it does not imply $\mathrm{C}_{5 n}^{-}$in ZF , for all $n \in \omega \backslash\{0\}$.
(vi) RC_{6} implies WOC_{2}^{-}.
(Theorem 10.)

4 Classes of Fraenkel-Mostowski models for the main results

In this section, we construct certain classes of Fraenkel-Mostowski permutation models of ZFA $+\neg$ AC, suitable for our independence results. The most important class which provides us with a plethora of results on the relationship between RC_{k} and C_{l}^{-}for certain natural numbers k and l, will be the one consisting of the models $\mathcal{V}_{n, m}$, where $n, m \in \omega$. We begin this section with the construction of this class of models and then prove some facts about them that will be the main apparatus for our independence results. We shall then provide some classes of variant models and start the investigation on RC_{k} and C_{k}^{-}for various natural numbers k.

The reader should recall here Remark 1 that in order to establish our forthcoming independence results in ZF, it suffices to establish them via a suitable permutation model of ZFA $+\neg \mathrm{AC}$.

The construction of permutation models is traditionally based on certain groups of permutations of atoms and normal filters of subgroups, which is the approach taken here. Another approach, which is less common, is based on automorphism groups of certain \aleph_{0}-categorical structures (see, for example, Halbeisen [2, p. 211ff.]). Even though the latter approach makes the construction of the models slightly shorter, we prefer the more constructive flavor of the former approach.

Fix $n, m \in \omega \backslash\{0,1\}$. We start with a model M of ZFA + AC with a set of atoms

$$
A=\bigcup\left\{A_{q} \cup B_{q}: q \in \mathbb{Q}\right\}
$$

where \mathbb{Q} is the set of rational numbers, such that for all q and r in \mathbb{Q} :

1. $A_{q}=\left\{a_{q 1}, a_{q 2}, \ldots, a_{q n}\right\}$ and $B_{q}=\left\{b_{q 1}, b_{q 2}, \ldots, b_{q m}\right\}$, so that $\left|A_{q}\right|=n$ and $\left|B_{q}\right|=m$,
2. $A_{q} \cap B_{q}=\emptyset$, and if $q \neq r$, then $\left(A_{q} \cup B_{q}\right) \cap\left(A_{r} \cup B_{r}\right)=\emptyset$.

The sets A_{q} and B_{r} (where $q, r \in \mathbb{Q}$) are called blocks. By 1. and 2., we have that the blocks are pairwise disjoint finite sets.

We let G be the group of all permutations η of A such that η permutes the blocks A_{q} and B_{r} independently; preserves the linear ordering on the q 's and r 's; and is a cyclic permutation when restricted to any
A_{q} or B_{r}. We make this more explicit as follows: If ψ is an order automorphism of (\mathbb{Q}, \leq) (where \leq is the usual dense linear order on \mathbb{Q}), then we let ϕ_{ψ} and σ_{ψ} be the permutations of A defined by:

$$
\forall q \in \mathbb{Q} \forall j \in\{1, \ldots, n\}\left(\phi_{\psi}\left(a_{q j}\right)=a_{\psi(q) j}\right), \text { and } \phi_{\psi} \text { fixes } \bigcup\left\{B_{r}: r \in \mathbb{Q}\right\} \text { pointwise, }
$$

and

$$
\forall r \in \mathbb{Q} \forall k \in\{1, \ldots, m\}\left(\sigma_{\psi}\left(b_{r k}\right)=b_{\psi(r) k}\right), \text { and } \sigma_{\psi} \text { fixes } \bigcup\left\{A_{q}: q \in \mathbb{Q}\right\} \text { pointwise. }
$$

Note that if ψ_{1} and ψ_{2} are two order automorphisms of (\mathbb{Q}, \leq), then $\phi_{\psi_{1}} \phi_{\psi_{2}}=\phi_{\psi_{1} \psi_{2}}$ and $\sigma_{\psi_{1}} \sigma_{\psi_{2}}=\sigma_{\psi_{1} \psi_{2}}$. Then we require

$$
\begin{equation*}
\eta \in G, \text { if and only if, } \eta=\phi_{\psi} \sigma_{\psi^{\prime}} \rho, \tag{1}
\end{equation*}
$$

where ψ and ψ^{\prime} are order automorphisms of $(\mathbb{Q}, \leq), \phi_{\psi}$ and $\sigma_{\psi^{\prime}}$ are respectively the (above) corresponding permutations of A, and ρ is a permutation of A with the following property:

$$
\forall q \in \mathbb{Q} \exists j \in\{1,2, \ldots, n\} \exists k \in\{1,2, \ldots, m\}\left(\rho \upharpoonright A_{q}=\tau_{q}^{j} \text { and } \rho \upharpoonright B_{q}=\sigma_{q}^{k}\right),
$$

where for $q \in \mathbb{Q}, \tau_{q}$ is the n-cycle $a_{q 1} \mapsto a_{q 2} \mapsto \cdots \mapsto a_{q n} \mapsto a_{q 1}$, and σ_{q} is the m-cycle $b_{q 1} \mapsto b_{q 2} \mapsto \cdots \mapsto$ $b_{q m} \mapsto b_{q 1}$. (It is clear that ρ fixes each of $\left\{A_{q}: q \in \mathbb{Q}\right\}$ and $\left\{B_{q}: q \in \mathbb{Q}\right\}$ pointwise.)
Note: When no confusion is likely to arise, we will also denote by ' τ_{q} ' and ' σ_{q} ' the permutations of A which, respectively, extend the above cycles τ_{q} and σ_{q}, and fix $A \backslash A_{q}$ and $A \backslash B_{q}$ pointwise. Also, for a set X, we will denote by 1_{X} the identity mapping on X.

Let \mathcal{F} be the filter of subgroups of G which is generated by the subgroups fix ${ }_{G}(E)$, where $E=\bigcup\left\{A_{q}\right.$: $q \in S\} \cup \bigcup\left\{B_{r}: r \in T\right\}$ for finite $S, T \subseteq \mathbb{Q}$. (Note that E can be written as $\bigcup\left\{F_{q}: q \in K\right\}$, where $K \in[\mathbb{Q}]^{<\omega}$ and $F_{q} \in\left\{A_{q}, B_{q}, A_{q} \cup B_{q}\right\}$ for every $q \in K$.) Let $\mathcal{V}_{n, m}$ be the Fraenkel-Mostowski model which is determined by M, G and \mathcal{F}. If $x \in \mathcal{V}_{n, m}$, then there is a set $E=\bigcup\left\{A_{q}: q \in S\right\} \cup \bigcup\left\{B_{r}: r \in T\right\}$ (where $S, T \in[\mathbb{Q}]^{<\omega}$) such that for all ϕ in $\operatorname{fix}_{G}(E), \phi(x)=x$, that is, $\phi \in \operatorname{Sym}_{G}(x)=\{\eta \in G: \eta(x)=x\}$. Such a (finite) set $E \subset A$ is called a support of x.

Below, we list some key facts about the model $\mathcal{V}_{n, m}$.
Fact 1 Each of $\mathcal{A}=\left\{A_{q}: q \in \mathbb{Q}\right\}$ and $\mathcal{B}=\left\{B_{q}: q \in \mathbb{Q}\right\}$ is a linearly orderable set in $\mathcal{V}_{n, m}$.
Proof Note that $\mathcal{A}, \mathcal{B} \in \mathcal{V}_{n, m}$ since both of these sets have empty support (i.e. every permutation of A in G fixes them (setwise)). Furthermore, since every permutation of A in G permutes the blocks (i.e. the elements of \mathcal{A} and \mathcal{B}) preserving the ordering on \mathbb{Q}, it follows that the induced (by \mathbb{Q}) linear orders on \mathcal{A} and \mathcal{B} (i.e. $A_{q} \preceq_{\mathcal{A}} A_{q^{\prime}} \Leftrightarrow q \leq q^{\prime}$ and similarly for \mathcal{B}) are in the model (for they have empty support).
Note: We point out that $\mathcal{C}=\left\{A_{q} \cup B_{q}: q \in \mathbb{Q}\right\} \notin \mathcal{V}_{n, m}$ (which is naturally expected since the blocks A_{q} and B_{r} are permuted independently). If not, then let $E=\bigcup\left\{A_{q}: q \in S\right\} \cup \bigcup\left\{B_{r}: r \in T\right\}$ (where $\left.S, T \in[\mathbb{Q}]^{<\omega}\right)$ be a support of \mathcal{C}. Let $q, q^{\prime} \in \mathbb{Q}$ be such that $\max (S \cup T)<q<q^{\prime}$, and also let ψ be an order automorphism of (\mathbb{Q}, \leq) such that $\psi(r)=r$ for all $r \in S \cup T$, and $\psi(q)=q^{\prime}$. Then $\phi_{\psi} \in$ fix $_{G}(E)$, so $\phi_{\psi}(\mathcal{C})=\mathcal{C}$. However, $A_{q} \cup B_{q} \in \mathcal{C}$, whereas $\phi_{\psi}\left(A_{q} \cup B_{q}\right)=A_{q^{\prime}} \cup B_{q} \notin \mathcal{C}=\phi_{\psi}(\mathcal{C})$, a contradiction.

Fact 2 (i) Neither $\mathcal{A}=\left\{A_{q}: q \in \mathbb{Q}\right\}$ nor $\mathcal{B}=\left\{B_{q}: q \in \mathbb{Q}\right\}$ has a partial Kinna-Wagner selection function in $\mathcal{V}_{n, m}$. In particular, if an integer $k \geq 2$ is a multiple of n or m, then LOC_{k}^{-}is false in $\mathcal{V}_{n, m}$. Hence, if $k \geq 2$ is a sum of multiples of n and m, then C_{k} is false in $\mathcal{V}_{n, m}$.
(ii) If D is an infinite subset of A in $\mathcal{V}_{n, m}$, then there exists an infinite subset $I \subseteq \mathbb{Q}$ such that, in $\mathcal{V}_{n, m}, \bigcup\left\{A_{q}: q \in I\right\} \subseteq D$ or $\bigcup\left\{B_{q}: q \in I\right\} \subseteq D$.

Proof (i) By way of contradiction, assume that there exists an infinite subfamily \mathcal{W} (respectively, \mathcal{V}) of \mathcal{A} (respectively, of \mathcal{B}) with a Kinna-Wagner function in $\mathcal{V}_{n, m}, f$ say. Let $E=\bigcup\left\{A_{q}: q \in S\right\} \cup \bigcup\left\{B_{r}\right.$: $r \in T\}$ (where $S, T \in[\mathbb{Q}]^{<\omega}$) be a support of \mathcal{W} (respectively, of \mathcal{V}) and f. Since $S \cup T$ is finite and \mathcal{W} (respectively, \mathcal{V}) is infinite, there exists $q^{*} \in \mathbb{Q}$ such that $A_{q^{*}} \in \mathcal{W}$ (respectively, $B_{q^{*}} \in \mathcal{V}$) and $q^{*} \notin S \cup T$. Then $\tau_{q^{*}} \in \operatorname{fix}_{G}(E)$ (respectively, $\sigma_{q^{*}} \in \operatorname{fix}_{G}(E)$), and hence $\tau_{q^{*}}(f)=f$ (respectively, $\sigma_{q^{*}}(f)=f$). However, $\tau_{q^{*}}\left(A_{q^{*}}\right)=A_{q^{*}}$ (respectively, $\sigma_{q^{*}}\left(B_{q^{*}}\right)=B_{q^{*}}$), whereas $\tau_{q^{*}}\left(f\left(A_{q^{*}}\right)\right) \neq f\left(A_{q^{*}}\right)$ (respectively, $\left.\sigma_{q^{*}}\left(f\left(B_{q^{*}}\right)\right) \neq f\left(B_{q^{*}}\right)\right)$, which means that f is not supported by E. This is a contradiction.

The second assertion follows immediately from the first one and Theorem 1(10).
For the third assertion, fix an integer $k \geq 2$ such that $k=l_{1} n+l_{2} m$. Then

$$
\mathcal{R}:=\left\{\left(A_{q} \times l_{1}\right) \cup\left(B_{r} \times l_{2}\right): q, r \in \mathbb{Q}\right\}
$$

is an element of $\mathcal{V}_{n, m}$ (since it has empty support), consists of k-element sets, and from the first assertion of the current fact, we may conclude that \mathcal{R} has no choice function in $\mathcal{V}_{n, m}$.
(ii) This follows immediately from part (i).

Note: The family $\mathcal{U}=\left\{A_{q} \cup B_{r}: q, r \in \mathbb{Q}\right\}$, which is in $\mathcal{V}_{n, m}$ (having \emptyset as its support) and consists of $(n+m)$-element sets, does have a partial choice function in $\mathcal{V}_{n, m}$. (If $\mathcal{W}=\left\{A_{q} \cup B_{0}: q \in \mathbb{Q}\right\}$, then $\mathcal{W} \in \mathcal{V}_{n, m}$ since it has B_{0} as its support, and $\mathcal{W} \subseteq \mathcal{U}$. Clearly, $f=\left\{\left(A_{q} \cup B_{0}, b_{01}\right): q \in \mathbb{Q}\right\}$ is a choice function for \mathcal{W} which is in $\mathcal{V}_{n, m}$, since it is supported by B_{0}.)

Fact 3 If $x \in \mathcal{V}_{n, m}$ and E_{1}, E_{2} are two supports of x, then $E_{1} \cap E_{2}$ is a support of x. Hence, every $x \in \mathcal{N}_{n, m}$ has a minimum support E_{x} and for all $\eta, \eta^{\prime} \in G$, if $\eta\left(E_{x}\right) \neq \eta^{\prime}\left(E_{x}\right)$, then $\eta(x) \neq \eta^{\prime}(x)$.

Proof We may write E_{1} and E_{2} as $\bigcup\left\{F_{q}: q \in S_{1}\right\}$ and $\bigcup\left\{G_{q}: q \in S_{2}\right\}$, respectively, where $S_{1}, S_{2} \in[\mathbb{Q}]^{<\omega}$ and $F_{q}, G_{q} \in\left\{A_{q}, B_{q}, A_{q} \cup B_{q}\right\}$ for every $q \in S_{1} \cup S_{2}$. We will show that fix ${ }_{G}\left(E_{1} \cap E_{2}\right) \subseteq \operatorname{Sym}_{G}(x)$, where $E_{1} \cap E_{2}=\bigcup\left\{F_{q} \cap G_{q}: q \in S_{1} \cap S_{2}\right\}$. To this end, let $\eta \in \operatorname{fix}_{G}\left(E_{1} \cap E_{2}\right)$. By the definition of G, we have $\eta=\phi_{\psi} \sigma_{\psi^{\prime}} \rho$ (see equation (1)). Note that both ψ and ψ^{\prime} must fix $S_{1} \cap S_{2}$ pointwise and ρ must fix $E_{1} \cap E_{2}$ pointwise. Let ρ_{1} and ρ_{2} be the elements of G defined by

$$
\rho_{1}(c)=\left\{\begin{array}{ll}
\rho(c) & \text { if } c \in E_{1} \backslash E_{2} \\
c & \text { otherwise }
\end{array}, \quad \rho_{2}(c)=\left\{\begin{array}{ll}
c & \text { if } c \in E_{1} \backslash E_{2} \\
\rho(c) & \text { otherwise }
\end{array} .\right.\right.
$$

Then $\rho=\rho_{1} \rho_{2}, \rho_{1} \in \operatorname{fix}_{G}\left(E_{2}\right)$ and $\rho_{2} \in \operatorname{fix}_{G}\left(E_{1}\right)$. Therefore, $\rho(x)=\rho_{1} \rho_{2}(x)=x$. Now, using the same arguments as in the ordered Mostowski model (see for example [5, Proof of Lemma 4.5(a), p. 50]), ψ and ψ^{\prime} can be respectively written as $\psi_{1} \psi_{2} \cdots \psi_{m}$ and $\psi_{1}^{\prime} \psi_{2}^{\prime} \cdots \psi_{k}^{\prime}$, where for $1 \leq i \leq m$ and $1 \leq j \leq k$, each of ψ_{i} and ψ_{j}^{\prime} is an order automorphism of (\mathbb{Q}, \leq), which either fixes S_{1} pointwise, or fixes S_{2} pointwise. It follows that $\phi_{\psi_{i}}, \sigma_{\psi_{j}^{\prime}} \in \operatorname{fix}_{G}\left(E_{1}\right) \cup \operatorname{fix}_{G}\left(E_{2}\right)$ for all i and j with $1 \leq i \leq m$ and $1 \leq j \leq k$. Thus $\phi_{\psi}(x)=\phi_{\psi_{1} \psi_{2} \cdots \psi_{m}}(x)=\phi_{\psi_{1}} \phi_{\psi_{2}} \cdots \phi_{\psi_{m}}(x)=x$, and similarly $\sigma_{\psi^{\prime}}(x)=x$. From these two equations and the fact that $\rho(x)=x$, it follows that $\eta(x)=\phi_{\psi} \sigma_{\psi^{\prime}} \rho(x)=x$, and so $\eta \in \operatorname{Sym}_{G}(x)$.

The second assertion of Fact 3 follows immediately from the first one.

Fact 4 Let $x \in \mathcal{V}_{n, m}$ be a non-well-orderable set. Then x has an infinite subset $y \in \mathcal{V}_{n, m}$ which has a linearly orderable partition into r-element sets, where r is a divisor of n or a divisor of m.

Proof Assume the hypotheses on x. Let E be a support of x. Then we may write E as $\bigcup\left\{H_{q}: q \in K\right\}$ where $K=\left\{q_{1}, q_{2}, \ldots, q_{\ell}\right\} \in[\mathbb{Q}]^{<\omega} \backslash\{\emptyset\}, q_{1}<q_{2}<\ldots<q_{\ell}$, and $H_{q} \in\left\{A_{q}, B_{q}, A_{q} \cup B_{q}\right\}$ for every $q \in K$. Without loss of generality we may assume that for every $q \in K$, we have $H_{q}=A_{q} \cup B_{q}$. Since x is not well-orderable, there exists $z \in x$ which is not supported by E. Let $E_{z}=\bigcup\left\{F_{q}: q \in K^{\prime}\right\}$, where $K^{\prime} \in[\mathbb{Q}]^{<\omega}$, be a support of z. It follows that $E_{z} \backslash E \neq \emptyset$ and without loss of generality, we may assume
that $E \subsetneq E_{z}$. Let such K^{\prime} be of minimal size, and pick $r_{0} \in K^{\prime} \backslash K$. By replacing if necessary E by $\left\{A_{r} \cup B_{r}: r \in K^{\prime} \backslash\left\{r_{0}\right\}\right\}$ (which contains the original E, and is hence a support of x), we may assume that $K^{\prime} \backslash K=\left\{r_{0}\right\}$. We also assume that if $F_{r_{0}}=A_{r_{0}} \cup B_{r_{0}}$ then $E \cup A_{r_{0}}$ and $E \cup B_{r_{0}}$ are not supports of z. Now there are $\ell+1$ intervals determined by $q_{1}, q_{2}, \ldots, q_{\ell}$ in which r_{0} may lie, all of which are treated similarly. Assume for instance that $q_{\ell}<r_{0}$.

There are three possibilities for the set $F_{r_{0}}$: (a) $F_{r_{0}}=A_{r_{0}}$; (b) $F_{r_{0}}=B_{r_{0}}$; (c) $F_{r_{0}}=A_{r_{0}} \cup B_{r_{0}}$.
Case a. $F_{r_{0}}=A_{r_{0}}$. We define

$$
f=\left\{\left(\phi(z), \phi\left(A_{r_{0}}\right)\right): \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\} .
$$

Then $f \in \mathcal{V}_{n, m}$, since $E_{z} \backslash A_{r_{0}}$ is a support of f. Furthermore, f is a function with $\operatorname{dom}(f) \subseteq x$ and $\operatorname{ran}(f)=\left\{A_{q}: q>q_{\ell}\right\}$. We have $\operatorname{dom}(f) \subseteq x$ since $E \subseteq E_{z} \backslash A_{r_{0}}, z \in x$ and E is a support of x, and $\operatorname{ran}(f)=\left\{\phi\left(A_{r_{0}}\right): \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}=\left\{A_{q}: q>q_{\ell}\right\}$, since $q_{\ell}<r_{0}$ and every element of fix ${ }_{G}\left(E_{z} \backslash A_{r_{0}}\right)$ fixes $A_{q_{\ell}}$ and permutes the blocks A_{q} preserving the ordering on q 's. We argue by contradiction that f is a function, so there exist $\phi, \eta \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$ such that $\phi(z)=\eta(z)$, but $\phi\left(A_{r_{0}}\right) \neq \eta\left(A_{r_{0}}\right)$. Then $\eta^{-1} \phi(z)=z$ and $\eta^{-1} \phi\left(A_{r_{0}}\right)=A_{q}$ for some $q \in \mathbb{Q} \backslash K^{\prime}$. Since E_{z} supports $z, \eta^{-1} \phi\left(E_{z}\right)$ supports $\eta^{-1} \phi(z)=z$. Thus, by Fact $3, \eta^{-1} \phi\left(E_{z}\right) \cap E_{z}=E_{z} \backslash A_{r_{0}}$ also supports z, contradicting the minimality of K^{\prime}. Thus $\phi\left(A_{r_{0}}\right)=\eta\left(A_{r_{0}}\right)$, so f is a function.

Let $y=\operatorname{dom}(f)$ and $\mathcal{Y}=\left\{f^{-1}\left(\left\{A_{q}\right\}\right): q>q_{\ell}\right\}\left(=\left\{f^{-1}\left(\left\{\phi\left(A_{r_{0}}\right)\right\}\right): \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}\right)$. Clearly \mathcal{Y} is a partition of the infinite set y, which is linearly orderable in $\mathcal{V}_{n, m}$, since it is indexed by the linearly orderable set $\left\{A_{q}: q>q_{\ell}\right\}$ (see Fact 1). Furthermore, for any $\phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right), f^{-1}\left(\left\{\phi\left(A_{r_{0}}\right)\right\}\right) \subseteq\left\{\phi \tau_{r_{0}}^{k}(z): k<n\right\}$, and hence $\left|f^{-1}\left(\left\{\phi\left(A_{r_{0}}\right)\right\}\right)\right| \leq n$. Indeed, if $\pi(z) \in f^{-1}\left(\left\{\phi\left(A_{r_{0}}\right)\right\}\right)$, then $\phi^{-1} \pi\left(A_{r_{0}}\right)=A_{r_{0}}$, so there exists $k<n$ such that $\phi^{-1} \pi$ and $\tau_{r_{0}}^{\bar{k}}$ agree on $A_{r_{0}}$. Thus $\left(\phi^{-1} \pi\right)^{-1} \tau_{r_{0}}^{k} \in \operatorname{fix}_{G}\left(E_{z}\right)$, so $\phi^{-1} \pi(z)=\tau_{r_{0}}^{k}(z)$, and hence $\pi(z)=\phi \tau_{r_{0}}^{k}(z)$. Therefore,

$$
\mathcal{Y}=\left\{U_{\phi}: \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}
$$

where for $\phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$,

$$
U_{\phi}=\left\{\eta z: \eta \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right), \phi^{-1} \eta\left(A_{r_{0}}\right)=A_{r_{0}}\right\} \subseteq\left\{\phi \tau_{r_{0}}^{k}(z): k<n\right\} .
$$

Now fix an arbitrary ϕ in fix ${ }_{G}\left(E_{z} \backslash A_{r_{0}}\right)$ and let $L=\left\{\phi^{-1} \eta: \eta \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right), \phi^{-1} \eta\left(A_{r_{0}}\right)=A_{r_{0}}\right\}$. We assert that L is a subgroup of G. To see this, note firstly that $1_{A} \in L$, so $L \neq \emptyset$. Now let $\phi^{-1} \eta_{1}, \phi^{-1} \eta_{2} \in L$. Then $\eta_{1} \phi^{-1} \eta_{2} \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$ and $\left[\phi^{-1}\left(\eta_{1} \phi^{-1} \eta_{2}\right)\right]\left(A_{r_{0}}\right)=\phi^{-1} \eta_{1}\left(\phi^{-1} \eta_{2}\left(A_{r_{0}}\right)\right)=\phi^{-1} \eta_{1}\left(A_{r_{0}}\right)=A_{r_{0}}$, so $\phi^{-1} \eta_{1} \phi^{-1} \eta_{2} \in L$. Also, if $\phi^{-1} \eta \in L$, then $\phi\left(\phi^{-1} \eta\right)^{-1} \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$ and $\left(\phi^{-1} \eta\right)^{-1}$ fixes $A_{r_{0}}$ (setwise), so $\phi^{-1}\left(\phi\left(\phi^{-1} \eta\right)^{-1}\right) \in L$, and thus L is closed under inverses. Now L induces an action on $A_{r_{0}}$ which is a subgroup, H say, of the cyclic group $S=\left\{\tau_{r_{0}}^{k}: k<n\right\}$ (which is isomorphic to \mathbb{Z}_{n}). Clearly $H=\{\pi \in S: \pi(z)=z\}$ (see also the above argument that $U_{\phi} \subseteq\left\{\phi \tau_{r_{0}}^{k}(z): k<n\right\}$), and it is also easy to see that $\left|U_{\phi}\right|=(S: H)$ (the index of H in S), so $\left|U_{\phi}\right|$ divides n. Since ϕ was arbitrary, we conclude that all elements of \mathcal{Y} have the same cardinality, which is a divisor of n.
Case b. $F_{r_{0}}=B_{r_{0}}$. This can be treated in much the same way as Case a (except that n is replaced by m and $\tau_{r_{0}}$ by $\sigma_{r_{0}}$).

Case c. $F_{r_{0}}=A_{r_{0}} \cup B_{r_{0}}$. Let f be given as in Case a, $f=\left\{\left(\phi(z), \phi\left(A_{r_{0}}\right)\right): \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}$. This is a function as before, this time using the assumption that $E_{z} \cup B_{r_{0}}$ is not a support of z. The remainder of the argument is as in Case a.

Variants of the models $\mathcal{V}_{n, m}$

The models $\mathcal{V}_{n, m}$ can be generalized and modified as follows:
(V1) Instead of working with just two types of blocks A_{q} and B_{r} (where $q, r \in \mathbb{Q}$) of size n and m respectively, we can work with arbitrarily many types of blocks. Indeed, for a positive integer k and positive integers m_{0}, \ldots, m_{k-1} we may define the model $\mathcal{V}_{m_{0}, \ldots, m_{k-1}}$ whose set of atoms A is partitioned into blocks $A_{q, 0}, \ldots, A_{q,(k-1)}$, where $q \in \mathbb{Q}$ and for each $l<k,\left|A_{q, l}\right|=m_{l}$.
The group G of permutations of A and the filter \mathcal{F} of subgroups of G are defined analogously.
In fact, we may also have infinitely many blocks by setting $k=\omega$; the corresponding model is denoted by $\mathcal{V}_{m \ldots}$.
We note that the corresponding Facts 1-4 also hold for the models $\mathcal{V}_{m_{0}, \ldots, m_{k-1}}$ and $\mathcal{V}_{m \ldots}$.
(V2) A variant model of $\mathcal{V}_{n, m}$ can be produced if we require that the blocks A_{q} and B_{r} are not permuted independently and that every order automorphism of (\mathbb{Q}, \leq) moves for each $q \in \mathbb{Q}$ the blocks A_{q} and B_{q} simultaneously to the respective blocks A_{r} and B_{r} for some $r \in \mathbb{Q}$. That is, we start again with a model M of ZFA + AC with a set of atoms $A=\bigcup\left\{A_{q} \cup B_{q}: q \in \mathbb{Q}\right\}$ where for every $q \in \mathbb{Q}, A_{q}=\left\{a_{q 1}, a_{q 2}, \ldots, a_{q n}\right\}$ and $B_{q}=\left\{b_{q 1}, b_{q 2}, \ldots, b_{q m}\right\}$ (so that $\left|A_{q}\right|=n$ and $\left|B_{q}\right|=m$) and $\left\{A_{q}: q \in \mathbb{Q}\right\} \cup\left\{B_{q}: q \in \mathbb{Q}\right\}$ is disjoint. The group G of permutations of A consists of all permutations η of A such that $\eta=\phi_{\psi} \rho$, where ψ is an order automorphism of $(\mathbb{Q}, \leq), \phi_{\psi}\left(a_{q j}\right)=a_{\psi(q) j}$ and $\phi_{\psi}\left(b_{q k}\right)=b_{\psi(q) k}(q \in \mathbb{Q}, 1 \leq j \leq n, 1 \leq k \leq m)$, and ρ is a cyclic permutation when restricted to any A_{q} or B_{r}. The filter \mathcal{F} of subgroups of G is generated by the subgroups fix ${ }_{G}(E)$, where $E=\bigcup\left\{A_{q} \cup B_{q}: q \in S\right\}$ for finite $S \subseteq \mathbb{Q}$.
We denote by $\mathcal{N}_{n, m}$ the permutation model which is determined by M, G and \mathcal{F}.
Facts 1, 2, 3 hold for $\mathcal{N}_{n, m}$, and a similar Fact 4 also holds true, namely if $x \in \mathcal{N}_{n, m}$ is a non-wellorderable set, then x has an infinite subset $y \in \mathcal{N}_{n, m}$ which has a linearly orderable partition into sets of the same cardinality $r \leq n \cdot m$ (the proof is much that same as the proof of Fact 4).
Furthermore, note that in contrast with $\mathcal{V}_{n, m}$, the family $\mathcal{C}=\left\{A_{q} \cup B_{q}: q \in \mathbb{Q}\right\}$ is an element of the model $\mathcal{N}_{n, m}$ and it is linearly orderable in $\mathcal{N}_{n, m}$. In addition, LOC $_{n+m}^{-}$(and hence C_{n+m}^{-}) is false in $\mathcal{N}_{n, m}$ for \mathcal{C}.
As with $\mathcal{V}_{n, m}$, the models $\mathcal{N}_{n, m}$ can be generalized and modified to models $\mathcal{N}_{m_{0}, \ldots, m_{k-1}}$ and $\mathcal{N}_{m \ldots}$. We also note here that if $n \cdot m=0$, then $\mathcal{V}_{i}=\mathcal{N}_{i}$ where $i=\max \{n, m\}$.

5 Main results

We start this section by proving that given any integer $n \geq 2$, if RC_{i} is true for all integers i with $2 \leq i \leq n$, then so is C_{i}^{-}for all i with $2 \leq i \leq n$.

Theorem 4 For every integer $n \geq 2$, if RC_{i} is true for all integers i with $2 \leq i \leq n$, then C_{i}^{-}is true for all integers i with $2 \leq i \leq n$.

Proof Let $2 \leq i \leq n$ and let $\mathcal{A}=\left\{A_{j}: j \in J\right\}$ be an infinite family of i-element sets. Let k be chosen minimal between 1 and i such that for some infinite $Y \subseteq A=\bigcup \mathcal{A},\left\{j \in J:\left|Y \cap A_{j}\right|=k\right\}$ is infinite (this holds for i, so such k certainly exists). If $k=1$, we already have a partial choice function for \mathcal{A}. Otherwise, we apply RC_{k} to $\bigcup\left\{Y \cap A_{j}:\left|Y \cap A_{j}\right|=k\right\}$ to find an infinite $Z \subseteq Y$ so that $[Z]^{k}$ has a choice function f. There is l such that $1 \leq l \leq k$ and $J_{1}=\left\{j \in J:\left|Z \cap A_{j}\right|=l\right\}$ is infinite. By minimality of $k, k=l$. Thus f restricts to a choice function for $\left\{Z \cap A_{j}: j \in J_{1}\right\}$ and this provides a partial choice function for \mathcal{A}.

Our next result provides an infinite set of pairs (m, n) of distinct positive integers m and n such that RC_{m} and C_{m}^{-}do not imply RC_{n} and LOC_{n}^{-}in ZF .

Theorem 5 Let p be a prime number. Then for every $m \in \omega \backslash\{0,1\}$ which is not a multiple of p, and for every $r \in \omega \backslash\{0\}$,

$$
\mathcal{V}_{p} \models \mathrm{RC}_{m} \wedge \mathrm{C}_{m}^{-} \wedge \neg \mathrm{RC}_{p r} \wedge \neg \mathrm{LOC}_{p r}^{-}
$$

The result is transferable into ZF.
Proof From Fact 2(i) (of Section 4) we know that LOC_{k}^{-}is false in \mathcal{V}_{p} for every integer k which is a multiple of p. Furthermore, using Fact 2(ii) and a similar argument to the one given for Fact 2(i), we may easily conclude that for all r in $\omega \backslash\{0\}, \mathrm{RC}_{p r}$ is false in \mathcal{V}_{p} for the set of atoms $A=\bigcup\left\{A_{q}: q \in \mathbb{Q}\right\}$. Fix $r \in \omega \backslash\{0\}$ and assume, towards a contradiction, that A has an infinite subset $y \in \mathcal{V}_{p}$ such that $[y]^{p r}$ has a choice function, say f with support $E=\bigcup\left\{A_{q}: q \in S\right\}$, where $S \in[\mathbb{Q}]^{<\omega}$. By Fact 2(ii), $y=\bigcup\left\{A_{q}: q \in I\right\}$ for some infinite subset I of \mathbb{Q} such that $\left\{A_{q}: q \in I\right\} \in \mathcal{V}_{p}$. Then there is an r-element subset W of I such that the $(p r)$-element set $F=\bigcup\left\{A_{q}: q \in W\right\}$ is disjoint from E. Assuming that $f(F) \in A_{w}$ for some $w \in W$, we have $\tau_{w} \in \operatorname{fix}_{G}(E)$, but $\tau_{w}(f) \neq f$, which is a contradiction.

We proceed now with the proofs of the rest of the assertions of the theorem.
Claim $1 \mathrm{RC}_{m}$ is true in \mathcal{V}_{p} for every integer m which is not a multiple of p.
Proof Let x be an infinite set in \mathcal{V}_{p}. If x is well-orderable, then RC_{m} is vacously true for x. So we assume that x is non-well-orderable. Let $E=\bigcup\left\{A_{q}: q \in K\right\}, z, E_{z}=\bigcup\left\{A_{q}: q \in K^{\prime}\right\}$, and $r_{0} \in K^{\prime} \backslash K$, be as in the argument for Case a of the proof of Fact 4 of Section 4. Thus $K^{\prime}=K \cup\left\{r_{0}\right\}$, and as there we assume that $q_{\ell}<r_{0}$, and we get the function f, and its domain $y=\left\{\phi(z): \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}$. By that proof, we know that \mathcal{Y}, which may be written as $\left\{U_{\phi}: \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}$ where $U_{\phi} \subseteq\left\{\phi(z), \phi \tau_{r_{0}}(z), \ldots, \phi \tau_{r_{0}}^{p-1}(z)\right\}$, is a partition of y into r-element sets for some r dividing p, which is equipped with a linear order induced from that on $\left\{A_{q}: q>q_{\ell}\right\}$ (also see Fact 1); we denote this linear order on \mathcal{Y} by \preceq. We will show that $[y]^{m}$ has a choice function in \mathcal{V}_{p}. If $r=1$, then y is linearly orderable, so this is immediate. Otherwise, as p is prime, $r=p$. Thus $U_{\phi}=\left\{\phi(z), \phi \tau_{r_{0}}(z), \ldots, \phi \tau_{r_{0}}^{p-1}(z)\right\}$ for all $\phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$.

Since $E_{z} \backslash A_{r_{0}}$ is a support of (\mathcal{Y}, \preceq) and of y, it is also a support of $[y]^{m}$. Thus $[y]^{m}$ can be written as a disjoint union of the $\operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$-orbits of its elements, i.e., $[y]^{m}=\bigcup\left\{\operatorname{Orb}_{E_{z} \backslash A_{r_{0}}}(w): w \in[y]^{m}\right\}$, where $\operatorname{Orb}_{E_{z} \backslash A_{r_{0}}}(w)=\left\{\phi(w): \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}$. (Note that $\left\{\operatorname{Orb}_{E_{z} \backslash A_{r_{0}}}(w): w \in[y]^{m}\right\}$ is well-orderable in \mathcal{V}_{p} since $E_{z} \backslash A_{r_{0}}$ is a support of $\operatorname{Orb}_{E_{z} \backslash A_{r_{0}}}(w)$ for all $w \in[y]^{m}$.)

In the ground model M which satisfies AC, we let F be a choice function for the family

$$
\mathcal{O}=\left\{\operatorname{Orb}_{E_{z} \backslash A_{r_{0}}}(w): w \in[y]^{m}\right\} .
$$

Let $Y \in \mathcal{O}$ and also let $V_{F(Y)}=\min \{R \in \mathcal{Y}: 1 \leq|R \cap F(Y)|<p\}$. Note that $V_{F(Y)}$ is definable since $F(Y) \in[y]^{m}$ (so $F(Y)$ is finite), (\mathcal{Y}, \preceq) is linearly ordered, and m is not a multiple of p. Invoking AC again in M, for each $Y \in \mathcal{O}$ pick $a_{F(Y)} \in V_{F(Y)} \cap F(Y)$. Let

$$
H=\left\{\left(\phi(F(Y)), \phi\left(a_{F(Y)}\right)\right): Y \in \mathcal{O}, \phi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)\right\}
$$

It is clear that H is a binary relation with domain $\bigcup \mathcal{O}=[y]^{m}$. Furthermore, H is a function. To see this, let $Y \in \mathcal{O}$ and also let $\phi, \psi \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right)$ such that $\phi(F(Y))=\psi(F(Y))\left(\right.$ so $\phi^{-1} \psi(F(Y))=F(Y)$). Since for every $\eta \in \operatorname{fix}_{G}\left(E_{z} \backslash A_{r_{0}}\right), U_{\eta}=\left\{\eta \tau_{r_{0}}^{\}}(z): j<p\right\}$, and p is prime, and $\left|V_{F(Y)} \cap F(Y)\right|<p$, it is easy to see that $\phi^{-1} \psi \upharpoonright V_{F(Y)}$ is necessarily the identity mapping, and thus $\phi^{-1} \psi$ fixes $V_{F(Y)} \cap F(Y)$ pointwise. Since $a_{F(Y)} \in V_{F(Y)} \cap F(Y), \phi^{-1} \psi\left(a_{F(Y)}\right)=a_{F(Y)}$, and thus $\phi\left(a_{F(Y)}\right)=\psi\left(a_{F(Y)}\right)$.

Finally, H is a choice function of $[y]^{m}$, which is in \mathcal{V}_{p} since it is supported by $E_{z} \backslash A_{r_{0}}$. Thus RC_{m} is true in \mathcal{V}_{p}.

Claim $2 \mathrm{C}_{m}^{-}$is true in \mathcal{V}_{p} for every integer m which is not a multiple of p.

Proof Assume the result for smaller m. Let $\mathcal{Z}=\left\{Z_{i}: i \in I\right\}$ be a disjoint infinite family of m-element sets in \mathcal{V}_{p}, and $Z=\bigcup \mathcal{Z}$. By RC_{m} in \mathcal{V}_{p}, there is an infinite $y \subseteq Z$ such that $[y]^{m}$ has a choice function f. Then for some t with $1 \leq t \leq m, S_{t}=\left\{i \in I:\left|Z_{i} \cap y\right|=t\right\}$ is infinite. If $t=m, f$ provides a choice function for $\left\{Z_{i}: i \in S_{t}\right\}$. Otherwise, $1 \leq t<m$ and so either t or $m-t$ is not a multiple of p. If t is not a multiple of p, then as we assumed the result for values less than $m,\left\{Z_{i} \cap y: i \in S_{t}\right\}$, and hence also \mathcal{Z}, has a partial choice function. Otherwise, we apply the same argument to $\left\{Z_{i} \backslash y: i \in S_{t}\right\}$.

The above arguments complete the proof of the theorem.
With essentially the same arguments as in the proof of Theorem 5 above (and using Facts 2(i) and 4 of Section 4), one can prove a much more general and stronger result than Theorem 5. Indeed, we have the following theorem.

Theorem 6 Let $p_{0} \leq \ldots \leq p_{v}$ be prime numbers and let k be a positive integer. Then

$$
\mathcal{V}_{p_{0}, \ldots, p_{v}} \models \mathrm{RC}_{k} \leftrightarrow \mathrm{C}_{k}^{-} \leftrightarrow \mathrm{LOC}_{k}^{-}
$$

and

$$
\mathcal{V}_{p_{0}, \ldots, p_{v}} \models \neg \mathrm{RC}_{k} \Longleftrightarrow k \text { is a multiple of } p_{i} \text { for some } i \leq v
$$

Furthermore, for all integers $k \geq 2$ which can be written as a sum of multiples of p_{0}, \ldots, p_{v},

$$
\mathcal{V}_{p_{0}, \ldots, p_{v}}=\neg \mathrm{C}_{k} .
$$

The result is transferable into ZF.
Part (iii) of the subsequent corollary to Theorems 3 and 6 completely settles the open problem on the relationship between RC_{k} and RC_{3}, where $k \in\{2,4\}$.

Corollary 1 The following hold:
(i) If $m, n \geq 2$ are any positive integers such that for some prime p we have $p \nmid m$ and $p \mid n$, then in ZF: $\mathrm{RC}_{m} \rightarrow \mathrm{RC}_{n}$ and $\mathrm{RC}_{m} \rightarrow \mathrm{C}_{n}^{-}$.
(ii) There is a model \mathcal{M} of $Z \mathrm{~F}$ such that for every positive integer n, $\mathcal{M} \vDash \mathrm{RC}_{2 n+1} \wedge \mathrm{C}_{2 n+1}^{-} \wedge \neg \mathrm{RC}_{2 n} \wedge$ $\neg \mathrm{LOC}_{2 n}^{-}$. Hence, for every odd integer $n \geq 3$ and for every even integer $m \geq 2, \mathcal{M} \vDash \mathrm{RC}_{n} \wedge \mathrm{C}_{n}^{-} \wedge \neg \mathrm{RC}_{m} \wedge$ $\neg \mathrm{LOC}_{m}^{-}$.
(iii) For $k=2,4$, the principles RC_{k} and RC_{3} are independent of each other in ZF .

Proof (i) Use model \mathcal{V}_{p} and the result of Theorem 5.
(ii) Use model \mathcal{V}_{2} and the result of Theorem 5 (or Theorem 6). The result is transferable into ZF via Pincus' transfer theorems.
(iii) This follows easily from Theorem 3 (parts 3. and 4.) and part (ii) of the current corollary.

Theorem 7 For $n=2,3, \mathrm{RC}_{5}+\mathrm{C}_{n}^{-}$implies C_{5}^{-}, and RC_{5} implies neither C_{2}^{-}nor C_{3}^{-}in ZF .
Proof Assume that $\mathrm{RC}_{5}+\mathrm{C}_{2}^{-}$is true. Let $\mathcal{U}=\left\{U_{i}: i \in I\right\}$ be a disjoint infinite family of 5-elements sets. By way of contradiction, assume that \mathcal{U} has no partial choice function. Let y be an infinite subset of $\cup \mathcal{U}$ such that $[y]^{5}$ has a choice function. Since \mathcal{U} has no partial choice function, we have that the set $\left\{i \in I:\left|y \cap U_{i}\right| \geq 4\right.$ or $\left.\left|y \cap U_{i}\right|=1\right\}$ is finite. It follows that at least one of the sets $Y_{1}=\left\{i \in I:\left|y \cap U_{i}\right|=2\right\}$ and $Y_{2}=\left\{i \in I:\left|y \cap U_{i}\right|=3\right\}$ is infinite. If Y_{1} is infinite, then, by C_{2}^{-}, the family $\mathcal{Y}_{1}=\left\{y \cap U_{i}: i \in Y_{1}\right\}$, and hence \mathcal{U}, has a partial choice function, which is a contradiction. If Y_{2} is infinite, then by C_{2}^{-}again, we have $\mathcal{Y}_{2}=\left\{U_{i} \backslash\left(y \cap U_{i}\right): i \in Y_{2}\right\}$ has a partial choice function, which again contradicts the assumption that \mathcal{U} has no partial choice function.

The proof that $\mathrm{RC}_{5}+\mathrm{C}_{3}^{-}$implies C_{5}^{-}is similar.
The third assertion (that RC_{5} implies neither C_{2}^{-}nor C_{3}^{-}in ZF) follows easily from Theorem 5.

Remark 3 By Facts 1 and 2 (of section 4), we have that the family of 5 -element sets of atoms, $\mathcal{C}=$ $\left\{A_{q} \cup B_{q}: q \in \mathbb{Q}\right\}$, is linearly orderable in the permutation model $\mathcal{N}_{3,2}$ (which was constructed in (V2) of Section 4), and has no partial choice function in $\mathcal{N}_{3,2}$.

On the other hand, it is straightforward to verify that the infinite subset $y=\bigcup\left\{B_{q}: q \in \mathbb{Q}\right\} \subset A$ (which is an element of $\mathcal{N}_{3,2}$ since it has empty support) is such that $[y]^{5}$ has a choice function in $\mathcal{N}_{3,2}$. (It is also true that the subset $u=\bigcup\left\{A_{q}: q \in \mathbb{Q}\right\} \subset A$ is such that $[u]^{5}$ has a choice function in $\mathcal{N}_{3,2}$; follow the argument for Claim 1 of the proof of Theorem 5.)

It is therefore tempting to think that $\mathcal{N}_{3,2}$ may serve as the appropriate setting in order to answer (in the negative) the question of whether RC_{5} implies C_{5}^{-}. However, this is not the case. In particular, Ramsey Choice RC_{5} is false in $\mathcal{N}_{3,2}$ (while, by Theorem 6, it is true in $\mathcal{V}_{3,2}$). To see this, let

$$
x=\left\{\left\{a_{q m}, b_{q n}\right\}: q \in \mathbb{Q}, m \in\{1,2,3\}, n \in\{1,2\}\right\} .
$$

Then $x \in \mathcal{N}_{3,2}$ since \emptyset is a support of x. We assert that x has no infinite subset y in $\mathcal{N}_{3,2}$ such that $[y]^{5}$ has a choice function. Assume the contrary; then we may let $y \in \mathcal{N}_{3,2}$ be an infinite subset of x such that $[y]^{5}$ has a choice function $f \in \mathcal{N}_{3,2}$. Let $E=\bigcup\left\{A_{q} \cup B_{q}: q \in S\right\}$, where $S \in[\mathbb{Q}]^{<\omega}$, be a support of y and f. It is easy to see that there exist distinct rational numbers q and r such that $\{q, r\} \cap S=\emptyset$ (and hence $\left.E \cap\left(A_{q} \cup B_{q} \cup A_{r} \cup B_{r}\right)=\emptyset\right)$ and

$$
w=\left\{\left\{a_{q 1}, b_{q 1}\right\},\left\{a_{q 2}, b_{q 1}\right\},\left\{a_{q 3}, b_{q 1}\right\},\left\{a_{r 1}, b_{r 1}\right\},\left\{a_{r 1}, b_{r 2}\right\}\right\} \in[y]^{5} .
$$

Clearly, $\tau_{q}, \sigma_{r} \in \operatorname{fix}_{G}(E)$, hence $\tau_{q}(f)=\sigma_{r}(f)=f$, and also $\tau_{q}(w)=\sigma_{r}(w)=w$. If $f(w)=\left\{a_{q k}, b_{q 1}\right\}$ for some $k \in\{1,2,3\}$, then $\tau_{q}(f(w)) \neq f(w)$ so $\left(w, \tau_{q}(f(w))\right) \notin f$, and if $f(w)=\left\{a_{r 1}, b_{r l}\right\}$ for some $l \in\{1,2\}$, then $\sigma_{r}(f(w)) \neq f(w)$ so $\left(w, \sigma_{r}(f(w))\right) \notin f$. Since each of the above two possibilities for $f(w)$ leads to a contradiction to the fact that E is a support of f, we conclude that x has no infinite subset y in $\mathcal{N}_{3,2}$ such that $[y]^{5}$ has a choice function. Therefore RC_{5} is false in $\mathcal{N}_{3,2}$.

Next, we prove that CAC (Chain-AntiChain Principle) does not imply C_{n}^{-}in ZF for any natural number $n \geq 2$. The permutation model that will be constructed in the proof of the subsequent result will also be useful in the proof of the forthcoming Theorem 9 .

Theorem 8 For every natural number $n \geq 2$, there is a model \mathcal{M} of ZF such that $\mathcal{M} \vDash \mathrm{CAC} \wedge \neg \mathrm{C}_{n}^{-}$.
Proof Fix a natural number $n \geq 2$. Since $\mathrm{CAC} \wedge \neg \mathrm{C}_{n}^{-}$is a conjunction of injectively boundable statements, it follows-by Pincus' Theorem 3A3 in [8]-that we only need to construct a Fraenkel-Mostowski model of ZFA with the required properties. Our model will be a generalization of the permutation model constructed in the proof of Theorem 2.1 of Tachtsis [9] (where Theorem 2.1 of [9] states that CAC does not imply Ramsey's Theorem in ZFA). Since all the required arguments for the proof of the current theorem are almost identical to the ones given for the proof of Theorem 2.1 of [9], we refer the interested reader to [9] for the details.

The description of the model: We start with a model M of ZFA + AC with a set of atoms $A=\bigcup\left\{A_{i}\right.$: $i \in \omega\}$ which is a denumerable disjoint union of n-element sets $A_{i}=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i n}\right\}$ (where $i \in \omega$).

The group G of permutations of A is defined as follows: Firstly, for all $i \in \omega$, let τ_{i} be the n-cycle $a_{i 1} \mapsto a_{i 2} \mapsto \cdots \mapsto a_{i n} \mapsto a_{i 1}$. Also, for every permutation ψ of ω which moves only finitely many natural numbers, let ϕ_{ψ} be the permutation of A which is defined by $\phi_{\psi}\left(a_{i j}\right)=a_{\psi(i) j}$ for all $i \in \omega$ and $j \in\{1,2, \ldots, n\}$.

Now, we require $\eta \in G$, if and only if, $\eta=\phi_{\psi} \rho$, where ψ is a permutation of ω which moves only finitely many natural numbers and ρ is a permutation of A for which there is a finite subset $F \subseteq \omega$ such that for every $k \in F$ we have that $\rho \upharpoonright A_{k}=\tau_{k}^{j}$ for some $j<n$, and ρ fixes A_{m} pointwise for every $m \in \omega \backslash F$.

From the definition of the group G, it follows that if $\eta \in G$, then η moves only finitely many atoms, and for all $i \in \omega$ there is $k \in \omega$ such that $\eta\left(A_{i}\right)=A_{k}$.

Let Γ be the filter of subgroups of G which is generated by the subgroups fix ${ }_{G}(E)$, where $E \in[A]^{<\omega}$. Let \mathcal{N} be the Fraenkel-Mostowski model which is determined by M, G, and Γ.

The following hold in \mathcal{N} (see [9, proof of Theorem 2.1]):

1. The set $\mathcal{A}=\left\{A_{i}: i \in \omega\right\}$ is amorphous and has no infinite subfamily \mathcal{B} with a Kinna-Wagner selection function. Furthermore, A is also amorphous. It follows that C_{n}^{-}(as well as RC_{n}-see also Theorem 2(1)) is false in \mathcal{N} for \mathcal{A}.
2. Every element $x \in \mathcal{N}$ is either well-orderable or has an infinite subset y with a partition into sets each of size at most n, indexed by a cofinite subset of \mathcal{A}, thus indexed by an amorphous set (note that the proof of Fact 4 of Section 4 goes through here with minor adjustments). In the second case, it follows that y is an amorphous subset of x.
3. Every linearly orderable set in \mathcal{N} is well-orderable. This follows immediately from item 2.
4. The union of a well-orderable family of well-orderable sets in \mathcal{N} is well-orderable.
5. $\mathrm{AC}(\mathrm{LO}, \mathrm{LO})$ is true in \mathcal{N}. This follows from items 3 and 4.
6. CAC is true in \mathcal{N}.

The above completes the (outline of the) proof of the theorem.
Next, we completely clarify the relationship between $\mathrm{C}_{n}^{-}, \mathrm{LOC}_{n}^{-}$and WOC_{n}^{-}in ZF .
Theorem 9 For every $n \in \omega \backslash\{0,1\}$, C_{n}^{-}implies LOC_{n}^{-}, which in turn implies WOC_{n}^{-}. Furthermore, for every $n \in \omega \backslash\{0,1\}$, none of the previous implications are reversible in ZF .

Proof The implications in the statement of the theorem are straightforward.
For the second assertion of the theorem, fix $n \in \omega \backslash\{0,1\}$. Firstly, we note that each of $\mathrm{C}_{n}^{-}, \mathrm{LOC}_{n}^{-}$ and WOC_{n}^{-}is an injectively boundable statement, so in view of Pincus' Theorem 3 A 3 in [8], it suffices to establish our independence results using Fraenkel-Mostowski permutation models.

We shall prove something stronger than " LOC_{n}^{-}does not imply C_{n}^{-}", namely that there is a model of ZFA in which $\mathrm{AC}(\mathrm{LO}, \mathrm{LO})$ is true, whereas C_{n}^{-}is false. For our purpose, we will use the permutation model \mathcal{N} of the proof of Theorem 8. From its proof we know that $\mathrm{AC}(\mathrm{LO}, \mathrm{LO})$ is true in \mathcal{N}, whereas C_{n}^{-}is false in \mathcal{N}. Thus, LOC_{n}^{-}is also true in \mathcal{N}.

Now, we shall also prove something stronger than " WOC_{n}^{-}does not imply LOC_{n}^{-}", namely that there is a model \mathcal{V} of ZFA in which UT(WO, fin, WO) is true, whereas LOC_{n}^{-}is false in \mathcal{V}. We will use the model \mathcal{V}_{n} of Section 4 (so that the set of atoms is $A=\bigcup\left\{A_{q}: q \in \mathbb{Q}\right\}$, where $A_{q}=\left\{a_{q 1}, a_{q 2}, \ldots, a_{q n}\right\}$ for every $q \in \mathbb{Q}$, and $A_{q} \cap A_{r}=\emptyset$ for distinct rationals q and r).

By Facts 1 and 2(i), we have that $\mathcal{B}=\left\{A_{q}: q \in \mathbb{Q}\right\}$ is a linearly orderable family of n-element sets, which admits no partial choice function in \mathcal{V}_{n}. Thus, LOC $_{n}^{-}$is false in \mathcal{V}_{n}.

Now we prove that $\mathrm{UT}\left(\mathrm{WO}\right.$, fin, WO) is true in \mathcal{V}_{n}. To this end, let $\mathcal{U}=\left\{U_{\alpha}: \alpha<\kappa\right\}$, where κ is an infinite well-ordered cardinal number, be a disjoint family of finite sets in \mathcal{V}_{n}. Let $E=\bigcup\left\{A_{q}: q \in S\right\}$ (where $S \in[\mathbb{Q}]^{<\omega}$) be a support of U_{α} for each $\alpha<\kappa$. We will show that E is a support of every element in $\cup \mathcal{U}$. Assuming the contrary, there exist $\alpha<\kappa$ and $u \in U_{\alpha}$ such that u is not supported by E. Let $E_{u}=\bigcup\left\{A_{q}: q \in S^{\prime}\right\}$, where $S^{\prime} \in[\mathbb{Q}]^{<\omega}$, be the minimum support of u, whose existence is guaranteed by Fact 3 of section 4. Since u is not supported by E, there exists an element $r \in S^{\prime} \backslash S$ (and hence $A_{r} \subseteq E_{u}$ and $A_{r} \cap E=\emptyset$). Furthermore, it is not hard to verify that there is an infinite subset $P \subseteq \mathbb{Q}$ such that for all p in P, there exists an order automorphism ψ_{p} of (\mathbb{Q}, \leq) which fixes S pointwise, and $\psi_{p}(r)=p$. It follows that for all p, p^{\prime} in P, if $p \neq p^{\prime}$ then $\psi_{p}\left(S^{\prime}\right) \neq \psi_{p^{\prime}}\left(S^{\prime}\right)$. Thus, for all p, p^{\prime} in P, if $p \neq p^{\prime}$ then $\phi_{\psi_{p}}\left(E_{u}\right) \neq \phi_{\psi_{p^{\prime}}}\left(E_{u}\right)$, and consequently, by the second part of the statement of Fact 3 of

Section 4, $\phi_{\psi_{p}}(u) \neq \phi_{\psi_{p^{\prime}}}(u)$. Since for all p in P, ψ_{p} fixes S pointwise, we have $\phi_{\psi_{p}} \in$ fix ${ }_{G}(E)$, and hence $\phi_{\psi_{p}}\left(U_{\alpha}\right)=U_{\alpha}$. It follows that the infinite set $\left\{\phi_{\psi_{p}}(u): p \in P\right\}$ is a subset of U_{α}, contradicting U_{α} 's being finite. Thus $\bigcup \mathcal{U}$ is well-orderable.

In Theorem 10 below, we elucidate the relationship of RC_{6} with certain instances of LOC_{n}^{-}. The results of Theorem 10 provide partial answers to the open problem of whether RC_{6} implies C_{i}^{-}for $i=2,3,4,6$. In part (i) of Theorem 10, we shall provide a general result, namely that for every $k \in \omega \backslash\{0,1\}, \mathrm{RC}_{2 k}$ implies LOKW_{k}^{-}and that the latter implication is not reversible in ZF (for any $k \in \omega \backslash\{0,1\}$). The latter result gives us, in particular, that RC_{6} strictly implies LOC_{3}^{-}in ZF. Our proof of (i) (of Theorem 10), uses ideas from Montenegro's ingenious proof that RC_{4} implies C_{4}^{-}(see [7]). Since the subsequent theorem is centered around RC_{6}, we also have incorporated in the theorem's list of results, a fact which immediately follows from Theorem 5, namely that RC_{6} does not imply $\mathrm{C}_{5 n}^{-}$in ZF , for all $n \in \omega \backslash\{0\}$. The latter result completely settles the corresponding open problems.

We would also like to point out here that Theorems 5, 6 and 10, indicate the limitations of the permutation models $\mathcal{V}_{n, m}$ and $\mathcal{N}_{n, m}$ of Section 4 with regard to the aforementioned open problems on RC_{6}.

Theorem 10 The following hold:
(i) For every $k \in \omega \backslash\{0,1\}, \mathrm{RC}_{2 k}$ implies LOKW_{k}^{-}and the latter implication is not reversible in ZF . In particular, RC_{6} strictly implies LOC_{3}^{-}in ZF .
(ii) LOC_{4}^{-}is equivalent to $\mathrm{LOC}_{2}^{-}+\mathrm{LOKW}_{4}^{-}$. Furthermore, LOC_{2}^{-}does not imply LOKW_{4}^{-}in ZF , hence neither does it imply LOC_{4}^{-}in ZF .
(iii) $\mathrm{RC}_{6}+\mathrm{LOC}_{2}^{-}$implies LOC_{6}^{-}. Hence, $\mathrm{RC}_{6}+\mathrm{LOC}_{2 n}^{-}$implies LOC_{6}^{-}for all $n \in \omega \backslash\{0\}$.
(iv) $\mathrm{RC}_{6}+\mathrm{LOC}_{2}^{-}$implies LOC_{4}^{-}. Hence, $\mathrm{RC}_{6}+\mathrm{LOC}_{2 n}^{-}$implies LOC_{4}^{-}for all $n \in \omega \backslash\{0\}$.
(v) RC_{6} does not imply LOC_{5}^{-}in ZF , hence it does not imply $\mathrm{C}_{5 n}^{-}$in ZF , for all $n \in \omega \backslash\{0\}$.
(vi) RC_{6} implies WOC_{2}^{-}.

Proof (i) Fix $k \in \omega \backslash\{0,1\}$ and assume that $\mathrm{RC}_{2 k}$ is true. Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a disjoint infinite family of k-element sets indexed by the set I, which is equipped with some prescribed linear order. Towards a proof by contradiction assume that \mathcal{A} has no infinite subfamily with a Kinna-Wagner selection function. By $\mathrm{RC}_{2 k}$, let Y be an infinite subset of $A=\bigcup \mathcal{A}$ such that $[Y]^{2 k}$ has a choice function, say f. Since \mathcal{A} has no partial Kinna-Wagner function, we may assume, without loss of generality, that there is an infinite subset J of I such that $Y=\bigcup\left\{A_{j}: j \in J\right\}$. We define a binary relation R on J by requiring for all $j, j^{\prime} \in J$,

$$
j R j^{\prime} \text {, if and only if, } f\left(A_{j} \cup A_{j^{\prime}}\right) \in A_{j^{\prime}} .
$$

(Note that if $\left(j, j^{\prime}\right) \in R$, then $\left(j^{\prime}, j\right) \notin R$.)
For every $j \in J$, we let

$$
K_{j}=\{r \in J: j R r\}=\left\{r \in J: f\left(A_{j} \cup A_{r}\right) \in A_{r}\right\} .
$$

Since \mathcal{A} has no partial choice function, it follows that for all j in J, the set K_{j} is finite; otherwise, if for some $j \in J, K_{j}$ is infinite, then we let $\mathcal{B}=\left\{A_{r}: r \in K_{j}\right\}$ and we define a choice function g on \mathcal{B} by requiring for all $r \in K_{j}, g\left(A_{r}\right)=f\left(A_{j} \cup A_{r}\right)$. Since \mathcal{B} is an infinite subset of \mathcal{A} with a choice function, we have arrived at a contradiction. Therefore, for all j in J, K_{j} is finite.

For each $n \in \omega$, let $C_{n}=\left\{j \in J:\left|K_{j}\right|=n\right\}$. It is clear that the family $\mathcal{C}=\left\{C_{n}: n \in \omega\right\}$ is a partition of the linearly ordered set J.

We assert that for all $n \in \omega, C_{n}$ is finite and, in particular, $\left|C_{n}\right| \leq 2 n+1$. To this end, it suffices to show that for all $n \in \omega$, if U is any finite subset of C_{n}, then $|U| \leq 2 n+1$ (and hence C_{n} cannot be infinite, otherwise it would have finite subsets of arbitrarily large finite cardinality). Fix $n \in \omega$ and a finite
subset $U \subseteq C_{n}$. For every two-element subset $\left\{j, j^{\prime}\right\}$ of U, either $\left(j, j^{\prime}\right) \in R$ or $\left(j^{\prime}, j\right) \in R$, but not both. Therefore, $|R \upharpoonright U|=\binom{|U|}{2}$, where $R \upharpoonright U$ is the restriction of R on U. Since for each $j \in C_{n}$ we have that $\left|K_{j}\right|=n$, it readily follows that $\binom{|U|}{2} \leq n|U|$, which yields that $|U| \leq 2 n+1$ as required.

Since J is linearly ordered and for all n in $\omega, C_{n} \in[J]^{<\omega}$, it follows that $J=\bigcup\left\{C_{n}: n \in \omega\right\}$ is denumerable (i.e., countably infinite), thus, so is the (disjoint) family $\mathcal{D}=\left\{A_{j}: j \in J\right\}$. Let $\left(D_{n}\right)_{n \in \omega}$ be an enumeration of the elements of \mathcal{D}. Then $f \upharpoonright \mathcal{E}$, where $\mathcal{E}=\left\{D_{2 n} \cup D_{2 n+1}: n \in \omega\right\}$, is a choice function for the disjoint family \mathcal{E} which consists of $(2 k)$-element subsets of Y. Since for every $n \in \omega, f\left(D_{2 n} \cup D_{2 n+1}\right)$ is an element of exactly one of the sets $D_{2 n}$ and $D_{2 n+1}$ and \mathcal{D} is a denumerable subfamily of \mathcal{A}, it readily follows that \mathcal{A} has a partial choice function. This contradicts our assumption on \mathcal{A} having no partial Kinna-Wagner selection function.

For the second assertion of (i), we may use the Fraenkel-Mostowski model \mathcal{N} which was constructed in the proof of Theorem 8 (with n any natural number greater than or equal to 2). From the proof of Theorem 8, we have that $\mathrm{AC}(\mathrm{LO}, \mathrm{LO})$ is true in \mathcal{N} from which LOKW_{k}^{-}follows, whereas RC_{k} is false for any integer $k \geq 2$, since there are amorphous sets in \mathcal{N}.

The third assertion is, in view of the above, straightforward.
(ii) The implication " $\mathrm{LOC}_{4}^{-} \rightarrow \mathrm{LOKW}_{4}^{-}$" is evident and the implication " $\mathrm{LOC}_{4}^{-} \rightarrow \mathrm{LOC}_{2}^{-}$" follows from Theorem 1(10).

Conversely, assume that $\mathrm{LOC}_{2}^{-}+\mathrm{LOKW}_{4}^{-}$is true and let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a linearly orderable, disjoint, infinite family of 4-element sets. Let, by $\mathrm{LOKW}_{4}^{-}, \mathcal{B}=\left\{A_{j}: j \in J\right\}$ be an infinite subfamily of \mathcal{A} with a Kinna-Wagner function, say f. Then there exists an infinite subset $J^{\prime} \subseteq J$ such that either for all j in $J^{\prime},\left|f\left(A_{j}\right)\right|=3$, or for all j in $J^{\prime},\left|f\left(A_{j}\right)\right|=2$, or for all j in $J^{\prime},\left|f\left(A_{j}\right)\right|=1$. In the first case, we let $g=\left\{\left(A_{j}, \bigcup\left(A_{j} \backslash f\left(A_{j}\right)\right)\right): j \in J^{\prime}\right\}$; then g is a partial choice function for \mathcal{A}. In the second case, we apply LOC_{2}^{-}to the family $\left\{f\left(A_{j}\right): j \in J^{\prime}\right\}$, thus obtaining a partial choice function for \mathcal{A}. The third case is evident.

For the second assertion of (ii), we only need to establish the independence result using a suitable Fraenkel-Mostowski permutation model, since via Pincus' Transfer Theorems, the result can be transferred into ZF (see also Remark 1 of Section 2). To this end, first let κ be any infinite well-ordered cardinal number. We start with a model M of ZFA + AC with a κ-sized set A of atoms which is a disjoint union $A=\bigcup\left\{A_{\alpha}: \alpha<\kappa\right\}$, where for $\alpha<\kappa, A_{\alpha}=\left\{a_{\alpha, 1}, a_{\alpha, 2}, a_{\alpha, 3}, a_{\alpha, 4}\right\}$ so that $\left|A_{\alpha}\right|=4$, for all $\alpha<\kappa$.

For each $\alpha<\kappa$, let G_{α} be the alternating group on A_{α} and let G be the weak direct product of the G_{α} 's. Hence, a permutation η of A is an element of G if and only if for every $\alpha<\kappa, \eta \upharpoonright A_{\alpha} \in G_{\alpha}$, and $\eta \upharpoonright A_{\alpha}=1_{A_{\alpha}}$ for all but finitely many ordinals $\alpha<\kappa$ (and thus every element $\eta \in G$ moves only finitely many atoms).

Let Γ be the filter of subgroups of G which is generated by the subgroups fix ${ }_{G}(E)$ of G, where $E \in[A]^{<\omega}$. Let \mathcal{M} be the permutation model which is determined by M, G and Γ.

We first show that LOKW_{4}^{-}is false in \mathcal{M} for the well-ordered family $\mathcal{A}=\left\{A_{\alpha}: \alpha<\kappa\right\}$ of \mathcal{M} (the enumeration $\alpha \mapsto A_{\alpha}, \alpha<\kappa$, has empty support). Assume the contrary and let \mathcal{B} be an infinite subfamily of \mathcal{A} having a Kinna-Wagner selection function $f \in \mathcal{M}$ with support some finite set $E \subset A$. Then there exists an ordinal $\alpha_{0}<\kappa$ such that $A_{\alpha_{0}} \in \mathcal{B}$ and $A_{\alpha_{0}} \cap E=\emptyset$. There are three possibilities for $f\left(A_{\alpha_{0}}\right)$:
(a) $\left|f\left(A_{\alpha_{0}}\right)\right|=1$. Let t be the unique element of $f\left(A_{\alpha_{0}}\right)$ and let $A_{\alpha_{0}} \backslash f\left(A_{\alpha_{0}}\right)=\{x, y, z\}$. Let η be the permutation of A in G which is defined by $\eta \upharpoonright A_{\alpha_{0}}=(t, x)(y, z)$ and $\eta \upharpoonright A \backslash A_{\alpha_{0}}=1_{A \backslash A_{\alpha_{0}}}$. Clearly, $\eta \in \operatorname{fix}_{G}(E)$, hence $\eta(f)=f$. However, $\eta\left(A_{\alpha_{0}}\right)=A_{\alpha_{0}}$, but $\eta\left(f\left(A_{\alpha_{0}}\right)\right) \neq f\left(A_{\alpha_{0}}\right)$, which contradicts the fact that f is supported by E.

Similarly to (a), the remaining two possibilities, namely (b) $\left|f\left(A_{\alpha_{0}}\right)\right|=2$ and (c) $\left|f\left(A_{\alpha_{0}}\right)\right|=3$ lead to a contradiction, so we leave the verification of the details as an easy exercise for the interested reader.

Next, we assert that every linearly orderable set in \mathcal{M} is well-orderable (in \mathcal{M}). Indeed, let (x, \leq) be a linearly ordered set in \mathcal{M} with support $E \in[A]^{<\omega}$. By way of contradiction, assume that x is not wellorderable in \mathcal{M}, and hence there exists an element $z \in x$ which is not supported by E. This means that
there is an element $\phi \in \operatorname{fix}_{G}(E)$ such that $\phi(z) \neq z$. Since \leq is a linear order on x (and $\left.\phi(z) \in \phi(x)=x\right)$, we must have that either $\phi(z)<z$ or $z<\phi(z)$. Without loss of generality, we assume that $\phi(z)<z$ (the case where $z<\phi(z)$ can be treated as in the argument below). Since every element of G moves only finitely many atoms, it follows that every permutation of A in G has finite order, thus there is $m \in \omega$ such that $\phi^{m}=1_{A}$. Then we have $z=\phi^{m}(z)<\phi^{m-1}(z)<\ldots<\phi^{2}(z)<\phi(z)<z$, hence $z<z$, which is impossible. Therefore, E supports every element of x, and hence x can be well-ordered in \mathcal{M}.

Our final step in the proof is to show that LOC_{2}^{-}is true in \mathcal{M}. To this end, let $\mathcal{U}=\left\{U_{i}: i \in I\right\}$ be a disjoint infinite family of pairs in \mathcal{M}, which is indexed by the linearly orderable set I. In view of the result of the previous paragraph, we have that I is well-orderable, so we may assume that $I=\lambda$ for some infinite well-ordered cardinal number λ. Let $E \in[A]^{<\omega}$ be a support of U_{i}, for all $i<\lambda$. Without loss of generality, we assume that $E=A_{\alpha_{1}} \cup A_{\alpha_{2}} \cup \cdots \cup A_{\alpha_{m}}$, where for $i=1,2, \ldots, m, \alpha_{i}<\kappa$ and $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}$. We will show that $\cup \mathcal{U}$ is well-orderable by proving that E supports every element of $\cup \mathcal{U}$. Assume the contrary; then there exist $i \in \lambda, u \in U_{i}$, and $\eta \in \operatorname{fix}_{G}(E)$ such that $\eta(u) \neq u$. Let E_{u} be a support of u and, without loss of generality, assume that $E_{u}=E \cup A_{\mu}$, where $\mu \in \kappa \backslash\left\{\alpha_{j}: 1 \leq j \leq m\right\}$, and that $\eta \upharpoonright A \backslash A_{\mu}=1_{A \backslash A_{\mu}}$.

Let $\mathcal{G}=\prod_{\alpha<\kappa}^{w} \mathcal{G}_{\alpha}$, i.e., \mathcal{G} is the weak direct product of the groups \mathcal{G}_{α}, where for $\alpha<\kappa, \mathcal{G}_{\alpha}=G_{\mu}$ if $\alpha=\mu$ and $\mathcal{G}_{\alpha}=\left\{1_{A_{\alpha}}\right\}$ if $\alpha \in \kappa \backslash\{\mu\}$. Clearly, \mathcal{G} is a subgroup of G which is isomorphic to the alternating group G_{μ} on A_{μ}. Let $\mathcal{H}=\{\rho \in \mathcal{G}: \rho(u)=u\}$. Then \mathcal{H} is a subgroup of \mathcal{G}, which is proper, for $\eta \in \mathcal{G} \backslash \mathcal{H}$. Since $\left|U_{i}\right|=2$ and $\eta \in \mathcal{G} \backslash \mathcal{H}$, we conclude that the index $(\mathcal{G}: \mathcal{H})$ of \mathcal{H} in \mathcal{G} is 2 . As $|\mathcal{G}|=\left|G_{\mu}\right|=12$, we have $|\mathcal{H}|=6$. This contradicts the well-known group-theoretic fact that the alternating group on 4 letters has no subgroups of order 6 . Therefore, E supports every element of $\cup \mathcal{U}$, and so $\cup \mathcal{U}$ is well-orderable. Thus \mathcal{U} has a choice function in \mathcal{M}, and consequently LOC_{2}^{-}is true in \mathcal{M}.
(iii) Assume $\mathrm{RC}_{6}+\mathrm{LOC}_{2}^{-}$. Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a linearly orderable, disjoint, infinite family of 6 -element sets. By RC_{6}, let y be an infinite subset of $A=\bigcup \mathcal{A}$ such that $[y]^{6}$ has a choice function. If the set $Z_{1}=\left\{i \in I:\left|y \cap A_{i}\right| \geq 5\right.$ or $\left.\left|y \cap A_{i}\right|=1\right\}$ is infinite, then we easily conclude that \mathcal{A} has a partial choice function. If $Z_{2}=\left\{i \in I:\left|y \cap A_{i}\right|=4\right\}$ is infinite, then by LOC_{2}^{-}, the family $\mathcal{B}=\left\{A_{i} \backslash\left(y \cap A_{i}\right): i \in Z_{2}\right\}$ has a partial choice function, hence \mathcal{A} has a partial choice function too. If $Z_{3}=\left\{i \in I:\left|y \cap A_{i}\right|=3\right\}$ is infinite, then the conclusion follows from part (i) of the current theorem, and if $Z_{4}=\left\{i \in I:\left|y \cap A_{i}\right|=2\right\}$ is infinite, then the conclusion follows from LOC_{2}^{-}again.
(iv) Assume $\mathrm{RC}_{6}+\mathrm{LOC}_{2}^{-}$. Let $\mathcal{A}=\left\{A_{i}: i \in I\right\}$ be a linearly orderable, disjoint, infinite family of 4 -element sets. Then $\mathcal{B}=\left\{\left[A_{i}\right]^{2}: i \in I\right\}$ is a linearly orderable disjoint family of 6 -element sets. By our assumption and part (iii) of the current theorem, we have that LOC_{6}^{-}is true, and thus there exists an infinite subfamily $\mathcal{C}=\left\{\left[A_{j}\right]^{2}: j \in J\right\}$ of \mathcal{B}, where $J \subseteq I$ is infinite, with a choice function, say f. Since for every $j \in J, f\left(\left[A_{j}\right]^{2}\right)$ is a 2 -element subset of A_{j}, we apply LOC_{2}^{-}to the linearly orderable infinite family $\mathcal{D}=\left\{f\left(\left[A_{j}\right]^{2}\right): j \in J\right\}$ in order to obtain a partial choice function g for \mathcal{D}. Using g, we immediately obtain a partial choice function for \mathcal{A}.
(v) This follows from Theorem 5; in particular, the permutation model \mathcal{V}_{5} satisfies $\mathrm{RC}_{6}+\neg \mathrm{C}_{5}^{-}$, and the result is transferable into ZF.
(vi) Assume RC_{6}. Let $\mathcal{A}=\left\{A_{\alpha}: \alpha<\kappa\right\}$, where κ is an infinite well-ordered cardinal number, be a family of 2 -element sets. By RC_{6}, let y be an infinite subset of $A=\bigcup \mathcal{A}$ such that $[y]^{6}$ has a choice function, say f. Without loss of generality, assume that the set $\left\{\alpha: \alpha<\kappa\right.$ and $\left.\left|y \cap A_{\alpha}\right|=1\right\}$ is finite. Therefore, since y is infinite and κ is an infinite well-ordered cardinal, it follows that there exists a strictly increasing sequence $\left(\alpha_{n}\right)_{n \in \omega}$ of ordinals in κ such that $A_{\alpha_{n}} \subset y$, for all $n<\omega$. Then $f \upharpoonright \mathcal{B}$, where $\mathcal{B}=\left\{A_{\alpha_{3 n}} \cup A_{\alpha_{3 n+1}} \cup A_{\alpha_{3 n+2}}: n<\omega\right\}$, is a choice function for the disjoint family \mathcal{B} which consists of 6 -element sets. Clearly, this yields that \mathcal{A} has a partial choice function.

6 Open questions

1. Does RC_{5} imply either of LOC_{5}^{-}and C_{5}^{-}?
2. Does RC_{4} imply RC_{2} ? (Recall that RC_{2} implies RC_{4} (see Theorem 3(4)). Also, note that RC_{4} implies C_{2}^{-}, since (from [7]) RC_{4} implies C_{4}^{-}, which in turn implies C_{2}^{-}.)
3. Is there a model of ZF which satisfies $\mathrm{RC}_{6}+\neg \mathrm{C}_{i}^{-}$, where $i \in\{2,3,4,6\}$? Same question for RC_{6} and LOC_{i}^{-}, where $i \in\{2,4,6\}$.

Acknowledgment We would like to thank the anonymous referee for various comments and suggestions which substantially improved both the mathematical quality and the exposition of this paper.

References

[1] A. Blass, Ramsey's theorem in the hierarchy of choice principles, J. Symbolic Logic 42 (1977), pp. 387-390.
[2] L. J. Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, (revised and extended second edition), Springer Monographs in Mathematics, Springer, London, 2017.
[3] P. E. Howard, Binary consistent choice on pairs and a generalization of König's infinity lemma, Fund. Math. 121 (1984), pp. 17-23.
[4] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998.
[5] T. J. Jech, The Axiom of Choice, Studies in Logic and the Foundations of Mathematics, 75, NorthHolland, Amsterdam, 1973.
[6] E. M. Kleinberg, The independence of Ramsey's theorem, J. Symbolic Logic 34 (1969), pp. 205-206.
[7] C. H. Montenegro, Weak versions of the axiom of choice for families of finite sets, in Models, algebras, and proofs, Selected papers of the X Latin American symposium on mathematical logic held in Bogotá, Colombia, June 24-29, 1995 (X. Caicedo and C. Montenegro, eds.), [Lecture Notes in Pure and Applied Mathematics 203], Marcel Dekker, New York • Basel, 1999, pp. 57-60.
[8] D. Pincus, Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods, J. Symbolic Logic 37 (1972), pp. 721-743.
[9] E. Tachtsis, On Ramsey's Theorem and the existence of infinite chains or infinite anti-chains in infinite posets, J. Symbolic Logic 81, Issue 01 (2016), pp. 384-394.
[10] E. Tachtsis, On variants of the principle of consistent choices, the minimal cover property and the 2-compactness of generalized Cantor cubes, Topology Appl. 219 (2017), pp. 122-140.
[11] J. Truss, Finite axioms of choice, Ann. Math. Logic 6 (1973), pp. 147-176.
[12] J. Truss, Classes of Dedekind finite cardinals, Fund. Math. 84 (1974), pp. 187-208.

