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Abstract

We give a projective proof of the butterfly porism for cyclic quadri-
laterals and present a general reversion porism for polygons with an
arbitrary number of vertices on a conic. We also investigate projective
properties of the porisms.

1 Introduction

The theorems of Pappus and Pascal and the Scissors Theorem can be formulated
as porisms in the projective plane:

Theorem 1 (Pappus). Let A1, A2, . . . , A6 be a Pappus hexagon on the lines `1, `2
with intersection points P1, P2, P3 on the Pappus line `. Then there exists a Pappus
hexagon A′1, A

′
2, . . . , A

′
6 on `1, `2 with the same intersection points P1, P2, P3 for any

point A′1 on `1 (see Figure 1).

The cases when A′1 is the intersection of `1 with ` or `2 are considered as degenerate
situations.

Proof of Theorem 1. By the Theorem of Pappus, applied to the hexagonA1, . . . , A6,
the points P1, P2, P3 are collinear. Then the Braikenridge-Maclaurin Theorem for
degenerate conics (see, e.g., [2, p. 76]) applied to the points A′1, A

′
2, . . . , A

′
5 and the

points P1, P2, P3 implies that A′6 lies on `2.
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Figure 1: Pappus hexagons A1, A2, . . . , A6 and A′
1, A

′
2, . . . , A

′
6.

Theorem 2 (Pascal). Let A1, A2, . . . , A6 be a Pascal hexagon on the conic C
with intersection points P1, P2, P3 on the Pascal line `. Then there exists a Pascal
hexagon A′1, A

′
2, . . . , A

′
6 on C with the same intersection points P1, P2, P3 for any

point A′1 on C (see Figure 2).
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Figure 2: Pascal hexagons A1, A2, . . . , A6 and A′
1, A

′
2, . . . , A

′
6.
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Again, we consider the case when A′1 is on ` as a degenerate situation.

Proof of Theorem 2. By the Theorem of Pascal, applied to the hexagon A1, . . . , A6,
the points P1, P2, P3 are collinear. Then the Braikenridge-Maclaurin Theorem for
nondegenerate conics applied to the points A′1, A

′
2, . . . , A

′
5 and the points P1, P2, P3

implies that A′6 lies on C.

Theorem 3 (Scissors Theorem). Let A1, A2, A3, A4 be a Scissors quadrilateral on
the lines `1, `2 with intersection points P1, P2, P3, P4 on a line `. Then there exists
a Scissors quadrilateral A′1, A

′
2, A

′
3, A

′
4 on `1, `2 with the same intersection points

P1, P2, P3, P4 for any point A′1 on `1 (see Figure 3).
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`
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Figure 3: Scissors quadrilaterals A1, A2, . . . , A4 and A′
1, A

′
2, . . . , A

′
4.

Also here, the cases when A′1 is the intersection of `1 with ` or `2 are included in
the theorem as degenerate situations.

Proof of Theorem 3. In the real affine plane obtained by removing ` from the pro-
jective plane the lines AiAi+1 and A′iA

′
i+1 (with cyclically read indices) are parallel.

Then the quadrilateral A′1, A
′
2, A

′
3, A

′
4 is obtained from A1, A2, A3, A4 by a transla-

tion (if `1, `2 and ` are concurrent) or by a homothetic transformation (if `1, `2 and
` are not concurrent).

Formally, one obtains the Pascal Porism 2 from the Pappus Porism 1 by replacing
the degenerate conic `1∪`2 by the nondegenerate conic C. Surprisingly, one obtains
another porism by the same process when we replace the degenerate conic `1 ∪ `2
in the Scissors Porism 3 by a nondegenerate conic C:
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Theorem 4 (Butterfly Theorem, Jones [4], Kocik [6]). Let A1, A2, A3, A4 be a
quadrilateral on the conic C with intersection points P1, P2, P3, P4 on a line `.
Then there exists a quadrilateral A′1, A

′
2, A

′
3, A

′
4 on C with the same intersection

points P1, P2, P3, P4 for any point A′1 on C (see Figure 4).
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`

A′1
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A′3

A′4

P4

R

S

Figure 4: Butterfly quadrilaterals A1, A2, . . . , A4 and A′
1, A

′
2, . . . , A

′
4.

The theorem of Jones and Kocik generalizes the well known classical Butterfly The-
orem (see, e.g., [5], [7], [8], and the many variants in [1]). Kocik proved the theorem
in the setting of the complex plane using Möbius transformations, thus excluding
the case that one of the points Pi lies on the ideal line. He also proved a correspond-
ing theorem for polygons A1, A2, . . . , A2n, n ≥ 2, if the points P1, P2, . . . , P2n are
collinear (see [6]). Izmestiev quantified in [3] Kocik’s Theorem using cross-ratios
by proving, that

cr(R,S;P1, P4) = cr(R,S;P2, P3), (1)

is a necessary and sufficient condition for the closing of the quadrilaterals. Here
` intersects C in the points R,S (see Figure 4). (The same relation holds for
the Scissors Porism 3 when R and S are the intersections of ` with `1 and `2,
respectively.) Izmestiev gave a similar characterisation if ` is tangent to C or does
not intersect C (see [3]). He also proved that the closing condition is satisfied for
a polygon A1, A2, . . . , An, n ≥ 5, in a circle C if the points P1, P2, . . . , Pn form a
right-angled polygon when the interior of C is viewed as the Cayley-Klein model
of the hyperbolic plane. This is a sufficient, but not a necessary closing condition.
In particular, it only applies to points Pi inside C. Also Izmestiev used Möbius
transformations and was therefore subject to the same limitations as Kocik.

In Section 2 we will prove the Butterfly Porism 4 in a purely projective manner
using projective maps instead of Möbius transformations, thus closing the gap in
the previous proofs. In Section 3 we will give a necessary and sufficient closing
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condition for the points P1, . . . , Pn, n ≥ 3: It will turn out that the condition is
a consequence of Pascal’s Theorem. In particular, given an n-gon A1, A2, . . . , An

inscribed in a conic C with points P1, . . . , Pn−2 such that Pi lies on the line AiAi+1,
there are unique points Pn−1 on An−1An and Pn on AnA1 such that the closing
condition is satisfied. I.e., there is an n-gon A′1A

′
2 . . . A

′
n on C with sides running

successively through the points Pi for any starting point A′1 on C. The points Pn−1
and Pn can easily be constructed by ruler alone.

2 The Butterfly Porism

Let C be a nondegenerate conic in the real projective plane RP2. For a point
P /∈ C, the reversion map ϕP : C → C,X 7→ ϕP (X), is defined by the requirement
that X,P, ϕP (X) are collinear, and that X 6= ϕP (X) unless XP is a tangent of C
(see Figure 5). If convenient, we may always assume without loss of generality that
the conic C is given by

C : 〈X,X〉 = 0

in projective coordinates X = (x1, x2, x3)>, where 〈X,Y 〉 = x1y1 + x2y2 − x3y3
denotes the Minkowski product. In the Euclidean plane {(x1, x2, 1) | (x1, x2) ∈ R2},
embedded in the projective plane RP2, C is the unit circle.

C

P

X

Q
Y

ϕP (X)

ϕQ(Y )

Z = ϕQ(Z)

Figure 5: The reversion map on C.

Observe that ϕP has a unique continuation as a projective map RP2 → RP2 which
we also denote by ϕP and which is given by

X 7→ ϕP (X) = MPX

where

MP =

−p21 + p22 − p23 −2p1p2 2p1p3
−2p1p3 p21 − p22 − p23 2p2p3
−2p1p3 −2p2p3 p21 + p22 + p23

 .
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Note that the polar line of P is a fixed point line of ϕP and the bundle of lines
through P are fixed lines of ϕP . Moreover, ϕP is an involution.

Lemma 5. If U, V,W ∈ RP2 \C are collinear, then there is a unique point X ∈
RP2 \C on the same line as U, V,W such that ϕX ◦ ϕW ◦ ϕV ◦ ϕU = id, i.e., the
identity.

Proof. W is given by W = aU + bV for some a, b ∈ R. Observe that

〈U,U〉 6= 0, 〈V, V 〉 6= 0, 〈W,W 〉 6= 0,

since U, V,W /∈ C. Set X := (2a〈U, V 〉 + b〈V, V 〉)U − a〈U,U〉V . Then a short
calculation shows that

〈X,X〉 = 〈U,U〉〈V, V 〉〈W,W 〉 6= 0

and hence X /∈ C. It is then elementary to check that MX = MWMVMU .

The Butterfly Porism 4 follows immediately from Lemma 5 with P1 = U,P2 =
V, P3 = W : Indeed, Lemma 5 guarantees the existence of a point X on the line `
such that A2 = ϕP1

(A1), A3 = ϕP2
(A2), A4 = ϕP3

(A3), and A1 = ϕX(A4). Thus,
X = P4, and because ϕP4

◦ . . . ◦ϕP1
= id, the path closes for any starting point A′1

on C.

Is it possible that a closing theorem for quadrilaterals in a conic C holds if the
points P1, . . . , P4 are not collinear? The answer is no:

Theorem 6. Let Ai, Bi, Ci, Di for i = 1, 2, 3 be three quadrilaterals with vertices
on a conic C with points P1 on AiBi, P2 on BiCi, P3 on CiDi, P4 on DiAi, for
i = 1, 2, 3. Assume that the four points Pj are not on C. Then, P1, P2, P3, P4 are
collinear.

Proof. Consider the following four hexagons

A1B1D2A2B2D1, (2)

A1B1D3A3B3D1, (3)

C1B1D2C3B2D1, (4)

C1B1D3C3B3D1. (5)

Let X be the intersection of the lines B1D2 and B2D1 and Y the intersection of the
lines B1D3 and B3D1. Then, by Pascal’s Theorem applied to the four hexagons
above, we have:

by (2): the points P1, P4, X are collinear

by (3): the points P1, P4, Y are collinear

by (4): the points P2, P3, X are collinear

by (5): the points P2, P3, Y are collinear

Hence, P1, P2, P3, P4 are collinear.

6



3 General reversion porisms in conics

Motivated by the previous section we define:

Definition 7. Let C be a conic in the projective plane RP2. The points P1, . . . , Pn

in RP2 \C are said to satisfy the closing property (in this order) with respect to C,
if ϕPn

◦ . . . ◦ ϕP1
= id, i.e., the identity.

Then we have the following:

Lemma 8. Let C be a nondegenerate conic in the real projective plane RP2 and
P1, . . . , Pn be points in RP2 \C. Assume that there are three different n-gons
Aj

1A
j
2 . . . A

j
n, j = 1, 2, 3, inscribed in C such that Pi lies on AiAi+1 for i = 1, 2, . . . , n

(with cyclically read indices). Then P1, . . . , Pn have the closing property with re-
spect to C. In particluar there is a closed n-gon starting in any point A1 ∈ C whose
sides run successively through the points Pi.

Proof. A1
1, A

2
1 and A3

1 are three different fixed points of the map ϕPn
◦ . . . ◦ ϕP1

.
Thus, the claim follows directly from the fact that the group of projective maps
which keep the set C fixed acts sharply 3-transitively on C.

Before we can turn to the main theorem, we need to state the following:

Proposition 9. Let C be a nondegenerate conic and U 6= V be points in RP2 \C.
Then ϕ = ϕV ◦ ϕU has the line ` = UV as a fixed line and its pole P with respect
to C as a fixed point. Moreover we have:

(a) If ` intersects C in two points R,S then R,S are fixed points of ϕ and the
tangents in R,S are fixed lines. Besides P and ` there are no other fixed
points and fixed lines.

(b) If ` is tangent to C or if ` misses C, then P is the only fixed point and ` the
only fixed line.

In particular, the line ` on which U and V sit is determined by the map ϕ.

Proof. The fixed points of ϕ are the real eigenvectors of M = MVMU and the fixed
lines are the real eigenvectors of M−> (the inverse transposed of M). In case (a)
it is geometrically clear, that R,S, P are fixed points and that ` and the tangents
in R,S are fixed lines. Since we have at most three real eigenvectors, there are no
other fixed points or lines. In case (b) a short calculation shows, that P is a triple
eigenvector of M , and ` a triple eigenvector of M−> if ` is tangent to C. If ` misses
C, there is only one real eigenvalue of M , namely P , and only one real eigenvalue
of M−>, namely `.

Now we are ready for the main theorem.
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Theorem 10. Let C be a nondegenerate conic and P1, . . . , Pn−2 be given points in
RP2 \C. Then the following is true:

• If P1, . . . , Pn−2 have the closing property with respect to C, then P1, . . . , Pn−2,
Pn−1, Pn have the closing property if and only if Pn−1 = Pn is an arbitrary
point in RP2 \C.

• If P1, . . . , Pn−2 do not have the closing property with respect to C, then either
ϕ = ϕPn−2 ◦. . .◦ϕP1 has a unique fixed line ` which intersects C in two points,
or ϕ has only one fixed line ` at all. For an arbitrary point Pn−1 ∈ ` \ C
there is a unique point Pn ∈ ` \ C such that P1, . . . , Pn−2, Pn−1, Pn have the
closing property. No other choice for Pn−1 and Pn is possible.

Proof. The first case is trivial, since ϕPn
◦ ϕPn−1

◦ . . . ◦ ϕP1
= ϕPn

◦ ϕPn−1
= id

implies that ϕPn−1
= ϕPn

and hence Pn−1 = Pn.

In the second case we assume that ϕ = ϕPn−2
◦ . . . ◦ϕP1

6= id. We start by showing
that Pn−1 and Pn exist as specified in the theorem. In this case, ϕ has at most two
fixed points on C. So, let us first choose an arbitrary point A1 6= ϕ(A1). Then, we
can choose two different points A′1, A

′′
1 /∈ {ϕ−1(A1), ϕ(A1)} such that A′1 6= ϕ(A′1)

and A′′1 6= ϕ(A′′1). This defines the polygonal chains

A1, A2 = ϕP1
(A1), A3 = ϕP2

(A2), . . . , An−1 = ϕPn−2
(An−2) = ϕ(A1),

A′1, A
′
2 = ϕP1

(A′1), A′3 = ϕP2
(A′2), . . . , A′n−1 = ϕPn−2

(A′n−2) = ϕ(A′1),

A′′1 , A
′′
2 = ϕP1

(A′′1), A′′3 = ϕP2
(A′′2), . . . , A′′n−1 = ϕPn−2

(A′′n−2) = ϕ(A′′1).

Then the intersection X of the lines A1A
′
n−1 with the line A′1An−1 and the in-

tersection Y of the lines A1A
′′
n−1 with the line A′′1An−1 are different and define

a line ` (see Figure 6). Choose a point Pn−1 on ` such that the line An−1Pn−1
intersects C in a point An. The line AnA1 then intersects ` in a point Pn.
Hence, An = ϕPn−1

(An−1) and A1 = ϕPn
(An). Now we consider the intersec-

tion A′n of the lines A′n−1Pn−1 and A′1Pn and the intersection A′′n of the lines
A′′n−1Pn−1 and A′′1Pn. By the Braikenridge-Maclaurin Theorem applied to the
hexagon H1 = A1A

′
n−1A

′
nA
′
1An−1An it follows that A′n ∈ C. Similarly, by consid-

ering the hexagon H2 = A1A
′′
n−1A

′′
nA
′′
1An−1An it follows that A′′n ∈ C. It follows

that the map ϕPn ◦ . . . ◦ϕP1 has the fixed points A1, A
′
1 and A′′1 on C and is hence

the identity. In particular, we see that

ϕ = ϕPn−2
◦ . . . ◦ ϕP1

= ϕPn−1
◦ ϕPn

.

Hence, by Proposition 9, the line ` on which Pn−1 and Pn sit is determined by the
points P1, . . . , Pn−2, and clearly, Pn is determined as soon as Pn−1 is chosen on
` \ C.

Conversely, if we assume that ϕPn ◦. . .◦ϕP1 = id, there are three n-gons A1, . . . , An,
A′1, . . . , A

′
n and A′′1 , . . . , A

′′
n as in Figure 6. Then, by the Pascal Theorem applied

to the hexagons H1 and H2 mentioned above, it follows that Pn−1 and Pn must lie
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C A′1
A′′1

A1

An−1

A′n−1

A′′n−1

X

Y

`

Pn−1

An

A′n

A′′n

Pn

Figure 6: Proof of Theorem 10

on the common Pascal line ` of the two hexagons. The lines A1A
′
n−1 and A′1An−1

determine the point X on `, and the lines A1A
′′
n−1 and A′′1An−1 determine the point

Y 6= X on `. Thus, ` is determined by P1, . . . , Pn−2 by the construction above.
Hence Pn−1 must be chosen on ` and once Pn−1 is fixed, the location of Pn on `
follows.

Notice that the construction of the points Pn−1 and Pn can be carried out with
ruler alone as shown in the proof.

For n = 3 we obtain the nice porism in Figure 7. In this case, P1 is given, and ` is
the polar line of P1 with respect to C. P2 is chosen freely on ` \ C and then P3 is
the conjugate of P2 on ` with respect to C. This can be seen when the red or blue
triangle in C collapses to the line P1P2 or P1P3. For n = 4 Theorem 10 coincides
with Theorem 4.

We close this section with an example of a porism for heptagons in Figure 8.
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C

P1

`P3
P2

Figure 7: A porism for triangles: ` is the pole of P1. P2 and P3 on ` are
conjugate points with respect to C.

C

Figure 8: A porism for heptagons: The red or blue heptagon can start in
any point of C.

4 Projective aspects of the Butterfly Porism

The closing condition (1) allows a nice conclusion:

Corollary 11. If the points P1, . . . , P4 on the line ` have the closing property with
respect to a conic C and if ` intersects C in two points then the conjugate points
Q1, . . . , Q4 have also the closing property with respect to C.
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Proof. The cross ratio of four points equals the cross ratio of the corresponding
polar lines, i.e., we have

cr(R,S;Q1, Q4) = cr(r, s; p1, p4) = cr(R,S;P1, P4) =

cr(R,S;P2, P3) = cr(r, s; p2, p3) = cr(R,S;Q2, Q3).

See Figure 9.

R

S

`

P1

P4 P2 P3

Q4

Q1
Q3

Q2

L (the pole of `)

rp1p4
s p3 p2

Figure 9: The closing property of the conjugate points.

Recall that Kocik [6] proved the Butterfly Porism 4 also for an arbitrary even
number of collinear points P1, P2, . . . , P2n, n ≥ 1. (It follows easily from Lemma 5
that the theorem cannot hold for an odd number of points.) The previous corollary
also holds in this case:

Corollary 12. If the points P1, . . . , P2n on the line ` have the closing property with
respect to a conic C and if ` intersects C in two points then the conjugate points
Q1, . . . , Q2n have also the closing property with respect to C.

Proof. For n = 1 the assertion is trivial and the case n = 2 is Corollary 11. We
proceed by induction and suppose that we have proven the claim for some n ≥ 2.
Let us assume that the points P1, P2, . . . , P2(n+1) have the closing property with
respect to C, i.e.,

ϕP2(n+1)
◦ ϕP2n+1 ◦ . . . ◦ ϕP1 = id .
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By Lemma 5 we have that

ϕP2(n+1)
◦ ϕP2n+1

◦ ϕP2n
= ϕP

for a point P on the line `, and by Corollary 11

ϕQ2(n+1)
◦ ϕQ2n+1 ◦ ϕQ2n = ϕQ (6)

for the conjugate point Q of P . Thus, we have

ϕP ◦ ϕP2n−1
◦ . . . ◦ ϕP1

= id

and by the induction hypothesis

ϕQ ◦ ϕQ2n−1
◦ . . . ◦ ϕQ1

= id . (7)

The claim follows when we replace ϕQ in (7) by (6).

If the line ` is tangent to C, then the conjugate points Qi coincide with the point
of contact. However, we can extend the above result to the case when ` does not
meet C:

Theorem 13. If the points P1, . . . , P2n on the line ` have the closing property with
respect to a conic C and if ` does not meet C, then the conjugate points Q1, . . . , Q2n

have also the closing property with respect to C.

Proof. By applying a projective map we may assume that C is the conic given by
〈X,X〉 = 0 and ` the line given by 〈X,L〉 = 0 with L = (0, 0, 1). The projective
map ψ : (x1, x2, x3) 7→ (−x2, x1, x3) maps C to C, and points on ` to the conjugate
points with respect to C. Thus, every closed polygon on C with sides running
successively through the points P1, . . . , P2n is mapped by ψ to a closed polygon on
C with sides running successively through the conjugate points Q1, . . . , Q2n.

Izmestiev noted, that since the cross ratio is invariant under projective transforma-
tions, the closing condition (1) holds for an arbitrary non-degenerate conic C. I.e.,
if P1, . . . , P4 on a line ` have the closing property with respect to a conic C they
have also the closing property with respect to any other conic D which intersects
` in the same points R and S as C. The reasoning is as follows: There exists a
projective map ψ which maps D to C and which has the fixed points R and S.
Let Qi = ψ(Pi) for i = 1, . . . , 4. Then the points Qi have the closing property
with respect to C iff cr(R,S;Q1, Q4) = cr(R,S;Q2, Q3) which is equivalent to
the condition cr(R,S;P1, P4) = cr(R,S;P2, P3). If it is satisfied, then any closed
quadrilateral on C with sides running successively through the points Q1, . . . , Q4

is mapped by ψ−1 to a closed quadrilateral on D with sides running successively
through the points P1, . . . , P4. Notice however, that in general there is no pro-
jective map which maps a closed polygon on C with sides running through the
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points P1, . . . , P4 to a closed polygon on D with sides running through the points
P1, . . . , P4. This is due to the fact that the points P1, . . . , P4 may be inner points
of C but exterior points of D.

Even more generally, one can replace R by a point R′ on ` and then determine the
unique point S′ such that cr(R′, S′;P1, P4) = cr(R′, S′;P2, P3). Then the P1, . . . , P4

have the closing property with respect to any conic D running through R′ and S′.

We can generalise the observation above from four to an arbitrary even number of
points:

Proposition 14. If the points P1, . . . , P2n on the line ` have the closing prop-
erty with respect to a conic C and if ` intersects C in two points R and S, then
P1, . . . , P2n have the closing property with respect to any other conic D through the
points R and S.

Proof. For n = 1 and n = 2 there is nothing more to prove. So we can proceed
by induction and assume that we have proven the claim for some n ≥ 2. Suppose
that the points P2(n+1), P2n+1, . . . , P1 on the line ` have the closing property with
respect to a conic C. I.e., we have

ϕC
P2(n+1)

◦ ϕC
P2n+1

◦ . . . ◦ ϕC
P1

= id

where ϕC
Pi

means the reversion map with respect to C. Then, by the result for
n = 2 we have

ϕC
P2(n+1)

◦ ϕC
P2n+1

◦ ϕC
P2n

= ϕC
P

for some P on ` and also

ϕD
P2(n+1)

◦ ϕD
P2n+1

◦ ϕD
P2n

= ϕD
P (8)

for another conic D through the points R and S. So, we have

ϕC
P ◦ ϕC

P2n−1
◦ . . . ◦ ϕC

P1
= id

and by the induction hypothesis

ϕD
P ◦ ϕD

P2n−1
◦ . . . ◦ ϕD

P1
= id . (9)

If we replace ϕD
P in (9) by (8) the claim follows.

In the case when ` is tangent to C in the point R, Izmestiev gave the closing
criterion

1

R− P1
− 1

R− P4
=

1

R− P2
− 1

R− P3
(10)

for which it is not directly clear that it is projectively invariant. See Figure 10. The
point is, that (10) can easily be reformulated as

cr(R,P3;P1, P4) = cr(R,P1;P3, P2)

13



C

R`
P4 P2

P1 P3

Figure 10: The case when ` is tangent to C.

which is obviously a projectively invariant condition. With the same reasoning as
above, we get:

Proposition 15. If the points P1, . . . , P2n on the line ` have the closing property
with respect to a conic C and if ` is tangent to C in the point R, then P1, . . . , P2n

have the closing property with respect to any other conic D which is tangent to `
in R.

In the case, when ` does not meet C we have the following:

Theorem 16. If the points P1, . . . , P2n on the line ` have the closing property with
respect to a conic C and if ` does not meet C, then P1, . . . , P2n have the closing
property with respect to any other conic D from the three-dimensional bundle of
conics which have the same complex intersections with ` as C.

Proof. As before it suffices to show the claim for n = 2 to start a proof by induction.
We may again assume that C is given by 〈X,X〉 = 0 and the line ` is given by
〈X,L〉 = 0 with L = (0, 0, 1)>. Suppose that the points P1, . . . , P4 on ` satisfy the
closing condition with respect to C. It is clear that the points P1, . . . , P4 satisfy
the closing condition with respect to each member of the three-dimensional bundle
B of conics 〈x1 − a1x3x2 − a2x3

rx3

 ,

x1 − a1x3x2 − a2x3
rx3

〉
= 0.

Each of these conics intersects ` in the same points (1,±i, 0) as C. On the other
hand, the bundle C of conics through (1,±i, 0) is precisely the bundle B.

In particular, for the case of a circle C we obtain:

14



Corollary 17. Let C and D be circles and ` their radical axis. If the points
P1, . . . , P2n on the line ` have the closing property with respect to C, then they also
have the closing property with respect to D (see Figure 11).

c

d
`

P1

P6

P5

P4

P2

P3

Figure 11: Closing property for points on the radical axis of two circles.

We end this discussion with the following closing remark: The porisms which we
presented are all formulated in the framework of the real projective plane. This
allows to state the dual version in each case. For example, the dual version of the
Butterfly Proism 4 reads as follows:

Theorem 18. Let a1, a2, a3, a4 be a quadrilateral circumscribed to a conic C with
sides ai, and let L be a point in RP2. Let pi be the line through L and the in-
tersection of the sides ai and ai+1 (with cyclically read indices). Then there is a
quadrilateral circumscribed to C with sides a′1, a

′
2, a
′
3, a
′
4 such that a′i and a′i+1 meet

on pi for any tangent a′1 of C (see Figure 12).
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