Solution of Riddle 12237

The Logic Coffee Circle*

Abstract

We solve the following riddle: 12237. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let $x_{0}=1$ and $x_{n+1}=x_{n}+\left\lfloor x_{n}^{3 / 10}\right\rfloor$ for $n \geq 0$. What are the first 40 decimal digits of x_{n} when $n=10^{100}$?

1 Solution

We begin by calculating the first few elements of the sequence:

$$
\begin{gathered}
x_{0}=1, x_{1}=2, \ldots, x_{10}=11, x_{11}=13, x_{12}=15, \ldots, x_{23}=37, x_{24}=39 \\
x_{25}=42, x_{26}=45, \ldots
\end{gathered}
$$

We have that for all $m \in \mathbb{N}_{>0}$

$$
\begin{equation*}
\left\lfloor x^{\frac{3}{10}}\right\rfloor=m \quad \Longleftrightarrow \quad m^{\frac{10}{3}} \leq x<(m+1)^{\frac{10}{3}} . \tag{1}
\end{equation*}
$$

For positive integers m define

$$
s_{m}:=\left|\left\{n \in \mathbb{N}_{>0} \mid x_{n}=x_{n-1}+m\right\}\right| .
$$

Note that for $n=\sum_{m=1}^{l} s_{m}$ we have $x_{n}=x_{n-1}+l$ and $x_{n+1}=x_{n}+(l+1)$.
Define $g: \mathbb{N} \rightarrow \mathbb{R}$ by

$$
g(m):=\frac{(m+1)^{\frac{10}{3}}-m^{\frac{10}{3}}}{m} .
$$

Note that by (1) we have that

$$
g(m)-1 \leq s_{m} \leq g(m)+1 .
$$

Now we want to find a suitable approximation of $g(m)$. For this, we first consider the following power series:

$$
(1+y)^{\frac{10}{3}}-1=\sum_{k=1}^{\infty}\binom{\frac{10}{3}}{k} \cdot y^{k}
$$

With this series and $y:=\frac{1}{m}$ we obtain

$$
\begin{aligned}
g(m): & =\frac{(m+1)^{\frac{10}{3}}-m^{\frac{10}{3}}}{m}=\frac{1}{y^{\frac{7}{3}}}\left((1+y)^{\frac{10}{3}}-1\right) \\
& =\underbrace{\frac{10}{3} m^{\frac{4}{3}}+\frac{35}{9} m^{\frac{1}{3}}+\frac{140}{81} \frac{1}{m^{\frac{2}{3}}}}_{=: g_{1}(m)}+\underbrace{\frac{35}{243} \frac{1}{m^{\frac{5}{3}}}-\frac{14}{729} \frac{1}{m^{\frac{8}{3}}} \pm \ldots}_{=: R(m)}
\end{aligned}
$$

By definition of $R(m)$, in particular since $R(m)$ is an alternating series, for each $m \in \mathbb{N}$ we have $0<R(m)<\frac{35}{243} \frac{1}{m^{\frac{5}{3}}}$. Moreover, we have

$$
0<\sum_{m=1}^{\infty} R(m)<\frac{35}{243} \sum_{m=1}^{\infty} \frac{1}{m^{\frac{5}{3}}}=\frac{35}{243} \cdot \zeta\left(\frac{5}{3}\right)<\frac{35}{243} \cdot \frac{17}{8}<\frac{1}{3}
$$

[^0]Therefore, we have that

$$
g_{1}(m)-1 \leq s_{m} \leq g_{1}(m)+2 .
$$

Now, we want to compute $l_{0} \in \mathbb{N}$ with

$$
x_{10^{100}}=x_{10^{100}-1}+l_{0} .
$$

In other words, we have to find the smallest $l_{0} \in \mathbb{N}$ such that $\sum_{m=1}^{l_{0}} s_{m} \geq 10^{100}$. For this, we first notice that

$$
\begin{aligned}
\sum_{m=1}^{l} g_{1}(m)=\frac{10}{3} \sum_{m=1}^{l} m^{\frac{4}{3}}+\frac{35}{9} & \sum_{m=1}^{l} m^{\frac{1}{3}}+\frac{140}{81} \sum_{m=1}^{l} \frac{1}{m^{\frac{2}{3}}} \\
& =\frac{5}{81}\left(54 H_{l}^{\left(-\frac{4}{3}\right)}+63 H_{l}^{\left(-\frac{1}{3}\right)}+28 H_{l}^{\left(\frac{2}{3}\right)}\right)
\end{aligned}
$$

where $H_{l}^{(r)}$ is the l-th harmonic number of order r, defined by $H_{l}^{(r)}:=\sum_{m=1}^{l} \frac{1}{m^{r}}$. Now, with the inequality

$$
10^{100} \leq \sum_{m=1}^{l_{0}} s_{m} \leq \sum_{m=1}^{l_{0}}\left(g_{1}(m)+2\right)=2 l_{0}+\sum_{m=1}^{l_{0}} g_{1}(m)
$$

and the help of Mathematica we find after a short search

$$
l_{0} \geq 6176697077775135894745105594539832252961972
$$

and with the inequality

$$
\sum_{m=1}^{l_{0}} s_{m} \geq \sum_{m=1}^{l_{0}}\left(g_{1}(m)-1\right)=-l_{0}+\sum_{m=1}^{l_{0}} g_{1}(m) \geq 10^{100}
$$

we find the same value for l_{0}. Hence,

$$
l_{0}=6176697077775135894745105594539832252961972 .
$$

Since $g(m)-1 \leq s_{m} \leq g(m)+1$, we have
$x_{10^{100}} \leq \sum_{m=1}^{l_{0}} m s_{m} \leq \sum_{m=1}^{l_{0}} m g(m)+\sum_{m=1}^{l_{0}} m=\left(l_{0}+1\right)^{\frac{10}{3}}-1+\frac{l_{0}\left(l_{0}+1\right)}{2}=: A$,
and analogously

$$
x_{10^{100}} \geq \sum_{m=1}^{l_{0}-1} m s_{m} \geq \sum_{m=1}^{l_{0}-1} m g(m)-\sum_{m=1}^{l_{0}-1} m=l_{0}^{\frac{10}{3}}-1-\frac{l_{0}\left(l_{0}-1\right)}{2}=: B
$$

With Mathematica we see that the first 40 digits of A and B are the same, so the first 40 digits of $x_{10^{100}}$ are

[^0]: *Representative of the TLCC: salome.schumacher@math.ethz.ch

