Solution of Riddle 12246

The Logic Coffee Circle*

We solve the following riddle:

Abstract

12246. Proposed by Seán Stewart, Bomaderry, Australia. Let ζ be the Riemann zeta function, defined for $n \geq 2$ by $\zeta(n)=\sum_{k=1}^{\infty} 1 / k^{n}$. Let H_{n} be the nth harmonic number, defined by $H_{n}=\sum_{k=1}^{n} 1 / \bar{k}$. Prove

$$
\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^{2}}+\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n) H_{n}}{n}=\frac{\pi^{2}}{6}
$$

Solution 1

First, we rearrange the two series on the left-hand side:

$$
\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^{2}}=\sum_{k=1}^{\infty}\left(\sum_{n=2}^{\infty} \frac{1}{n^{2} k^{n}}\right)=\left(\sum_{n=2}^{\infty} \frac{1}{n^{2}}\right)+\sum_{k=1}^{\infty}(\underbrace{\sum_{n=2}^{\infty} \frac{1}{n^{2}(k+1)^{n}}}_{=: a_{k}})=(\zeta(2)-1)+\sum_{k=1}^{\infty} a_{k}
$$

and

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n) H_{n}}{n}=\sum_{k=1}^{\infty}(\underbrace{\sum_{n=2}^{\infty}(-1)^{n} \frac{H_{n}}{n k^{n}}}_{=: b_{k}})=\sum_{k=1}^{\infty} b_{k}
$$

Modifying the well-known power series representation $\ln (1+t)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{t^{n}}{n},|t|<1$, we get

$$
\begin{equation*}
\frac{-\ln (1-t)}{t}=\sum_{n=1}^{\infty} \frac{t^{n-1}}{n} \tag{1}
\end{equation*}
$$

as well as

$$
\begin{align*}
& \frac{\ln (1+t)}{(1+t) t}=\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{(-t)^{n-1}}{(1+t)}\right)=\sum_{n=1}^{\infty} \frac{1}{n}\left(\sum_{m=n}^{\infty}(-t)^{m-1}\right)= \\
& \qquad \sum_{m=1}^{\infty}(-t)^{m-1}\left(\sum_{n=1}^{m} \frac{1}{n}\right)=\sum_{m=1}^{\infty}(-t)^{m-1} H_{m} \tag{2}
\end{align*}
$$

Hence, for every natural number $k \geq 1$,

$$
a_{k}+\frac{1}{k+1} \stackrel{11}{=} \int_{0}^{\frac{1}{k+1}} \frac{-\ln (1-t)}{t} d t=\int_{0}^{\frac{1}{k}} \frac{\ln (1+s)}{(1+s) s} d s \stackrel{\sqrt[2]{2}}{=}-b_{k}+\frac{1}{k}
$$

where we substituted $t=\frac{s}{1+s}$ in the second equation. It follows that $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)=$ $1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3} \mp \cdots=1$. In conjunction with Euler's famous result $\zeta(2)=\frac{\pi^{2}}{6}$, this finishes the proof.

[^0]
Solution 2

First notice that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^{2}}+\sum_{n=2}^{\infty} \frac{(-1)^{n} \mathrm{H}_{n}}{n} \zeta(n)=\sum_{k=1}^{\infty}\left(\sum_{n=2}^{\infty} \frac{1}{n^{2}}\left(\frac{1}{k}\right)^{n}\right)+\left(\sum_{n=2}^{\infty} \frac{(-1)^{n} \mathrm{H}_{n}}{n}\left(\frac{1}{k}\right)^{n}\right) \tag{3}
\end{equation*}
$$

Since for $n=1, \frac{1}{n^{2}}+\frac{(-1)^{n} \mathrm{H}_{n}}{n}=0$, sum (3) is equal to

$$
\begin{equation*}
\sum_{k=1}^{\infty}(\underbrace{\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{1}{k}\right)^{n}}_{=: \mathrm{Li}_{2}\left(\frac{1}{k}\right)}+\underbrace{\sum_{n=1}^{\infty} \frac{(-1)^{n} \mathrm{H}_{n}}{n}\left(\frac{1}{k}\right)^{n}}_{=: \mathrm{Hi}_{1}\left(\frac{1}{k}\right)}) \tag{4}
\end{equation*}
$$

Note that Li_{2} is the so-called dilogarithm. It is well known that $\mathrm{Li}_{2}(1)=\frac{\pi^{2}}{6}$ and that

$$
\begin{equation*}
\mathrm{Li}_{2}(z)=-\int_{0}^{z} \frac{\ln (1-t)}{t} d t \tag{5}
\end{equation*}
$$

Now we will show that $-\mathrm{Hi}_{1}\left(\frac{1}{k}\right)=\mathrm{Li}_{2}\left(\frac{1}{k+1}\right)$ for all $k \geq 1$. To prove this, we use the following result (see AMM 69 (1962), Solution to Problem 4946): If $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ converges, then

$$
\sum_{n=1}^{\infty} a_{n} \mathrm{H}_{n} x^{n}=\int_{0}^{1} \frac{f(x)-f(t x)}{1-t} d t
$$

For $a_{n}:=\frac{(-1)^{n+1}}{n}$ we have $f(x)=\ln (1+x)$, and for $x=\frac{1}{k}$ we obtain

$$
\begin{aligned}
-\mathrm{Hi}_{1}\left(\frac{1}{k}\right)=\sum_{n=1}^{\infty} a_{n} \mathrm{H}_{n}\left(\frac{1}{k}\right)^{n}= & \int_{0}^{1} \frac{\ln \left(1+\frac{1}{k}\right)-\ln \left(1+\frac{t}{k}\right)}{1-t} d t= \\
& \int_{0}^{1} \frac{-\ln \left(\frac{k+t}{k+1}\right)}{1-t} d t=\int_{0}^{\frac{1}{k+1}} \frac{-\ln (1-s)}{s} d s \stackrel{5}{=} \operatorname{Li}_{2}\left(\frac{1}{k+1}\right),
\end{aligned}
$$

where we substituted $t=1-(k+1) s$. So, sum (4) equals $\operatorname{Li}_{2}(1)=\frac{\pi^{2}}{6}$, which completes the proof.

[^0]: *Representative of the TLCC: salome.schumacher@math.ethz.ch

