The Logic Coffee Circle^{*}

Abstract

We solve the following riddle:

12246. *Proposed by Seán Stewart, Bomaderry, Australia.* Let ζ be the Riemann zeta function, defined for $n \ge 2$ by $\zeta(n) = \sum_{k=1}^{\infty} 1/k^n$. Let H_n be the *n*th harmonic number, defined by $H_n = \sum_{k=1}^n 1/k$. Prove

$$\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^2} + \sum_{n=2}^{\infty} (-1)^n \frac{\zeta(n) H_n}{n} = \frac{\pi^2}{6}.$$

Solution 1

First, we rearrange the two series on the left-hand side:

$$\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^2} = \sum_{k=1}^{\infty} \left(\sum_{n=2}^{\infty} \frac{1}{n^2 k^n} \right) = \left(\sum_{n=2}^{\infty} \frac{1}{n^2} \right) + \sum_{k=1}^{\infty} \left(\sum_{\substack{n=2\\ m=2}}^{\infty} \frac{1}{n^2 (k+1)^n} \right) = \left(\zeta(2) - 1 \right) + \sum_{k=1}^{\infty} a_k$$

and

$$\sum_{n=2}^{\infty} (-1)^n \frac{\zeta(n) H_n}{n} = \sum_{k=1}^{\infty} \left(\sum_{\substack{n=2\\ =:b_k}}^{\infty} (-1)^n \frac{H_n}{nk^n} \right) = \sum_{k=1}^{\infty} b_k.$$

Modifying the well-known power series representation $\ln(1+t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{t^n}{n}$, |t| < 1, we get

$$\frac{-\ln(1-t)}{t} = \sum_{n=1}^{\infty} \frac{t^{n-1}}{n}$$
(1)

as well as

$$\frac{\ln(1+t)}{(1+t)t} = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{(-t)^{n-1}}{(1+t)} \right) = \sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{m=n}^{\infty} (-t)^{m-1} \right) = \sum_{m=1}^{\infty} (-t)^{m-1} \left(\sum_{n=1}^{m} \frac{1}{n} \right) = \sum_{m=1}^{\infty} (-t)^{m-1} H_m.$$
(2)

Hence, for every natural number $k \ge 1$,

$$a_k + \frac{1}{k+1} \stackrel{(1)}{=} \int_0^{\frac{1}{k+1}} \frac{-\ln(1-t)}{t} dt = \int_0^{\frac{1}{k}} \frac{\ln(1+s)}{(1+s)s} ds \stackrel{(2)}{=} -b_k + \frac{1}{k},$$

where we substituted $t = \frac{s}{1+s}$ in the second equation. It follows that $\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+1}) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} \mp \cdots = 1$. In conjunction with Euler's famous result $\zeta(2) = \frac{\pi^2}{6}$, this finishes the proof.

^{*}Representative of the TLCC: salome.schumacher@math.ethz.ch

Solution 2

First notice that

$$\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^2} + \sum_{n=2}^{\infty} \frac{(-1)^n \operatorname{H}_n}{n} \zeta(n) = \sum_{k=1}^{\infty} \left(\sum_{n=2}^{\infty} \frac{1}{n^2} \left(\frac{1}{k} \right)^n \right) + \left(\sum_{n=2}^{\infty} \frac{(-1)^n \operatorname{H}_n}{n} \left(\frac{1}{k} \right)^n \right).$$
(3)

Since for n = 1, $\frac{1}{n^2} + \frac{(-1)^n H_n}{n} = 0$, sum (3) is equal to

$$\sum_{k=1}^{\infty} \left(\sum_{\substack{n=1\\ k \neq 1}}^{\infty} \frac{1}{n^2} \left(\frac{1}{k} \right)^n + \sum_{\substack{n=1\\ k \neq 1}}^{\infty} \frac{(-1)^n \operatorname{H}_n}{n} \left(\frac{1}{k} \right)^n \right).$$
(4)

Note that Li₂ is the so-called dilogarithm. It is well known that Li₂ $(1) = \frac{\pi^2}{6}$ and that

$$\text{Li}_{2}(z) = -\int_{0}^{z} \frac{\ln(1-t)}{t} dt.$$
 (5)

Now we will show that $-\operatorname{Hi}_1\left(\frac{1}{k}\right) = \operatorname{Li}_2\left(\frac{1}{k+1}\right)$ for all $k \ge 1$. To prove this, we use the following result (see AMM 69 (1962), Solution to Problem 4946): If $f(x) = \sum_{n=1}^{\infty} a_n x^n$ converges, then

$$\sum_{n=1}^{\infty} a_n \operatorname{H}_n x^n = \int_0^1 \frac{f(x) - f(tx)}{1 - t} \, dt \, .$$

For $a_n := \frac{(-1)^{n+1}}{n}$ we have $f(x) = \ln(1+x)$, and for $x = \frac{1}{k}$ we obtain

$$-\operatorname{Hi}_{1}\left(\frac{1}{k}\right) = \sum_{n=1}^{\infty} a_{n} \operatorname{H}_{n}\left(\frac{1}{k}\right)^{n} = \int_{0}^{1} \frac{\ln\left(1+\frac{1}{k}\right) - \ln\left(1+\frac{t}{k}\right)}{1-t} \, dt = \int_{0}^{1} \frac{-\ln\left(\frac{k+t}{k+1}\right)}{1-t} \, dt = \int_{0}^{\frac{1}{k+1}} \frac{-\ln(1-s)}{s} \, ds \stackrel{(5)}{=} \operatorname{Li}_{2}\left(\frac{1}{k+1}\right),$$

where we substituted t = 1 - (k+1)s. So, sum (4) equals $\operatorname{Li}_2(1) = \frac{\pi^2}{6}$, which completes the proof.