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Abstract

We investigate the relationship between various choice principles and nth-root
functions in rings. For example, we show that the Axiom of Choice is equivalent
to the statement that every ring has a square-root function. Furthermore, we
introduce a choice principle which implies that every integral domain has an nth-
root function (for odd integers n), and introduce another choice principle which
is equivalent to the Prime Ideal Theorem restricted to certain ideals. Finally,
we investigate the dependencies between the two new choice principles and a
choice principle for families of n-element sets.

0 Introduction

Some Forms of Choice Related to Algebra

The investigation of consequences of the Axiom of Choice in algebra has a long
tradition. Below we list a few choice principles in the context of rings and vector
spaces. For more choice principles specifically related to rings we refer the reader to
Howard and Rubin [5, pp. 71–75].

• Krull’s Theorem (FORM 1 CD in [5]): Every proper ideal in a commutative
ring can be extended to a maximal ideal.

Krull proved in [7] that every non-zero ring has a maximal ideal. Since he used
explicitly the Well-Ordering Principle (FORM 1 CD in [5]) in his proof (see [7,
p. 735 f]), one may ask how much of the Axiom of Choice we get back from
Krull’s Theorem. This problem was solved by Hodges [4], who showed that
Krull’s Theorem is in fact equivalent to the Well-Ordering Principle, which is
in turn equivalent to the Axiom of Choice.

• Prime Ideal Theorem (FORM 14 C in [5]): Every commutative ring with a unit
has a prime ideal.

This choice principle is weaker than the Axiom of Choice and is for exam-
ple equivalent to the following statement: For every graph G, if every finite
subgraph of G is 3-colorable, then G is n-colorable, n ≥ 3 (see Läuchli [8]).

1Partially supported by SNF grant 200021 178851.
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• Downward Basis Principle (FORM 1 A in [5]): Every vector space V has the
property that each set of vectors which generates V contains an algebraic
basis.

This choice principle is equivalent to the Axiom of Choice. The proof is due to
Halpern [3] (and simplified by H. Läuchli).

• Vector-Space-Basis Principle (FORM 66 in [5]): Every vector space has an al-
gebraic basis.

Blass proved in [1] that this principle implies Multiple Choice (MC), which is
FORM 67 in [5] and states that for every family F of non-empty sets, there
exists a function f : F → P(

⋃
F ) such that for each X ∈ F , f(X) is

a non-empty finite subset of X. Since in Zermelo-Fraenkel Set Theory ZF,
MC is equivalent to AC, we get that in ZF, the Vector-Space-Basis Principle is
equivalent to the Axiom of Choice. On the other hand, it is not known whether
the statement every vector space over Q has an algebraic basis is equivalent
to AC (see FORM 110 in [5]).

Forms of Choice Related to Rings

In this section, we define some choice principles which are related to rings. For this,
we have to give first some definitions.

In our convention, all rings will be commutative. Let R be a ring and for positive
integers n let

R(n) := {y ∈ R : ∃x(xn = y)}

(i.e., R(n) is the set of nth powers of R). Notice that for every positive integer n
holds 0 ∈ R(n), which shows that R(n) is non-empty.

Definition. A function f : R(n) → R is called an nth-root function if for every
y ∈ R(n), f(y)n = y (i.e., if y ∈ R(n), then f(y) is one of the nth-roots of y).

Let us consider the case when n = 2: The set R(2) may be small, like in zero square
rings (see [10]) where x2 = 0 for all x ∈ R, or large like in the case C = C(2). Let now
R denote an integral domain and consider a2 ∈ R(2). Since x2−a2 = (x−a)(x+a),
the equation x2 = a2 has at most two solutions, and only one solution if 1 = −1. If
R is a finite field with odd characteristic, exactly half of the non-zero elements are
squares; the product of two squares and the product of two non-squares are squares.
The product of a square and a non-square is a non-square. If the characteristic is
even, it is equal to 2 and then all elements of a finite field are squares. If R is an
integral domain and −1 = 1, then x 7→ x2 is injective, and therefore a square root
function exists. If R is an ordered field, e.g., R, one may always choose the larger
of two possible solutions of x2 = a2 as square root of a2. In the case F = C one can
use its structure of a Riemann surface to define a root by identifying an analytical
principal branch of the root function. However, in general we need some form of the
Axiom of Choice to define a square root function, and therefore it is not surprising
that the existence of root functions in rings is related to some forms of choice.
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In the present work we investigate the relationship between the following choice
principles:

Classical Choice principles

• Axiom of Choice AC: Every family of non-empty sets has a choice function.

• Prime Ideal Theorem: Every ideal in a Boolean algebra can be extended to a
prime ideal.

• Axiom of Choice for Families of n-element Sets Cn: Every family of n-element
sets has a choice function.

New choice principles for rings

• nRR: Every ring has an nth-root function.

• nRID: Every integral domain has an nth-root function.

• nRF: Every field has an nth-root function.

Choice principles for families of n-element sets

• Bounded Multiple Choice for Families of n-element Sets kCn (see Zuckerman [11]):
If F = {Yλ : λ ∈ Λ} is a family of n-element sets and k is a positive inte-
ger, then from each Yλ ∈ F we can choose a non-empty set with at most
k elements.

• Cycle Choice for Families of n-element Sets cCn (new): If F = {Yλ : λ ∈ Λ} is
a family of n-element sets, then on each set Yλ ∈ F we can choose a cyclic
order.

In particular, we show the following relations:

1. For all n > 1, nRR⇔ AC (Theorem 2.1)

2. Cn ⇒ nRF (Proposition 3.1) and nRF⇔ nRID (Proposition 3.2)

3. 2RID⇔ C2 ⇔ 2RF (Proposition 3.3)

4. 3RID⇔ C3 ⇔ 3RF (Proposition 3.4)

5. For every odd number m ≥ 3: 2Cm ⇒ mRID (Proposition 3.5)

6. cCn ∧ nRID⇒ Cn (Proposition 3.7)

7. The Prime Ideal Theorem restricted to certain ideals is equivalent to cCp for
odd primes p. (Proposition 5.1)
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8. cCn+1 ⇔
∧n
k=1 Ck (Theorem 4.1)

9. cCn ⇔
∧n
k=1 Ck for composite numbers n (Corollary 4.2)

10. For two different primes p and q, qCp+q ; cCp+q ∨ Cp+q (Theorem 6.7). In
particular, for two different primes p and q, qCp+q implies neither cCp+q nor
Cp+q (Corollary 6.8).

In Section 1, we first give a construction of polynomial rings in arbitrarily many
variables which does not use any non-trivial form of the Axiom of Choice. Then we
give the definition of three choice principles for families of n-element sets, which
are related to nth-root function in rings. In Section 2, we show that the Axiom of
Choice is equivalent to the existence of square-root functions in rings. In Section 3
we investigate the relationship between nth-root functions in integral domains and
some choice principles for families of n-element sets, and in Section 5 we show that
one of these choice principles is equivalent to a weak form of the Prime Ideal Theorem.
In Section 4 we investigate the relationship between two choice principles for families
of n-element sets, and in Section 6 we prove an independence result.

Sections 1–5 are self-contained, whereas Section 6 requires some basic knowledge in
the construction of Fraenkel–Mostowski type permutation models of set theory with
atoms.

1 Basic definitions

1.1 Polynomial Rings

For the sake of completeness, we show that we do not need any non-trivial form
of the Axiom of Choice in order to construct polynomial rings in arbitrarily many
variables.

Let R be a ring and Λ a set. In the literature, polynomial rings in arbitrarily
many variables {Xλ : λ ∈ Λ} are usually defined very explicitly by first defining
the set of monomials M as finitely supported functions Λ → N and then the set
of polynomials as finitely supported functions M → R. In this work we choose a
different approach. We assume the polynomial ring in one variable as given and
define arbitrary polynomial rings as direct limits.

1.2 Direct limit of rings

We first need to establish the notions of a directed set and a direct system.

Definition. A directed set is a set I together with a binary relation � satisfying
the three conditions

1. reflexivity: ∀i ∈ I : i � i
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2. transitivity: ∀i, j, k ∈ I : (i � j) ∧ (j � k)⇒ (i � k)

3. existence of an upper bound: ∀i, j ∈ I ∃k ∈ I : i, j � k.

Definition. A direct system of rings over a directed set (I,�) consists of a set of
rings {Ri : i ∈ I} and for all i, j ∈ I with i � j a ring homomorphism fij : Ri → Rj
satisfying the two conditions

1. ∀i ∈ I : fii = idRi,

2. ∀i, j, k ∈ I, i � j � k : fik = fjk◦ fij.

Ri
fij //

fik   

Rj

fjk~~
Rk

We will first define the direct limit of a direct system via its universal property and
then give the explicit construction.

Definition. Let {Ri : i ∈ I} be a direct system of rings over a directed set (I,�).
A direct limit, denoted colimi∈I Ri, of the direct system is a ring R together with,
for every i ∈ I, a ring homomorphism fi : Ri → R with the following properties.

For all j ∈ I with j � i holds fi◦ fji = fj. Moreover, R together with {fi : i ∈ I} is
universal with respect to this property. This means that for every ring S and for all
ring homomorphisms gi : Ri → S such that for all j ∈ I with j � i holds gi◦ fji = gj
there exists a unique ring homomorphism f : R → S such that for all i ∈ I holds
f ◦ fi = gi.

R

∃! f

��

Rj
fji //

fj

33

gj

++

Ri

fi

88

gi

&&
S

It is not difficult to check that the direct limit is unique up to unique isomorphism.

To construct a direct limit explicitly, define the following equivalence relation on the
disjoint union

⊔
i∈I Ri. Let x ∈ Ri and y ∈ Rj . Then

x ∼ y :⇔ ∃k ∈ I : (i, j � k) ∧ (fik(x) = fjk(y)).

The underlying set of the direct limit is

colimi∈I Ri :=
⊔
i∈I

Ri/ ∼ .
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We now define the ring operations. For an element x ∈
⊔
i∈I Ri we denote by [x] its

equivalence class. Let x ∈ Ri and y ∈ Rj . Let k ∈ I mit i, j � k. Note that because
of fkk(x) = x holds [x] = [fik(x)] and [y] = [fjk(y)], so we define

[x] + [y] := [fik(x) + fjk(y)]

[x] · [y] := [fik(x) · fjk(y)].

It is straight forward to show that this actually defines a ring structure on colimi∈I Ri.
We omit the proof that this is indeed the direct limit of the direct system of rings.

1.3 Polynomial rings in arbitrarily many variables

Now we apply the direct limit of rings to define polynomial rings. Let R be a ring
and Λ a set. Denote by X = {Xλ : λ ∈ Λ} the set of variables.

The directed set. Let fin(X ) be the set of all finite subsets of X . For every
S ∈ fin(X ) let Enum(S) be the set of all bijections {1, . . . , |S|} → S. Let

I :=
⋃

S∈fin(X )

{S} × Enum(S) ,

so the elements of I are ordered pairs 〈S, f〉 with S ∈ fin(X ) and f ∈ Enum(S). It
is not difficult to see that I, together with the relation

〈S, f〉 � 〈S′, f ′〉 ⇔ S ⊆ S′,

is a directed set.

The direct system of rings. Recall that we assumed the polynomial ring R[X]
as known, and we can of course iterate and consider the polynomial ring R[X][Y ] of
polynomials with coefficients in R[X]. We will also need the universal property of
the polynomial ring.

Universal Property of the Polynomial Ring. Let A and B be rings and let
ϕ : A → B be a ring homomorphism. Consider A ⊂ A[X] in the usual way. Let
b ∈ B be arbitrary. Then, there exists a unique ring homomorphism ϕ̄ : A[X] → B
such that ϕ̄|A = ϕ and ϕ̄(X) = b.

Let 〈S, f〉 ∈ I and denote RS,f := R[f(1)][f(2)] . . . [f(|S|)]. Let 〈S′, f ′〉 ∈ I with
〈S, f〉 � 〈S′, f ′〉. Consider R ⊂ R[f ′(1)] . . . [f ′(|S′|)] in the usual way. With the
universal property of the polynomial ring we can extend this inclusion uniquely to
a ring homomorphism R[f(1)] → R[f ′(1)] . . . [f ′(|S′|)] mapping f(1) to f(1), which
is also an element of S′ since S ⊆ S′. In particular the extension is independent of
f ′. Inductively, there exists a unique ring homomorphism

f〈S,f〉,〈S′,f ′〉 : R[f(1)] . . . [f(|S|)]→ R[f ′(1)] . . . [f ′(|S′|)]

mapping for all n ∈ {1, . . . , |S|} the element f(n) to f(n). It is obvious that this
defines a direct system.
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Definition. The polynomial ring R[X ] is defined as the direct limit of the above
direct system.

The polynomial ring satisfies the following universal property.

Universal Property of the Polynomial Ring in Arbitrarily Many Vari-
ables. Let S be a ring and let ϕ : R→ S be a ring homomorphism. Then, for every
map α : Λ → S there exists a unique ring homomorphism ϕ̄ : R[X ] → S satisfying
the two conditions

1. ϕ̄|R = ϕ,

2. ∀λ ∈ Λ: ϕ̄(Xλ) = α(λ).

1.4 Choice principles for families of n-element sets

Let n be a positive integer. If F = {Yλ : λ ∈ Λ} is such that for each λ ∈ Λ we have
|Yλ| = n (i.e., Y is an n-element set), then F is called a family of n-element sets.

The Axiom of Choice for Families of n-element Sets, denoted Cn, states that every
family F = {Yλ : λ ∈ Λ} of n-element sets has a choice function, i.e., there is a
function

f : F −→
⋃

F

Yλ 7−→ f(Yλ) ∈ Yλ
which chooses an element from each set Yλ ∈ F .

A weaker choice principle than Cn we obtain by requiring that f(Yλ) ⊆ Yλ is a
non-empty set with at most k elements.

Definition. For positive integers k, n with k ≤ n, k-Bounded Multiple Choice for
Families of n-element Sets, denoted kCn, states that if F = {Yλ : λ ∈ Λ} is a family
of n-element sets, then there exists a function which chooses from each Yλ ∈ F a
non-empty set with at most k elements.

Below, we shall only consider the case when k = 2, denoted 2Cn.

The fact summarizes two results which are used later. The first part is well-known
in the case k = 1, but we see that the generalization to k ≥ 1 is almost immediate.

Fact 1.1. (a) If m and n are positive integers and m divides n, then for every k ≤ m
holds kCn ⇒ kCm. In particular, Cn ⇒ Cm.

(b) If n is a positive composite integer and we have Ck for all 1 ≤ k < n, then we
also have Cn.

Proof. (a) Let Fm = {Yλ : λ ∈ Λ} be a family of m-element sets, let k := n
m , and

for every Yλ ∈ F let
Y k
λ := {〈x, i〉 : x ∈ Yλ ∧ i ∈ k} .
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Then Y k
λ is an n-element set and the family Fn = {Y k

λ : λ ∈ Λ} is a family of
n-element sets. By Cn, Fn has a choice function choosing subsets of F of size at
most k, say f . Let g : Fm →

⋃
Fm be defined by stipulating

x ∈ g(Yλ) ⇐⇒ ∃i ∈ k
(
〈x, i〉 ∈ f(Y k

λ )
)
,

i.e. we “forget” the second coordinate of the elements chosen by f . Since f is a
choice function for Fn, g is a choice function for Fm.

(b) This is a consequence of Jech [6, Theorem 7.15] (see also Halbeisen [2, Theo-
rem 6.17]). a

In order to define cycle choice for families of n-element sets, we recall first the notion
of a cyclic order: The triples (x, y, z) occurring in the following definition can be
read and thought of as “after x comes y and then z”.

Definition. Let S be any set. A cyclic order on S is a subset C ⊆ S × S × S
satisfying the following requirements:

1. cyclicity: (x, y, z) ∈ C ⇒ (y, z, x) ∈ C

2. asymmetry: (x, y, z) ∈ C ⇒ (z, y, x) /∈ C

3. transitivity: (x, y, z) ∈ C ∧ (x, z, w) ∈ C ⇒ (x, y, w) ∈ C

4. totality: If x, y, z are pairwise distinct, then (x, y, z) ∈ C ∨ (z, y, x) ∈ C.

We will usually write [x, y, z] instead of (x, y, z) ∈ C.

One source of cyclic orders is the following. Assume that (S,<) is a totally ordered
set. Then, we get a cyclic order by stipulating [x, y, z] if x < y < z and “closing”
this relation under cyclicity.

There are two important concepts in the notion of cyclic orders, namely immediate
successors and intervals.

Definition. Let S be a cyclically ordered set and let s ∈ S. The immediate succes-
sor of s is the unique element s+ not equal to s such that there does not exist any
element t with [x, t, x+].

Immediate successors might not always exist, but they do if S is a finite set. They
also can be used to define cyclic orders, because a cyclic order is uniquely determined
by the immediate successors of every element.

Definition. Let S be a cyclically ordered set and s, s′ ∈ S. Similar to the real line
we define the intervals

• (s, s′) := {t ∈ S : [s, t, s′]}

• [s, s′) := (s, s′) ∪ {s}

8



• (s, s′] := (s, s′) ∪ {s′}

• [s, s′] := (s, s′) ∪ {s, s′}.

The following are simple consequences of the definition of a cyclic order.

Fact 1.2. If |S| ≤ 2, then the empty set is a cyclic order on S. Otherwise, a cyclic
order is always non-empty.

Fact 1.3. If [x, y, z], then x, y, z are pairwise distinct.

Proof. Assume that x = y. Applying cyclicity twice yields [z, x, x], which is a
contradiction to asymmetry. a

Definition. The choice principle Cycle Choice for Families of n-element Sets, denoted
cCn, states that if F = {Yλ : λ ∈ Λ} is a family of n-element sets, then there exists
a function which chooses on each set Yλ ∈ F a cyclic order.

2 Roots in rings and the Axiom of Choice

In this section we consider the most classical of all choice axioms: the Axiom of Choice
itself. The strategy we use to relate it to root functions in rings is the following.
When constructing a choice function for a family of sets, we will use these sets as well
as their elements as indefinite variables in a polynomial ring over some convenient
ring, and then we will divide out an appropriate ideal to set a set and its elements
in relation as well as getting rid of algebraic difficulties.

Theorem 2.1. The following are equivalent:

1. AC – Axiom of Choice.

2. nRR holds for all n > 1 – every ring has an nth-root function.

3. nRR holds for some n > 1.

4. AC’ – For every collection F of non-empty sets there is a function choosing a
singleton or a proper non-empty finite subset of every set in F . Formally, there
exists g : F →

⋃
Y ∈F P(Y ) \ {∅} such that for all Y ∈ F the set g(Y ) ( Y

is a proper finite subset, unless |Y | = 1, in which case g(Y ) = Y .

Proof. (1 ⇒ 2) Let R be a ring, let n ∈ N and denote as in the introduction
R(n) := {xn : x ∈ R}. For x, x̃ ∈ R define the equivalence relation x ∼ x̃⇔ xn = x̃n.
Denote the equivalence class of x by [x] and let

F := R/ ∼=
{

[x] : x ∈ R
}
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be the set of equivalence classes. Clearly F is a partition of R into pairwise disjoint
non-empty sets. Hence, by AC there is a choice function f for F . Define now the
nth root function n

√
· : R(n) → R by stipulating

n
√
y := f

(
[x]
)
,

where [x] is such that [x] = {x̃ ∈ R : x̃n = y}.

(2⇒ 3) is trivial.

(3⇒ 4) For some index-set Λ, let F = {Yι : ι ∈ Λ} be a family of pairwise disjoint
non-empty sets. Denote by A =

⋃
F the union over all sets in F . Let I ⊆ Z[A ∪F ]

be the ideal generated by

t · s for all s, t ∈ A ∪F with s 6= t, and

xn − Y for all x ∈ A and Y ∈ F with x ∈ Y .

Notice that, for example, Y 2
ι = xn ·Y = xn−1 · (x ·Y ) ≡ xn−1 ·0 = 0 mod I. Finally,

let
R := Z[A ∪F ] / I

be the polynomial ring over A ∪ F modulo the ideal I. For every k ∈ N, let
A (k) := {xk : x ∈ A }. It is easy to see that as a Z-module R is freely spanned by
{1} ∪A (1) ∪A (2) ∪ . . . ∪A (n−1) ∪F , and thus, as a Z-module,

R = Z1⊕A(1) ⊕A(2) . . .⊕A(n−1) ⊕ F,

where A(k) and F are the free Z-modules over A (k) and F , respectively. For Y ∈ F
denote by π∪Y the projection

π∪Y : R→
⊕
x∈Y

Zx ⊆ A(1),

and by π1 the projection
π1 : R→ Z1.

By nRR, there is an nth-root function n
√
· : R(n) → R. Let us identify the elements

of F and
⋃

F with the corresponding elements in F ⊆ R(n) and A(1) respectively.
To define the function g : F →

⋃
Y ∈F P(Y ), let Y ∈ F , and let r = n

√
Y ∈ R.

First observe that since π1 is a ring homomorphism (identifying Z1 with Z) and
π1(Y ) = 0, π1(r)n = π1(rn) = 0, and since π1(r) ∈ Z, we obtain π1(r) = 0. We can
write r = s+ t̄, where s = π∪Y (r) and t̄ = r− s ∈ ker(π∪Y )∩ ker(π1). In particular,

s ∈
⊕
x∈Y

Zx and t̄ ∈
⊕

x∈A \Y

Zx ⊕
n−1⊕
k=2

A(k) ⊕ F.

An easy computation shows that

Y = rn = sn,
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as all terms of the form sk t̄n−k belong to the ideal I, except when k = n.

Writing s in coordinates s =
∑m

i=1 αixi, where x1, . . . , xm ∈ Y are distinct and
α1, . . . , αm ∈ Z \ {0}, we compute

Y = sn =

(
m∑
i=1

αixi

)n
=

m∑
i=1

αni Y.

Thus
∑m

i=1 α
n
i = 1.

We consider two cases:

Case 1 : n is even.
∑m

i=1 α
n
i = 1 implies that m = 1 and α1 = ±1. In this case, set

g(Y ) = {x1}.

Case 2 : n is odd. Then either m = 1 and α1 = 1 or there exist some i, j such that
αi > 0 and αj < 0. In this case, set g(Y ) = {xi : αi > 0}.

It is clear that in both cases g(Y ) satisfies the requirements of AC’.

(4⇒ 1) Let F be a collection of non-empty sets. Consider the collection of all their
subsets F ′ =

⋃
Y ∈F P(Y ). By AC’, there is a function g : F ′ →

⋃
A∈F ′ P(A) = F ′

satisfying AC’.

Note that for every Y ∈ F the intersection
⋂
n∈N g

n(Y ) is a singleton since g(Y )
is finite and the sequence {gn(Y )}n∈N is strictly decreasing until it stabilizes to a
singleton. It is clear that the function f : F →

⋃
F , where f(Y ) is such that⋂

n∈N g
n(Y ) = {f(Y )}, is a choice function. a

As we can see in the proof, we do not need root functions on all rings to get AC. It is
enough to have root functions on all rings of characteristic 0. Note however that the
ring R we constructed has an abundance of zero divisors. This is unavoidable, as we
will see later: If we allow only integral domains for defining square root functions,
we get much weaker choice principles than AC.

3 Root Functions in Integral Domains

3.1 Relationships Between n-Element Choice and Root Functions

Proposition 3.1. If every family of n-element sets has a choice function, then every
integral domain has an nth-root function. In short, Cn ⇒ nRF.

Proof. Let F be an arbitrary field and denote as before F(n) := {y ∈ F : ∃x(xn = y)}.
Recall that for any y in F, the polynomial Xn − y has at most n zeros in F. More
precisely, for all y ∈ F(n) with y 6= 0 the cardinality of the set Wy := {x ∈ F : xn = y}
equals the number of nth roots of unity in F. Recall as well that if we write n = pr ·k,
where p is the characteristic of F and pr the highest power of p dividing n, then the
number of nth roots of unity in a splitting field of F is precisely k. In particular, it
divides n. It is clear that the nth roots of unity of F form a subgroup of the nth
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roots of unity in any splitting field. So, by Lagrange’s Theorem, this number
and therefore also the cardinality |Wy| divides n.

However, by Fact 1.1.(a), for any k | n, Cn ⇒ Ck. Hence, define

F := {Wy ⊆ F : y ∈ F(n) ∧ y 6= 0}

and apply Ck to F to get an nth root function on F(n) \ {0}. By choosing 0 as nth
root of 0, we get an nth root function on F(n). a

Proposition 3.2. Every field has an nth-root function if and only if every integral
domain has an nth root function. In short nRF⇔ nRID.

In particular, Cn ⇒ nRID.

Proof. (⇒) Let R be an arbitrary integral domain. Consider F := Quot(R), the
quotient field of R. Let y 6= 0 be an element of R(n) = {y ∈ R : ∃x ∈ R(xn = y)}.
Let Wy := {x ∈ F : xn = y}. Recall that k := |Wy| divides n and is independent
of y. Let ζ be a primitive kth root of unity in F. Note that such a ζ exists, since
for every y ∈ F(n) the set { xx′ : x, x′ ∈ Wy} is a cyclic group of roots of unity of
order k which is independent of y. Now we explain how ζ induces a cyclic order on
Wy. If n = 2 then it is the empty cyclic order. Otherwise, for every x ∈ Wy the
element ζx is the immediate successor of x. This means that for every x ∈ Wy we
have [x, x′, x′′] if and only if there exist integers 0 < α < β < k with x′ = ζα · x and
x′′ = ζβ · x.

With Proposition 3.1, we have an nth-root function n
√
· on F(n). Now, we can

define the nth root of y in R(n) as the first element after n
√
y that is in R in the

cyclic order on Wy, i.e. the unique element x in R such that there does not exist
any x′ ∈ R with [ n

√
y, x′, x].

(⇐) This follows from the fact that every field is an integral domain.

The last statement is now a direct consequence of Proposition 3.1. a

3.2 Small values of n

In this section we’ll see that for small values of n the converse of the implications
above are true as well.

Proposition 3.3. The following choice principles are equivalent.

(i) Every family of two-element sets has a choice function.

(ii) Every integral domain has a square root function.

(iii) Every field has a square root function.

In short C2 ⇔ 2RID⇔ 2RF.

12



Proof. ((i)⇒ (ii)) This implication is clear from Proposition 3.2.

((ii)⇒ (iii)) This implication is clear since every field is also an integral domain.

((iii) ⇒ (i)) Let F be a family of pairwise disjoint 2-element sets and denote the
union by X :=

⋃
F . Furthermore, let K be a field of characteristic not equal to 2

and let F := Quot(K[X ]) be the field of rational functions with variables in X and
coefficients in K. As in the introduction denote F(2) := {y ∈ F : ∃x ∈ F(x2 = y)}.
Consider the set

S :=
{
x2 − 2xx̃+ x̃2 : {x, x̃} ∈ F

}
.

Notice that S ⊆ F(2). Also notice that the square roots of x2−2xx̃+ x̃2 are precisely
x − x̃ and x̃ − x, and these two elements are different because the characteristic of
F is not equal to 2. By assumption there exists a square root function sq : F(2) → F
for F. Now, we define a choice function f for F by stipulating

f
(
{x, x̃}

)
=

{
x if sq(x2 − 2xx̃+ x̃2) = x− x̃,

x̃ if sq(x2 − 2xx̃+ x̃2) = x̃− x.

a

Proposition 3.4. The following choice principles are equivalent:

(i) Every family of three-element sets has a choice function.

(ii) Every integral domain has a third-root function.

(iii) Every field has a third-root function.

In short C3 ⇔ 3RID⇔ 3RF.

Proof. (i) ⇒ (iii): This is Proposition 3.1.
(ii) ⇔ (iii): This is Proposition 3.2.

(ii)⇒ (i): Let F := {Yι | ι ∈ Λ} be a collection of 3-element sets and let F4 be a field
with 4 elements. Denote X :=

⋃
F and let R = F4[X ] be the ring of polynomials

with variables in X and coefficients in F4. Recall that the multiplicative group F∗4
of F4 is cyclic, and a generator ζ ∈ F∗4 is a primitive third root of unity.

For every Yι ∈ F consider the set

Sι := {x+ ζy + ζ2z : x, y, z ∈ Yι pairwise different}.

The set Sι has 6 elements and is closed under multiplication by ζ. Note that for
every p ∈ R holds p3 = (ζp)3. Consequently the set {p3 : p ∈ Sι} has only two
elements. Denote them by pι and qι. With 3RID we can choose a third root 3

√
pι

of pι and a third root 3
√
qι of qι. Note that 3

√
pι and 3

√
qι are elements of Sι. Let

x, y ∈ Yι be the variables of 3
√
pι and 3

√
qι which occur with coefficient 1. Now we

get a choice function for F as follows. If x = y we can choose x ∈ Yι. Otherwise we
choose the unique element in Yι \ {x, y}. a

13



3.3 Root functions in integral domains, bounded choice and cyclic
choice

Proposition 3.5. Let m ≥ 3 be an odd integer. If for every family of m-element sets
there exists a choice function choosing subsets of size at most two, then every integral
domain has an mth-root function. In short, for every odd m ≥ 3, 2Cm ⇒ mRID.

Proof. We prove 2Cm ⇒ mRF and then use Proposition 3.2.

Let F be an arbitrary field. Denote as always F(m) := {y ∈ F : ∃x ∈ F(xm = y)}.
For y ∈ F(m) denote Wy := {x ∈ F : xm = y}, i.e., the set of mth roots of
y. Then there is l | m such that for every non-zero element y ∈ F(m) we have
|Wy| = l. By Fact 1.1 the principle 2Cl holds, and we get a function f from
F := {Wy ⊆ F : y ∈ F(m) ∧ y 6= 0} to the power set of

⋃
F with the following

properties:

∀Wy ∈ F : f(Wy) ⊆Wy ∧ |f(Wy)| ∈ {1, 2}.

If, for a given y in F(m), the set f(Wy) has only one element, choose that element as
the mth root of y. If f(Wy) has two elements x1 and x2, let k := m−1

2 and observe
that

xk+1
1

xk2
=
xk+1

2

xk1
.

Hence this element is invariant under permutation of x1 and x2. In addition(
xk+1

1

xk2

)m
=

(xm1 )k+1

(xm2 )k
=
yk+1

yk
= y,

so we can choose this element as a root of y. a

Proposition 3.6. Let p be an odd prime number and let m = p+ 2. The statement
that every integral domain has an mth root function does not imply that every family
of m-element sets has a choice function or that every family of m-element sets can
be simultaneously cyclically ordered. In short, if p is prime and m = p + 2 is odd,
then mRID ; cCm ∨ Cm.

Proof. This follows immediately from Proposition 3.5 and Corollary 6.8. a

Proposition 3.7. Let n ≥ 4 be an integer. Assume that every family of n-element
sets can be simultaneously cyclically ordered. Assume also that every integral domain
has an nth root function. Then, every family of n-element sets has a choice function.
In short, cCn ∧ nRID⇒ Cn.

Proof. The proof is similar to the case n = 3. Let F = {Yι | ι ∈ Λ} be a collection of
n-element sets and choose a prime number p with gcd(n, p) = 1. Let Yι be cyclically
ordered. Define

m := pϕ(n),

14



where ϕ : N→ N is Euler’s totient function. Note that

|F∗m| = m− 1 = pϕ(n) − 1.

By Euler’s Theorem we have that

n | pϕ(n) − 1

since gcd(n, p) = 1. Therefore, there is a k ∈ N with nk = m−1. Choose a generator
ζ of the multiplicative group of Fm. Note that

ord(ζk) = n.

Consider the set

Sι :=

{
n−1∑
i=0

ζkixi : xi ∈ Yι, xi+1 immediate successor of xi

}
.

Note that Sι has cardinality n and is closed under multiplication with ζ. Moreover
for every element p ∈ Sι holds (ζp)n = pn, so all elements of Sι have the same
nth power p. With nRID we can choose an nth-root n

√
p of p. Our choice function

chooses the unique element x ∈ Yι that in n
√
p occurs with coefficient 1. a

Fact 3.8. Let m ≥ 3 be an odd number. Let F be a family of m-element sets. If
F can be simultaneously cyclically ordered and in addition has a choice function
choosing subsets of cardinality at most 2, then it has a choice function. In short, for
odd numbers m ≥ 3: cCm ∧ 2Cm ⇒ Cm.

Proof. Let F = {Yι | ι ∈ Λ} be a family of m-element sets and assume that cCm
and 2Cm hold. Let ι ∈ Λ. With 2Cm we now choose a subset {x, x′} ⊂ Yι. If x = x′

our choice function chooses x. Otherwise, the half-open intervals [x, x′) and [x′, x)
are both non-empty, cover all of Yι and do not have the same length because m is
odd. Our choice function chooses the smallest element of the shorter interval. a

4 Relations between cycle choice and the axiom of choice
for families of n-element sets

In this section we leave rings aside and investigate the relation between two weak
choice principles, Cycle Choice and the Axiom of Choice for Families of n-element sets.

Theorem 4.1. Let n be a natural number. Then, every family of (n + 1)-element
sets can be simultaneously cyclically ordered if and only if for each k ≤ n, every
family of k-element sets has a choice function. In short, for every natural number
n we have that cCn+1 ⇔

∧n
k=1 Ck

15



Proof. (⇒) Let n ∈ N and assume that cCn+1 holds. Let k ∈ {1, 2, . . . , n} and let

F = {Yλ : λ ∈ Λ}

be a family of k-element sets. Let A = {a0, a1, . . . , an−k} be a (n − k + 1)-element
set with A ∩ Yλ = ∅ for all λ ∈ Λ. Since cCn+1 holds, for every λ ∈ Λ we can
choose a cyclic order on Yλ ∪ A. We define now a choice function by choosing the
first element in the cyclic order on Yλ ∪A that comes after the element a0, i.e., the
unique element y ∈ Yλ such that there does not exist any y′ ∈ Yλ with [a0, y

′, y].

(⇐) Let n ∈ N and assume that Ck holds for every 1 ≤ k ≤ n. Let F = {Yλ : λ ∈ Λ}
be a family of (n+ 1)-element sets. For every 1 ≤ k ≤ n let

fk :
{
Y ⊂

⋃
F : |Y | = k

}
→
⋃

F

be a choice function. Let λ ∈ Λ. We define a directed graph on Yλ by putting a
directed edge from x ∈ Yλ to y ∈ Yλ if and only if fn (Yλ \ {x}) = y. Note that
every vertex has precisely one outgoing edge, and in total there are as many edges
as vertices. Now there are three cases to investigate.

Case 0: The graph on Yλ is a cycle graph.
In this case we are done, we simply define the cyclic order by stipulating that y is
the immediate successor of x if there is a directed edge from x to y.

In the other two cases, we will see that we can actually define a choice function on
F . We will first do that and then treat the cases together.

Case 1: There is a vertex which is not the endpoint of any edge.

Since the set of such vertices A without incoming edge cannot be all of Yλ, we can
choose x0,λ := f|A|(A).

Case 2: Every vertex has an incoming edge, but the graph is no cycle graph.

In this case the graph on Yλ is a union of disjoint cycles C0, C1, . . . , Cl for an l ≥ 1.
Now because |Ci| ≤ k we can choose a vertex ci from every cycle via ci := f|Ci|(Ci),
and then we can choose out of those

x0,λ := fl+1 ({ci : i ∈ {0, 1, . . . , l}}) .

In Cases 1 and 2 we can now recursively define a total order on Yλ by declaring
the immediate successor of xi,λ for 0 ≤ i ≤ n to be fn−i(Yλ \ {x0,λ, x1,λ, . . . , xi,λ}).
Recall that every total order induces a cyclic order, and we are done. a

Corollary 4.2. Let n ∈ N be a composite number. Then, every family of n-element
sets cay by simultaneously cyclically ordered if and only if for every 1 ≤ k ≤ n, every
family of k-element sets has a choice function. In short, if n ∈ N is a composite
number then cCn ⇔

∧n
k=1 Ck.
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Proof. Let n ∈ N be a composite number. By Theorem 4.1 it suffices to prove∧n−1
k=1 Ck ⇒ Cn, but this implication is well-known (see Fact 1.1.(b)). a

5 Cyclic Choice for Primes and a Weak Form of the
Prime Ideal Theorem

Corollary 4.2 means that for composite numbers n, the axiom cCn is much stronger
than it seems on first sight. The following proposition stands a bit in contrast to
that. For prime numbers p we show that cCp is equivalent to being able to extend
just certain ideals in certain rings to prime ideals, which looks like a very weak
assertion.

Proposition 5.1. Let p be an odd prime number. The axiom cCp, which states that
every family of p-element sets can be simultaneously cyclically ordered, is equivalent
to the following weak version of the Prime Ideal Theorem:

Let K be a field with characteristic not equal to p. Let F = {Yλ : λ ∈ Λ} be a family
of pairwise disjoint sets with p elements. Then, the ideal 〈Y −xp : Y ∈ F , x ∈ Y 〉 in
the ring K[

⋃
F ∪F ] can be extended to a prime ideal p such that for all x, x′ ∈

⋃
F

with x 6= x′ the element x− x′ is not in p.

Proof. Assume first the weak version of the Prime Ideal Theorem. Let K = C. Let
F = {Yλ : λ ∈ Λ} be a collection of sets each of which has precisely p elements. Let
p be a prime ideal in the ring K[

⋃
F ∪F ] such that

• p ⊇ 〈Y − xp : Y ∈ F , x ∈ Y 〉

• ∀x, x′ ∈
⋃

F : x− x′ /∈ p.

Let R := K[
⋃

F ∪F ]/p and denote by π : K[
⋃

F ∪F ]→ R the usual projection.
Since p is a prime ideal, the ring R is an integral domain. Let Y ∈ F . The equation
T p = π(Y ) in R by construction has p pairwise distinct solutions, namely π(x) for
every x ∈ Y . Recall that the number of zeroes of a polynomial in an integral domain
is at most its degree. Let ζ ∈ C be a primitive pth root of unity. Observe that for
every x ∈ Y the polynomial T p = π(Y ) also has the pairwise distinct solutions
ζkπ(x) with k ∈ {0, . . . , p− 1}. Therefore, for every x, x′ ∈ Y there exists a k such
that π(x) = ζkπ(x′). Now we define a cyclic order on Y by saying that x′ is the
immediate successor of x if π(x′) = ζπ(x).

For the other direction, let K be a field with characteristic not equal to p. Let
F = {Yλ : λ ∈ Λ} be a family of pairwise disjoint sets with p elements. Assume
that each Y ∈ F is cyclically ordered. Let I := 〈Y − xp : Y ∈ F , x ∈ Y 〉 be an
ideal in the ring K[

⋃
F ∪F ].

Step 1: Let L be a splitting field of the polynomial T p − 1 over K. It suffices to
consider L instead of K.

17



There is an obvious injection ι : K[
⋃

F ∪F ]→ L[
⋃

F ∪F ], namely the inclusion.
Let IL be the ideal in L[

⋃
F ∪F ] generated by I. Assume that we can extend IL

to a prime ideal pL in L[
⋃

F ∪F ] such that for any x, x′ ∈
⋃

F with x 6= x′ holds
x−x′ /∈ pL. Then p := ι−1(pL) will be a prime ideal in K[

⋃
F ∪F ], because under

ring homomorphisms it is always true that the inverse image of a prime ideal is a
prime ideal. In addition, observe that p = pL ∩K[

⋃
F ∪F ]. Therefore, no x− x′

with x 6= x′ lies in p.

Step 2: Assume K = L.

Let ζ ∈ L be a primitive pth root of unity. For x ∈
⋃

F let x+ be the immediate
successor of x, i.e., the unique element not equal to x such that there does not exist
any element x′ with [x, x′, x+]. We claim that

p := 〈I ∪ {x− ζx+ : x ∈
⋃

F}〉

has the desired properties.

First we show that p is a prime ideal. Let a, b ∈ L[
⋃

F ∪F ] be such that ab ∈ p. If
we can show that either a or b is in p, then we are done by the definition of a prime
ideal. The idea here is the following: The polynomial ring L[

⋃
F ∪F ] is the direct

limit of its polynomial subrings with finitely many variables. Likewise, both a and b
only involve finitely many variables. In this way we reduce the situation to finitely
many variables. Let F ′ ⊂ F be a finite subset as follows. First we require that
a, b ∈ L[

⋃
F ′ ∪F ′]. Next, denote by S := {Y − xp : Y ∈ F , x ∈ Y } ∪ {x − ζx+ :

x ∈
⋃

F} the set of generators of p. Then there exist α1, . . . , αn ∈ L[
⋃

F ∪F ] and
c1, . . . , cl ∈ S such that ab ∈ L[α1, . . . , αn][c1, . . . , cl], i.e., we write ab as a polynomial
with coefficients in L[α1, . . . , αn]. We also require that α1, . . . , αn, c1, . . . , cl ∈ S ∈
L[
⋃

F ′ ∪ F ′]. Since F ′ is finite, for every Y ∈ F ′ we can choose an element
xY,1. By considering it “minimal” the cyclic order yields a total order on Y . Write
Y = {xY,1, . . . , xY,p} with xY,i < xY,i+1. By the universal property of the polynomial
ring there exists a unique homomorphism ϕ : L[

⋃
F ′ ∪F ′]→ L[F ′] satisfying

• ϕ|L = id

• ∀Y ∈ F ′ ∀xY,k ∈ Y : ϕ(xY,k) = ζkY

• ∀Y ∈ F ′ : ϕ(Y ) = Y p.

Also by considering L[
⋃

F ′ ∪F ′] = L[F ′][
⋃

F ′] the map ϕ is just an evaluation
homomorphism followed by the injection Y 7→ Y p. From this we see that

ker(ϕ) = 〈{Y − xp : Y ∈ F ′, x ∈ Y } ∪ {xY,k − ζkxY,1 : Y ∈ F ′, k = 1, . . . , p}〉.

Note that by construction ab ∈ ker(ϕ). Also note that ϕ surjects on an integral
domain, hence its kernel is a prime ideal. Therefore, a or b is in ker(ϕ), which is a
subset of p, and we are done.

It remains to prove that for all x, x′ ∈ F with x 6= x′ the difference x− x′ is not in
p. We argue by contradiction, i.e., we assume that x − x′ ∈ p. Let Y be such that
x ∈ Y . Let ψ : L[

⋃
F ∪F ]→ L[x] be the evaluation homomorphism such that
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• ψ|L[x] = id

• ∀x̃ ∈ Y : ψ(x̃) = ζkx, where k is such that x̃− ζkx ∈ p

• ψ(Y ) = xp

• ψ|F\{Y } = 0

• ∀Ỹ ∈ F \ {Y } : ψ|Ỹ = 0.

Obviously p ⊂ ker(ψ), but still x /∈ ker(ψ). If x′ /∈ Y then we are already done since
clearly x′ ∈ ker(ψ). If x′ ∈ Y , observe that since there exists a k ∈ {1, . . . , p − 1}
with x − ζkx′ ∈ p we also have that x′ − ζkx′ = (1 − ζk)x′ ∈ p. This implies that
x′ ∈ p. But then x, x′ lie in ker(φ), which is a contradiction. a

Now we want to say a word about the case p = 2. Recall that cC2 is true since for
2-element sets, the empty order is a cyclic order. Let Y ∈ F and denote Y = {x, x̃}.
Since Y −x2 and Y −x̃2 are in the ideal, so is x2−x̃2, which is equal to (x−x̃)(x+x̃).
If these elements are supposed to lie in a prime ideal not containing x − x̃, then it
must contain x+ x̃. Now we can check that

K
[⋃

F ∪F
]/〈

x+ x̃, Y 2 − x : Y ∈ F , x, x̃ ∈ Y
〉 ∼= K[F ],

so 〈Y − x2 : Y ∈ F , x ∈ Y 〉 can be extended to a prime ideal.

6 A consistency result

In this section, we show that for two different primes p and q, qCp+q does neither im-
ply cCp+q nor Cp+q. We will do this by showing that the statement qCp+q∧¬cCp+q∧
¬Cp+q is consistent with the axioms of Zermelo-Fraenkel Set Theory (denoted ZF).
In fact, we will show that there exists a model of ZF in which qCp+q holds, but both
statements cCp+q and Cp+q fail. To show this we construct a permutation model
Vp+q in which we have ¬cCp+q ∧ ¬Cp+q ∧ qCp+q for all primes p 6= q. Recall that
in order to establish the corresponding independence result in ZF, by Pincus [9] it
suffices to construct a permutation model of ZFA in which qCp+q holds but cCp+q
and Cp+q fail — where ZFA is a model of Zermelo-Fraenkel set theory with atoms
(see Halbeisen [2, Chapter 8]).

For the sake of completeness, we give a short introduction to permutation models,
which are models ZF with a set of atoms A, denoted ZFA. An atom is a set which
does not contain any element, but which is distinct from the empty set ∅. The
development of the theory ZFA is very much the same as that of ZF. Similar to the
cumulative hierarchy of sets in ZF, we define by induction on the class of ordinals Ω
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the sets

M0 := A ,

Mα+1 := P(Mα) ,

Mα :=
⋃
β∈α

Mβ if α is a limit ordinal ,

as well as the class
M :=

⋃
α∈Ω

Mα .

By construction, the class M is a transitive model of ZFA. Furthermore, the class

V :=
⋃
α∈Ω

Pα(∅),

which is a subclass of M, is a model of ZF and is called the kernel. Moreover, if the
construction of the class M was carried out in a model of ZFC, then V is a model
of ZFC.

Now, the underlying idea of permutation models, which are models of ZFA, is the fact
that the axioms of ZFA do not distinguish between the atoms, and so a permutation
of the set of atoms induces an automorphism of the universe.

Let A be a set of atoms and let M =
⋃
α∈Ω Mα be a model of ZFA. Furthermore,

in M, let G be a group of permutations (or automorphisms) of A. We say that a
set F of subgroups of G is a normal filter on G if for all subgroups H,K of G we
have:

(A) G ∈ F ,

(B) if H ∈ F and H ⊆ K, then K ∈ F ,

(C) if H ∈ F and K ∈ F , then H ∩K ∈ F ,

(D) if φ ∈ G and H ∈ F , then φHφ−1 ∈ F ,

(E) for each a ∈ A, {φ ∈ G : φa = a} ∈ F .

For every set x ∈ M there is a least ordinal α (in fact a successor ordinal) such
that x ∈ Pα(A). So, by induction on the ordinals, for every φ ∈ G and for every
set x ∈M we can define φx by stipulating

φx =


∅ if x = ∅,
φx if x ∈ A,

{φ y : y ∈ x} otherwise.

Notice that for all x, y ∈M and every φ ∈ G we have φx = y ⇐⇒ x = φ−1y and
x ∈ y ⇐⇒ φx ∈ φ y.

20



For x ∈M, the symmetry group of x, denoted symG(x), is the group of all permu-
tations in G which map x to x, in other words

symG(x) = {φ ∈ G : φx = x}.

A set x is said to be symmetric (with respect to F) if the symmetry group of x belongs
to F , i.e., symG(x) ∈ F . By (E) we have that every atom a ∈ A is symmetric. A
set x is called hereditarily symmetric if x as well as each element of its transitive
closure (i.e., the smallest transitive set which contains x) is symmetric. Notice that
for all x ∈ M and every φ ∈ G, x is hereditarily symmetric if and only if φx is
hereditarily symmetric. This follows from (D).

Let V ⊆M be the class of all hereditarily symmetric sets. Then V is a transitive
model of ZFA and we call V a permutation model. Because A, as well as every a ∈ A,
is symmetric, we get that the set of atoms A belongs to V .

Because ∅ is hereditarily symmetric and for all ordinals α the set Pα(∅) is hered-
itarily symmetric too, the kernel V is a subclass of V . In particular, by induction
on α one easily verifies the following

Fact 6.1. For any set x ∈ V and any φ ∈ G we have φx = x.

Since the atoms a ∈ A do not contain any elements, but are distinct from the
empty set, the permutation models are not models of ZF. However, one can embed
arbitrarily large fragments of a permutation model into a well-founded model of ZF.

For each set S ⊆ A, let

fixG(S) = {φ ∈ G : φa = a for all a ∈ S}

and let F be the filter on G generated by the subgroups
{

fixG(E) : E ∈ fin(A)
}

,
where fin(A) is the family of all subsets of A which have finitely many elements.
Then F is a normal filter. Furthermore, a set x is symmetric if and only if there
exists a set of atoms Ex ∈ fin(A) such that

fixG(Ex) ⊆ symG(x)

where Ex is called a support of x. Notice that if Ex is a support of x and Ex ⊆ Fx ∈
fin(A), then Fx is a support of x as well.

Now, fix an arbitrary prime p and an arbitrary prime q 6= p. We start with a ground
model Mp+q of ZFA + AC with a set of atoms

A =
⋃{

Pi : i ∈ N
}
∪
⋃{

Qj : j ∈ N
}
,

where N is the set of natural numbers, and the sets Pi and Qj are called blocks.
Blocks are pairwise disjoint finite sets with |Pi| = p and |Qj | = q. So we have that

1. for all i, j ∈ N,

Pi := {ai,0, . . . , ai,p−1} and Qj := {bj,0, . . . , bj,q−1} ,
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2. for all i, i′, j, j′ ∈ N,

Pi ∩Qj = ∅, i 6= i′ → Pi ∩ Pi′ = ∅, and j 6= j′ → Qj ∩Qj′ = ∅ .

The group G of permutations of A is defined as follows:

3. For every i ∈ N, σ̃i is the cyclic permutation of Pi with ai,0 7→ ai,1 7→ · · · 7→
ai,p−1 7→ ai,0. In other words, σ̃i is the permutation of Pi defined by stipulating

σ̃i(ai,k) :=

{
ai,k+1 if k + 1 < p,

ai,0 if k + 1 = p.

If we replace the elements of Pi with the elements of Z/pZ, then σ̃i becomes
addition with 1 (modulo p) and σ̃ti becomes addition with t (modulo p).

Now, for each i ∈ N we extend the permutation σ̃i of Pi to a permutation σi
of A by stipulating

σi(a) :=

{
σ̃i(a) if a ∈ Pi,
a otherwise.

Similarly, for every j ∈ N, let τ̃j be the permutation ofQj defined by stipulating

τ̃j(bj,l) :=

{
bj,l+1 if l + 1 < q,

bj,0 if l + 1 = q,

and like for σ̃i, for each j ∈ N we extend the permutation τ̃j of Qj to a
permutation τj of A by stipulating

τj(a) :=

{
τ̃j(a) if a ∈ Qj ,
a otherwise.

Now, we define the group G of permutations of A by requiring

φ ∈ G if and only if φ = σ◦ τ , (1)

with
σ =

∏
i∈N

σkii where for each i ∈ N, ki ∈ {0, . . . , p− 1}

and
τ =

∏
j∈N

τ
lj
j where for each j ∈ N, lj ∈ {0, . . . , q − 1} .

Let F be the normal filter on G generated by the subgroups

fixG(E) =
{
φ ∈ G : ∀a ∈ E (φa = a)

}
where E ∈ fin(A),

and let Vp+q be the class of all hereditarily symmetric sets. Then, as mentioned
above, Vp+q is a permutation model.

Below we shall prove that Vp+q |= ¬cCp+q ∧¬Cp+q ∧ qCp+q. For this, we first prove
that cCp+q and Cp+q fail in Vp+q.
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Lemma 6.2. Vp+q |= ¬cCp+q ∧ ¬Cq ∧ ¬Cp ∧ ¬Cp+q.

Proof. Let Fq := {Qj : j ∈ N}, let Fp := {Pi : i ∈ N}, and let Fp+q := {Pi ∪ Qj :
i, j ∈ N}. Then Fq is an infinite family of q-element sets, Fp is an infinite family of
p-element sets, and Fp+q is an infinite family of (p+ q)-element sets.

First of all note that Fq,Fp,Fp+q are sets in Vp+q, because ∅ is a support for all
these sets. Now we show that in Vp+q, neither of Fq,Fp,Fp+q has a choice function
(i.e., Cq,Cp,Cp+q fail in Vp+q), and finally we show that also cCp+q fails in Vp+q.

Assume towards a contradiction that there exists a function f : Fq →
⋃

Fq in
Vp+q, such that for each Y ∈ Fq, f(Y ) ∈ Y . Since f ∈ Vp+q, there exists a
support Ef ∈ fin(A) of f . Let j0 ∈ N be such that Qj0 ∩ Ef = ∅. Since Ef is
finite, such a j0 ∈ N exists. Without loss of generality assume that f(Qj0) = bj0,0
and consider the permutation τj0 , which belongs to fixG(Ef ). By definition we have
τj0(Qj0) = Qj0 and τj0(bj0,0) = bj0,1, where bj0,0 6= bj0,1. Since τj0 ∈ fixG(Ef ), we
must have τj0(f) = f . On the one hand, we have

τj0
(
f(Qj0)

)
= τj0(bj0,0) = bj0,1 ,

on the other hand, since τj0 ∈ fixG(Ef ), we have

f
(
τj0(Qj0)

)
= τj0

(
f(Qj0)

)
,

but
f
(
τj0(Qj0)

)
= f(Qj0) = bj0,0 6= bj0,1 = τj0(bj0,0) = τj0

(
f(Qj0)

)
.

This shows that there is no support of a choice function f : Fq →
⋃

Fq, or in
other word, there is no choice function for Fq in Vp+q, and since Fq is a family of
q-element sets, this implies that Cq fails in Vp+q.

With similar arguments, using the families Fp and Fp+q, we can show that also Cp
and Cp+q fail in Vp+q.

Now, let us assume towards a contradiction that Vp+q |= cCp+q. So there exists a
function ζ in Vp+q which assigns to every Y ∈ Fp+q a cyclic order ζY such that for
all x ∈ Y ,

ζkY (x) = x ⇒ (p+ q) | k.

Let Eζ ∈ fin(A) be a support of ζ. Let j0 ∈ N be such that Qj0 ∩ Eζ = ∅ and
let Y0 ∈ Fp+q be such that Qj0 ⊆ Y0. Since Eζ is a support of ζ and therefore
fixG(Eζ) ⊆ symG(ζ) we have that

τj0◦ ζY0 = ζτj0(Y0) = ζY0 . (2)

Let a := ζY0(bj0,0). If a ∈ Qj0 we have that by (2)

a = τ qj0(a) = τ qj0
◦ ζY0(bj0,0) = τ q−1

j0
(τj0◦ ζY0(bj0,0)) = τ q−1

j0
◦ ζY0(bj0,0) = τ q−1

j0
(a) 6= a.

This is a contradiction and therefore we have that a /∈ Qj0 . Let 2 ≤ k0 ≤ p + 1 be
minimal such that

ζk0Y0 (bj0,0) ∈ Qj0
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and let k1 ≤ q − 1 be minimal with

τk1j0 (ζk0Y0 (bj0,0)) = bj0,0.

Note that k1 ≥ 1 since ζk0Y0 (bj0,0) 6= bj0,0. By (2) we get that

bj0,0 = τk1j0 (ζk0Y0 (bj0,0)) = ζk0Y0 (bj0,0).

So, the exponent k1 is not minimal, which is a contradiction. Hence, there is no
function in Vp+q which defines a cyclic order on each Y ∈ Fp+q, which shows that
cCp+q fails in Vp+q. a

Before we can show that Vp+q |= qCp+q, we have to prove a few facts.

Lemma 6.3. Let S ∈ Vp+q, let E ∈ fin(A) be a support of S, and for each x ∈ S let

[x] :=
{
x′ ∈ S : ∃φ ∈ fixG(E)(φx = x′)

}
.

Then for each x ∈ S, [x] belongs to Vp+q. Moreover, the set {[x] : x ∈ S} can be
well-ordered in Vp+q, i.e., there exists a well-ordering of {[x] : x ∈ S} in Vp+q.

Proof. Notice first that for any x, x′ ∈ S, the relation

x ∼ x′ :⇐⇒ ∃φ ∈ fixG(E)(φx = x′)

is an equivalence relation. Now, take an arbitrary x ∈ S. Since E is a support of S,
for each φ ∈ fixG(E) we have φx ∈ S. In particular, for each φ ∈ fixG(E) we have
φx ∈ [x]. This shows that E is a support of [x], i.e., for all φ ∈ fixG(E), φ([x]) = [x].
Hence, [x] ∈ Vp+q.

In order to show that there is a well-ordering of {[x] : x ∈ S} in Vp+q, recall that
the ground model Mp+q was a model of ZFA + AC. So, in Mp+q there is bijection
w between an ordinal α and {[x] : x ∈ S}, i.e., w : α → {[x] : x ∈ S}. Notice also
that since α is in the kernel V, by Fact 6.1, for every β ∈ α and for each φ ∈ G we
have φβ = β. Now, since for all φ ∈ fixG(E) and every x ∈ S we have φ([x]) = [x],
for each β ∈ α we have

w(φβ) = w(β) = φ
(
w(β)

)
.

This shows that E is a support of w, and hence, w ∈ Vp+q. a

Below we show that every x ∈ Vp+q has a unique least closed support. For this, we
introduce first the notion of closed supports.

For a finite set E ∈ fin(A) we say that E is closed, if for all i, j ∈ N,

Pi ∩ E 6= ∅ → Pi ⊆ E and Qj ∩ E 6= ∅ → Qj ⊆ E .

In other words, E ∈ fin(A) is closed if and only if E is the union of finitely many
blocks Pi and Qj . Notice that the filter generated by the groups fixG(E∗), where E∗

is closed, is the same as F . Therefore, every set x ∈ Vp+q has a closed support. We
can even prove that every set has a smallest closed support. This smallest closed
support will be called canonical support.
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Lemma 6.4. If Ex and E′x are two closed finite supports of some x ∈ Vp+q, then
also Ex ∩E′x is a closed finite support of x. Furthermore, for every S ∈ Vp+q there
is a function in Vp+q which assigns to every set x ∈ S a canonical closed finite
support of x.

Proof. First notice that the intersection of two closed finite sets is closed. So, it
remains to show that if Ex and E′x are two closed finite supports of x, then also
Ex ∩ E′x is a support of x. Let φ ∈ fixG(Ex ∩ E′x) be an arbitrary permutation. By
definition of G, φ = σ ◦ τ . First, let σ1, τ1 ∈ fixG(Ex) be such that

σ1|A\Ex = σ|A\Ex

and
τ1|A\Ex = τ |A\Ex .

Furthermore, let σ2, τ2 ∈ fixG(E′x) be such that

σ2|Ex\E′x = σ|Ex\E′x and σ2 is the identity on A \ (Ex \ E′x) ,

and
τ2|Ex\E′x = τ |Ex\E′x and τ2 is the identity on A \ (Ex \ E′x) .

Then στ = σ2τ2σ1τ1. So we can write φ as a product of permutations of fixG(Ex)∪
fixG(E′x). Hence, since φ ∈ fixG(Ex ∩ E′x) was arbitrary, this shows that Ex ∩ E′x is
a support of x.

Now, let S ∈ Vp+q be an arbitrary set and let ES be a support of S. Look at the
function which assigns to every set x ∈ S the set⋂{

E ∈ fin(A) : E is a closed support of x
}
.

Then ES is a support of this function and therefore, the function is in Vp+q. In
order to see this, we have to show that if E is a support of x, φ(E) is a support
of φ(x) for every φ ∈ fixG(ES). Let ψ ∈ fixG(φ(E)). For every e ∈ E we have that
ψ ◦φ(e) = φ(e). So,

φ−1◦ψ ◦φ(e) = φ−1◦φ(e) = e.

So, φ−1◦ψ ◦φ ∈ fixG(E). Since E is a support of x, we have that

φ−1◦ψ ◦φ(x) = x ⇒ ψ ◦φ(x) = φ(x).

Therefore, ψ ∈ symG(φ(x)). So, φ(E) is indeed a support of φ(x). a

Lemma 6.5. Let S ∈ Vp+q with support ES, let x0 ∈ S, x, x′ ∈ [x0], where [x0] is
as in Lemma 6.3, and suppose that x and x′ have the same canonical support E.

(a) There is a φ ∈ fixG(ES) such that φ(x) = x′, and for every φ ∈ fixG(ES) with
φ(x) = x′ we have φ(E) = E.

(b) For each φ ∈ fixG(ES) with φ(E) = E we have

φ(x) 6= x ↔ φ(x′) 6= x′.
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Proof. (a) Since x, x′ ∈ [x0], there is a φ ∈ fixG(ES) with φ(x) = x′, and since x
and x′ have the same canonical support E, for every φ ∈ fixG(ES) with φ(x) = x′

we must have φ(E) = E.

(b) For all ϑ ∈ fixG(ES), all F ⊆ A, and each a ∈ A we define

ϑ|F (a) :=

{
ϑ(a) if a ∈ F ,

a otherwise.

Let φ ∈ fixG(ES) with φ(E) = E and φ(x) = x. By (a), there is a ψ ∈ fixG(ES)
such that ψ(x) = x′ and ψ(E) = E. Furthermore, ψ|E and φ|E are permutations
of E. So,

φ = φ|E◦φ|A\E and ψ = ψ|E◦ψ|A\E
with φ|A\E , ψ|A\E ∈ fixG(E). Since G is a commutative group, we have that

x′ = ψ ◦φ ◦ψ−1(x′) = ψ|E◦φ|E ◦ψ|−1
E (x′) = φ|E◦ψ|E ◦ψ|−1

E (x′) = φ|E(x′),

and since φ|A\E ∈ fixG(E), this shows that

x′ = φ|E(x′) = φ|A\E ◦φ|E(x′) = φ(x′),

which completes the proof. a

In order to prove the main result of this section, we have to define an order on the
set of closed supports. For this, we define first a total order on the set of blocks
{Pi : i ∈ N} ∪ {Qj : j ∈ N}.

Let A and B be two distinct elements of {Pi : i ∈ N} ∪ {Qj : j ∈ N}. We define

A < B :⇐⇒


A = Pi ∧B = Pi′ ∧ i < i′, or

A = Qj ∧B = Qj′ ∧ j < j′, or

A = Pi ∧B = Qj .

If A,B ∈ {Pi : i ∈ N}∪ {Qj : j ∈ N}, then, by the definition of the group G, for any
φ ∈ G we have

A < B ⇐⇒ φA < φB .

Hence, the relation “<” belongs to Vp+q.

Now, if E =
⋃
{F1, . . . , Fn} and E′ =

⋃
{F ′1, . . . , F ′m} are both unions of finitely

many blocks, then we say that E ≺ E′ if either n < m, or n = m and the <-
least block of the symmetric difference {F1, . . . , Fn}∆{F ′1, . . . , F ′m} belongs to E. In
particular, “≺” defines a total order on the set of closed supports.
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Now, we are ready to prove the following

Proposition 6.6. If p and q are two different primes, then Vp+q |= qCp+q.

Proof. Without loss of generality we can assume that q < p, because we have that

mCm+n ⇐⇒ nCm+n

for all natural numbers n > m. Let F = {Yι : ι ∈ Λ} be a family of (p + q)-
element sets which belongs to Vp+q, let EF be the canonical support of F , and let
X :=

⋃
F . By Lemma 6.3, there is a well-ordering of {[x] : x ∈ X }, i.e., there is

an ordinal α and a bijection

w : α→ {[x] : x ∈X },

where [x] =
{
x′ ∈ X : ∃φ ∈ fixG(EF )(φx = x′)

}
. Recall that since “∼” (defined

in the proof of Lemma 6.3) is an equivalence relation, for any x, x′ ∈ X , either
[x] = [x′] or [x] ∩ [x′] = ∅. Now, take an arbitrary Y ∈ F . We have to define a
function in Vp+q which chooses a non-empty subset of Y which contains at most q
elements. If we choose, for example, {x, x′} ⊆ Y , then, for any φ ∈ fixG(EF ), we
choose φ

(
{x, x′}

)
from φ(Y ). So, the function we define with respect to a particular

Y ∈ F has to be stable with respect to all permutations φ ∈ fixG(EF ). Because
then EF is a support of the function.

For every β ∈ α let
µβ := |w(β) ∩ Y | .

Notice that EF ∪EY is a support of {w(β) ∩ Y : β ∈ α}, which shows that this set
belongs to Vp+q. Since |Y | = p+ q, we have

∑
β∈α µβ = p+ q. Let β0 be the least

ordinal such that µβ0 > 0 is not a multiple of q. Notice that this choice is stable
with respect to all φ ∈ fixG(EF ).

If µβ0 ≤ q, then w(β0) ∩ Y contains at most q elements and we are done; and if
p ≤ µβ0 < p + q, then Y \ w(β0) is a non-empty subset of Y containing less than q
elements and we are done.

So, it remains to consider the case when q < µβ0 < p with q - µβ0 or when µβ0 = p+q.
Let x1, . . . , xµβ0 ∈ Y be such that

{x1, . . . , xµβ0} = w(β0) ∩ Y .

By definition of w(β0), for any n, n′ with 1 ≤ n, n′ ≤ µβ0 there is a φ ∈ fixG(EF )
such that φxn = xn′ . For each 1 ≤ n ≤ µβ0 , let En be the canonical support of xn
and for every E ∈ {En : 1 ≤ n ≤ µβ0} let

η(E) := {n : E = En} .

Then there are E,E′, E′′, . . . ∈ {En : 1 ≤ n ≤ µβ0} such that the corresponding sets
η(E), η(E′), η(E′′), . . . are pairwise disjoint and |η(E)|+|η(E′)|+|η(E′′)|+. . . = µβ0 .
Since µβ0 is not a multiple of q there is a ≺-least closed support En0 such that
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q - |η(En0)|. Let s0 := η(En0) and let xm1 , . . . , xms0 ∈ Y ∩ w(β0) be such that for
all 1 ≤ t ≤ s0, En0 is the canonical support of xmt .

If 1 ≤ s0 ≤ q, then {xm1 , . . . , xms0} is a non-empty subset of Y which contains at
most q elements and we are done. Similarly, if p ≤ s0 < p+ q, then

Y \ {xm1 , . . . , xms0}

is a non-empty set which contains at most q elements and we are done.

So, assume that q < s0 < p or s0 = p+ q, and let

y−1 :=
{
xm1 , . . . , xms0

}
⊆ Y ∩ w(β0).

Notice that since y−1 ⊆ w(β0), for all x, x′ ∈ y−1 there is a permutation φ ∈ fixG(EF )
such that φ(x) = x′, which shows that EF is not a support of any x ∈ y−1. In par-
ticular, we get that that En0 \EF 6= ∅ (recall that En0 is a support of each x ∈ y−1).
So, let Pi0 < . . . < Piu−1 < Qju < . . . < Qju+v−1 be such that

En0 \ EF =
⋃{

Pi0 , . . . , Piu−1 , Qju , . . . , Qju+v−1

}
.

Define

G̃ :=

 ∏
0≤k<u

σ
κik
ik
◦
∏

0≤l<v
τ
λju+l
ju+l

: ∀k < u ∀l < v
(

0 ≤ κik < p ∧ 0 ≤ λju+l < q
) .

Let φ = σ
κi0
i0
◦ · · · ◦ σ

κiu−1

iu−1
◦ τλjuju

◦ · · · ◦ τ
λju+v−1

ju+v−1
∈ G̃. Define

φ|r := κir if 0 ≤ r < u and φ|r := λjr if u ≤ r < u+ v.

The elements in G̃ can be ordered lexicographically (induced by the linear ordering
on the blocks and the exponents of σ and τ). The ordering on G̃ is denoted by
“≤G̃”. For all x, x′ ∈ y−1 and all 0 ≤ r < u+ v define

distr(〈x, x′〉) := φ|r,

where φ is the ≤G̃-smallest element in G̃ with φ(x) = x′.

Claim 1: For all x, x′, x′′ ∈ y−1 and all 0 ≤ r < u+ v we have that

distr(〈x, x′〉) +w distr(〈x′, x′′〉) = distr(〈x, x′′〉),

where w = p if 0 ≤ r < u, w = q if u ≤ r < u + v, and +w denotes addition
modulo w.

Proof of Claim 1. Let φ0, φ1, φ ∈ G̃ be ≤G̃-minimal with

φ0(x) = x′, φ1(x′) = x′′ and φ(x) = x′′.
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Assume towards a contradiction that φ 6= φ1 ◦ φ0. This implies φ−1 ◦ φ1 ◦ φ0 6= id,
and by definition we have

φ−1 ◦ φ1 ◦ φ0(x) = x.

Let 0 ≤ r < u+ v be the largest number such that

φ−1 ◦ φ1 ◦ φ0|r 6= 0.

Without loss of generality we assume that 0 ≤ r < u (i.e., w = p). Then let m ∈ N
with

(φ−1 ◦ φ1 ◦ φ0)m|r = 1.

Note that (φ−1 ◦ φ1 ◦ φ0)m 6= σir because otherwise we would have that σir(x) = x
which is a contradiction to the fact that En0 is the canonical support of x. So, there
is a ϕ ∈ G̃ \ {id} with

(φ−1 ◦ φ1 ◦ φ0)m = ϕ ◦ σir and ϕ <G̃ σir .

Then ϕ ◦ σir(x) = x ⇒ σir(x) = ϕ−1(x). Note that ϕ−1 <G̃ σir . Furthermore, we
have φ0|r 6= 0 or φ1|r 6= 0 or φ|r 6= 0. Without loss of generality we assume that
φ0|r 6= 0 (the other cases are similar). Then

φ0 ◦ σ−1
ir
◦ ϕ−1 <G̃ φ0

and
φ0 ◦ σ−1

ir
◦ ϕ−1(x) = φ0 ◦ σ−1

ir
◦ σir(x) = φ0(x) = x′.

This contradicts the minimality of φ0. aClaim 1

For all non-empty sets ỹ ⊆ y−1, all x ∈ ỹ and all 0 ≤ r < u+ v define

χr(x, ỹ) := {distr(〈x, x′〉) | x′ ∈ ỹ}.

These sets have the following properties:

Claim 2: For all ỹ ⊆ y−1 and all x, x′ ∈ ỹ we have that

1. 1 ≤ |χr(x, ỹ)| ≤ p for all 0 ≤ r < u and 1 ≤ |χr(x, ỹ)| ≤ q for all u ≤ r < u+v;

2. for all 0 ≤ r < u + v there is a kr ∈ N such that χr(x, ỹ) = χr(x
′, ỹ) +w kr,

where w = p if 0 ≤ r < u and w = q if u ≤ r < u+ v;

3. |χr(x, ỹ)| = |χr(x′, ỹ)|;

4. if x 6= x′ there is an 0 ≤ r < u+ v such that χr(x, ỹ) 6= χr(x
′, ỹ).

Proof of Claim 2. 1. Note that 0 ∈ χr(x, ỹ) since distr(〈x, x〉) = 0.

2. Set kr := φ|r, where φ is ≤G̃-minimal with φ(x) = x′ and use Claim 1.

3. This follows from 2.

4. Let x, x′ ∈ ỹ and let φ be ≤G̃-minimal with φ(x) = x′. If χr(x, ỹ) = χr(x
′, ỹ) for

all 0 ≤ r < u + v it follows that φ|r = kr = 0 for all 0 ≤ r < u + v. So φ = id and
therefore x = x′. aClaim 2
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We define an ordering � on the sets χr(x, ỹ) as follows: χr(x, ỹ) � χr(x
′, ỹ) if

and only if χr(x, ỹ) = χr(x
′, ỹ) or the smallest integer in the symmetric difference

χ(x, ỹ)∆χr(x
′, ỹ) belongs to χr(x, ỹ).

For all non-empty sets ỹ ⊆ y−1, all 0 ≤ r < u+ v and all natural numbers n define
λr,n(ỹ) as follows: Let λr,0(ỹ) := ∅ and for every n ∈ N \ {0} let

λr,n(ỹ) :=

{
x ∈ ỹ \

n−1⋃
i=0

λr,i(ỹ) : ∀x′ ∈ ỹ \
n−1⋃
i=0

λr,i(ỹ)
(
χr(x, ỹ) � χr(x′, ỹ)

)}
.

In other words, λr,1(ỹ) is the set of all x ∈ ỹ such that χr(x, ỹ) is �-minimal, λr,2(ỹ)
is the set of all x ∈ ỹ such that χr(x, ỹ) is the second smallest set with respect to �
and so on. Note that the union of all λr,n(ỹ) is equal to ỹ. Note that

⋃
n∈ω λr,n(ỹ) = ỹ

and only finitely many λr,n(ỹ) are non-empty.

To illustrate the construction, we consider the following example:

Let p = 11, 0 ≤ r < u, ỹ = {x1, . . . , x6}, and

χr(x1, ỹ) = χr(x3, ỹ) = χr(x6, ỹ) = {0, 6, 8} ,
χr(x2, ỹ) = χr(x5, ỹ) = {0, 2, 5} ,

χr(x4, ỹ) = {0, 3, 9} .

x1, x3, x6

x4

x2, x5

σir
bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

Then we have, for example, {0, 6, 8}+11 3 = {0, 3, 9} and {0, 3, 9}+11 2 = {0, 2, 5}.
Moreover, λr,1(ỹ) = {x2, x5}, λr,2(ỹ) = {x4}, λr,3(ỹ) = {x1, x3, x6} and λr,n = ∅ for
all n ≥ 4.

In the last step, we choose at most q elements from Y , which is done by induction
on r. For each 0 ≤ r < u + v we define a non-empty set yr ⊆ y−1 with q - |yr| and
show that yu+v−1 contains at most q elements. Notice that q - |y−1|.

Assume that for some r with 0 ≤ r < u + v − 1, yr−1 with q - |yr−1| is already
defined. Then there are three cases:

Case 1 : 0 ≤ r < u and |χr(x, yr−1)| 6= p, or u ≤ r < u+ v and |χr(x, yr−1)| 6= q.

In this case we define
yr := λr,n0(yr−1),
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where n0 is the least positive integer such that λr,n0(yr−1) 6= ∅ and |λr,n0(yr−1)| is
not a multiple of q. Notice that since q - |yr−1| and

∞∑
i=1

|λr,i(yr−1)| = |yr−1|,

the integer n0 is well-defined.

Case 2 : u ≤ r < u+ v and for all x ∈ yr−1, |χr(x, yr−1)| = q.

In this case, let l := |yr−1|. Notice that q - l and that by definition of χr(x, yr−1)
we have q < |yr−1|. So, there exists a unique natural number m ≤ q and pairwise
disjoint sets Z1, . . . , Zm ⊆ yr−1 with

m∑
i=1

|Zi| = l,

such that for every 1 ≤ i ≤ m, all x, x′ ∈ Zi the ≤G̃-smallest function φ ∈ G̃ with
φ(x) = x′ satisfies

φ|r = 0.

If there is a set Zi (for some 1 ≤ i ≤ m) such that |Zi| = 1, we define

W0 := {Zi : 1 ≤ i ≤ m ∧ |Zi| = 1}.

Then, since m ≤ q < |yr−1|, W0 is a proper subset of the set of all Zi’s. Otherwise
let

W0 := {Zi : 1 ≤ i ≤ m ∧ q - |Zi|}.

Then W0 is a proper subset of the set of all Zi’s. If |W0| = 1, let yr be the unique
set which belongs to W0. Now, if |W0| > 1, then for each 1 ≤ i, j ≤ m such that
Zi, Zj ∈W0 define

di := min{φ|r : there is a j ∈ {1, . . . ,m} \ {i} such that for all zi ∈ Zi there is a

zj ∈ Zj such that φ is ≤G̃ -minimal with φ(zi) = zj}.

Define d := min
{
di : 1 ≤ i ≤ m ∧ Zi ∈W0

}
. Then the set

W1 :=
{
Zi ∈W0 : di = d

}
is a proper non-empty subset of W0. If |W1| > 1, then we repeat this process, starting
with the set W1 instead of W0, and obtain a non-empty set W2 with |W2| < |W1|.
After repeating this process at most m times, we finally obtain a set W = {Zi0}
which contains a unique set Zi0 (for some i0 ∈ {1, . . . ,m}) with q - Zi0 and we define

yr := Zi0 .
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Case 3 : 0 ≤ r < u and for all x ∈ yr−1, |χr(x, yr−1)| = p.

In this case, first notice that since |χr(x, yr−1)| = p we have p ≤ |yr−1|. Now, if
p ≤ |yr−1| < p + q, then the set y−1 \ yr−1 contains at most q elements and we are
done. So, we can assume that |yr−1| = p+ q, and we can argue similar as in Case 2.

Finally, we consider yu+v−1, which is a subset of Y , and show that yu+v−1 contains
at most q elements. For this, let

{x0, x1, . . . , xq} ⊆ yu+v−1.

We show that at least two of the xi’s are equal, i.e., yu+v−1 does not contain a
(q+1)-element subset. Let φ ∈ G̃ be ≤G̃-minimal such that there is a k ∈ {1, . . . , q}
with

φ(x0) = xk.

By construction of yu+v−1, for each r with 0 ≤ r < u+v we have φ|r = 0. Therefore,
φ = τ lkjv for an lk ∈ {1, . . . , q − 1}. Moreover, for each i ∈ {1, . . . , q} there is an
li ∈ {1, . . . , q − 1} with

τ lijv(x0) = xi.

Since there are more i’s than li’s, there must be distinct i, i′ ∈ {1, . . . , q} with

li = li′ .

Therefore, xi = τ lijv(x0) = τ
li′
jv

(x0) = xi′ , which shows that xi = xi′ . a

The following theorem summarizes the preceding results.

Theorem 6.7. For all primes p and q with p 6= q, ¬cCp+q∧¬Cp+q∧¬Cp∧¬Cq∧qCp+q
is relatively consistent with ZF.

Proof. By Lemma 6.2 and Proposition 6.6 we have

Vp+q |= ¬cCp+q ∧ ¬Cp+q ∧ ¬Cp ∧ ¬Cq ∧ qCp+q .

So, by Pincus [9, §4B, p. 737], there exists a model V of ZF such that

V |= ¬cCp+q ∧ ¬Cp+q ∧ ¬Cp ∧ ¬Cq ∧ qCp+q ,

which shows that the statement ¬cCp+q ∧ ¬Cp+q ∧ ¬Cp ∧ ¬Cq ∧ qCp+q is relatively
consistent with ZF. a

As an immediate consequence we get

Corollary 6.8. If p and q are two different primes, then qCp+q implies neither
cCp+q nor Cp+q.
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