Twins of Conic Hexagons

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse101, 8092 Zürich, Switzerland
lorenz.halbeisen@math.ethz.ch
Norbert Hungerbühler
Department of Mathematics, ETH Zentrum, Rämistrasse101, 8092 Zürich, Switzerland
norbert.hungerbuehler@math.ethz.ch

key-words: Pascal's mysticum, incidence theorems, geometry of conics
2020 Mathematics Subject Classification: 51M05 51M15

Abstract

Six points on a conic section define 60 different hexagons and therefore 60 Pascal lines. Each Pascal line passes through three of the 45 intersections of connecting lines of the six given points. Instead of searching for collinear triples (Pascal lines) among these 45 points, we identify and classify all six-tuples among the 45 points which lie on a conic section. These six-tuples will be called Pascal twins of the given six points. It turns out that there are also six-tuples that lie on a conic section which have two points in common with the given six points. These six-tuples are called Siamese Pascal twins for evident reasons.

1 Introduction

One of the most fundamental theorems of projective geometry is Pascal's Hexagon Theorem. The result is often referred to as the Hexagrammum Mysticum Theorem. It states the following. Let $P_{1}, P_{2}, \ldots, P_{6}$ be arbitrary points on a non-degenerate conic C and σ a permutation of the set $\{1,2, \ldots, 6\}$. Then the three pairs of opposite sides of the conic hexagon $P_{\sigma(1)}, P_{\sigma(2)}, \ldots, P_{\sigma(6)}$ (extended if necessary) meet at three points which lie on a straight line, called the Pascal line of the hexagon. Modulo cyclic renumbering of the points or reversal of the order, there are $\frac{6!}{6 \cdot 2}=60$ different hexagons. In general, the 60 resulting Pascal lines are different from each other. The Swiss mathematician Jakob Steiner found that these Pascal lines concur in threes in 20 points, which we today call Steiner nodes. Two decades after Steiner's discovery, Thomas Kirkman announced that the Pascal lines also concur in threes at 60 more points, now known as the Kirkman nodes. This is only the beginning of a cascade of further incidences: Three of the Kirkman nodes and one Steiner node lie on one of 20 Cayley lines. The Steiner nodes lie in fours on 15 Plücker lines. Four Cayley lines concur in one of 15 Salmon nodes. We refer to [2] for a wonderful presentation of all these incidences.

Six pairwise distinct points $P_{1}, P_{2}, \ldots, P_{6}$ on a non-degenerate conic C, called a conic hexa-set, define $\binom{6}{2}=15$ lines which in turn yield, in general, 45 intersection points different from the points P_{i}. The intersection of the lines $P_{i} P_{j}$ and $P_{k} P_{l}$ will be denoted by $P_{i j k l}$. Let S be the set of these 45 points $P_{i j k l}$. Instead of chasing collinear points among the points in S, like Pascal did, we ask in this article, if there are six points in S which lie on a non-degenerate conic. Such a hexagon with vertices in S will be called a Pascal twin of the original hexagon with vertices P_{i} (see Figures 1 to 4). A hexagon with $k \geq 1$ vertices among the points $P_{1}, P_{2}, \ldots, P_{6}$ and $6-k$ vertices in S will be called a Siamese Pascal twin of the original hexagon with vertices P_{i} (see Figures 5 to 8).

We will use a rational model to computationally detect and classify Pascal twins and Siamese Pascal twins. These incidence relations are then proven in general by classical methods. The paper is organized as follows. In Section 2 we identify all possible Pascal twins of a conic hexagon. The main result will be that essentially only four such twins exist. In Section 3 we identify all possible Siamese Pascal twins of a conic hexagon. It will turn out that a Siamese twin necessarily
has exactly two points in common with the original hexagon, and that again essentially only four such Siamese twins exist. Section 4 will be devoted to the proofs of the results for the Siamese Pascal twins, and the final Section 5 contains the proofs of the results for the Pascal twins.

2 Candidates for Pascal twins

In order to determine the possible candidates for Pascal twins of a conic hexagon, we proceed as follows. We chose six different points $P_{1}, P_{2}, \ldots, P_{6}$ with rational coordinates on a non-degenerate conic C in such a way, that S consists of 45 different points, also with rational coordinates. By a computer search, using exact rational numbers, we check for all $\binom{45}{6}$ possible hexa-sets of points in S whether they lie on a non-degenerate conic. This results in 255 such conic hexa-sets. However, many of these conic hexa-sets are combinatorially the same in the following sense: Suppose T is a conic hexa-set with points $P_{i_{n} j_{n} k_{n} l_{n}}$ (for $n=1,2, \ldots, 6$) lying on a conic, where $P_{i_{n} j_{n} k_{n} l_{n}}$ is the intersection of the lines $P_{i_{n}} P_{j_{n}}$ and $P_{k_{n}} P_{l_{n}}$ Let T^{\prime} be another conic hexa-set of points which is obtained by a permutation σ of the points $P_{1}, P_{2}, \ldots, P_{6}$, i.e., T^{\prime} consists of the points $P_{\sigma\left(i_{n}\right) \sigma\left(j_{n}\right) \sigma\left(k_{n}\right) \sigma\left(l_{n}\right)}, n=1,2, \ldots, 6$. We will then say, that T and T^{\prime} are equivalent. The tedious task to identify the equivalence classes can be delegated to a computer program. One finds exactly four equivalence classes. The following figures show one representative in each class e_{1}, \ldots, e_{4}. The brown triangles are only for better orientation.

Figure 1: A Pascal twin representative of equivalence class e_{1}. From one point $P_{i j k l}$ counterclockwise to the next one, apply the permutation (123456) to each index.

Figure 2: A Pascal twin representative of equivalence class e_{2}.

Figure 3: A Pascal twin representative of equivalence class e_{3}.

Figure 4: A Pascal twin representative of equivalence class e_{4}. Notice that Class e_{4} is essentially the same as Class e_{3}, where the points P_{3} and P_{4} are identified. In particular, there are just 5 different points involved.

Notice that so far, these are only results for the rational points $P_{1}, P_{2}, \ldots, P_{6}$ which we have initially chosen. In Section 5 we will actually prove that these twins exist for an arbitrary choice of points $P_{1}, P_{2}, \ldots, P_{6}$ on a conic C.

3 Candidates for Siamese Pascal twins

The procedure to identify candidates for Siamese Pascal twins is identical to the one in the previous section. We start with six rational points $P_{1}, P_{2}, \ldots, P_{6}$ on a conic C and compute the set S of the 45 rational intersection points $P_{i j k l}$. Then we fix the points $P_{1}, P_{2}, \ldots, P_{k}$ with $k=1,2, \ldots, 4$, and complete them with all possible combinations of points from S to form a hexa-set. We check for each resulting hexa-set if it lies on a non-degenerate conic. Notice that we can restrict the search to $k \leq 4$, since a conic is defined by five points. It turns out that only for $k=2$ such Siamese Pascal twins exist, and that modulo renumbering, again only four equivalence classes f_{1}, \ldots, f_{4} exist. For better readability we denote the two points which lie on both conics by X and Y, and the four remaining points on the original conic are denoted by P_{1}, \ldots, P_{4}. The Figures 5 to 8 show one representative of each equivalence class.

Figure 5: A Siamese Pascal twin representative of equivalence class f_{1}.

Figure 6: A Siamese Pascal twin representative of equivalence class f_{2}.

Figure 7: A Siamese Pascal twin representative of equivalence class f_{3}.

Figure 8: A Siamese Pascal twin representative of equivalence class f_{4}.

4 Incidence results for Siamese Pascal twins

As a short hand notation, we will use $P-Q$ to denote the line joining two points P, Q, and $g \wedge h$ to denote the intersection of two lines g, h. Recall that Pascal's Theorem states that six points, numbered (1), (2), (3), (4), (5), (6), lie on a conic iff the three points

$$
\text { (1) - (2) } \wedge \text { (4)-(5), (2)-(3) } \wedge \text { (5)-(6), (3)- (4) } \wedge \text { (6)- (1) }
$$

are collinear. Another useful tool will be Carnot's Theorem (see [1, no. 396]): The the six points (1), \ldots, (6) lie on a conic iff the lines

$$
\begin{gathered}
(1)-(2) \wedge(3)-(4))-(4)-(5) \wedge(6)-(1)) \\
(2)-(5) \\
(3)-(6)
\end{gathered}
$$

are concurrent. Since Carnot's Theorem is independent of the enumeration of six points and since every enumeration of six points P_{1}, \ldots, P_{6} leads to three lines, we get that these three lines are concurrent iff the six points P_{1}, \ldots, P_{6} lie on a conic. For example, if we enumerate the six points P_{1}, \ldots, P_{6} by (2), (4), (6), (1), (3), (5) and define $h_{1}=P_{4}-P_{1}, h_{2}=P_{5}-P_{2}, h_{3}=P_{2}-P_{6}$, $h_{4}=P_{3}-P_{4}, Q_{1}=h_{1} \wedge h_{2}, Q_{2}=h_{3} \wedge h_{4}$, then the six points P_{1}, \ldots, P_{6} lie on a conic iff the three lines $Q_{1}-Q_{2}, P_{1}-P_{6}, P_{5}-P_{3}$, are concurrent. For better readability we denote this as follows, where for simplicity we omit the circles around the numbers:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	concurrent lines
enumeration	2	4	6	1	3	5	$Q_{1}-Q_{2}, P_{1}-P_{6}, P_{5}-P_{3}$

Theorem 1 (Class $\left.f_{1}\right)$. Let $X, Y, P_{1} \ldots, P_{4}$ be points in the projective plane, and $P_{X i Y j}$ be the intersection of the lines $X-P_{i}$ and $Y-P_{j}$. Then the points $X, Y, P_{1}, \ldots, P_{4}$ lie on a conic iff the points $X, Y, P_{X 1 Y 4}, P_{X 3 Y 2}, P_{X 2 Y 3}, P_{X 4 Y 1}$ lie on a conic.

In the following theorems, all conics are assumed to be non-degenerate.
Proof. We have to show that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic iff the points $X, Y, Q_{1}, \ldots, Q_{4}$ lie on a conic, where $Q_{1}=P_{X 1 Y 4}, Q_{2}=P_{X 3 Y 2}, Q_{3}=P_{X 2 Y 3}, Q_{4}=P_{X 4 Y 1}$ (see Figure 9):

Figure 9: Proof of Theorem 1.

By Carnot's Theorem with respect to the 6 points $X, Y, P_{1} \ldots, P_{4}$ we obtain:

	X	Y	P_{1}	P_{2}	P_{3}	P_{4}	concurrent lines
enumeration	1	4	2	5	6	3	$Q_{3}-Q_{4}, P_{1}-P_{2}, P_{3}-P_{4}$
enumeration	1	4	3	6	5	2	$Q_{1}-Q_{2}, P_{1}-P_{2}, P_{3}-P_{4}$

Furthermore, by Carnot's Theorem with respect to the 6 points $X, Y, Q_{1} \ldots, Q_{4}$ we have:

	X	Y	Q_{1}	Q_{2}	Q_{3}	Q_{4}	concurrent lines
enumeration	1	4	6	3	2	5	$P_{1}-P_{2}, Q_{1}-Q_{2}, Q_{3}-Q_{4}$
enumeration	1	4	5	2	3	6	$P_{3}-P_{4}, Q_{1}-Q_{2}, Q_{3}-Q_{4}$

This shows that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic if and only if $X, Y, Q_{1} \ldots, Q_{4}$ lie on a conic. q.e.d.
Theorem 2 (Class f_{2}). Let $X, Y, P_{1} \ldots, P_{4}$ be points in the projective plane. Then the points $X, Y, P_{1}, \ldots, P_{4}$ lie on a conic iff the points $X, Y, P_{X 134}, P_{X 234}, P_{Y 312}, P_{Y 412}$ lie on a conic.

Proof. We have to show that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic iff the points $X, Y, Q_{1}, \ldots, Q_{4}$ lie on a conic, where $Q_{1}=P_{X 134}, Q_{2}=P_{X 234}, Q_{3}=P_{Y 312}, Q_{4}=P_{Y 412}$ (see Figure 10):

Figure 10: Proof of Theorem 2.

By Carnot's Theorem with respect to the 6 points $X, Y, P_{1} \ldots, P_{4}$ we obtain:

	X	Y	P_{1}	P_{2}	P_{3}	P_{4}	concurrent lines
enumeration	3	6	5	4	2	1	$Q_{2}-Q_{4}, P_{3}-P_{1}, X-Y$

Furthermore, by Carnot's Theorem with respect to the 6 points $X, Y, Q_{1} \ldots, Q_{4}$ we have:

	X	Y	Q_{1}	Q_{2}	Q_{3}	Q_{4}	concurrent lines
enumeration	3	6	4	5	1	2	$P_{1}-P_{3}, Q_{4}-Q_{2}, X-Y$

This shows that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic if and only if $X, Y, Q_{1} \ldots, Q_{4}$ lie on a conic. q.e.d.
Theorem 3 (Class f_{3}). Let $X, Y, P_{1} \ldots, P_{4}$ be points in the projective plane. Then the points $X, Y, P_{1}, \ldots, P_{4}$ lie on a conic iff the points $X, Y, P_{Y 412}, P_{X 312}, P_{X 234}, P_{Y 134}$ lie on a conic.

Proof. We have to show that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic iff the points $X, Y, Q_{1}, \ldots, Q_{4}$ lie on a conic, where $Q_{1}=P_{Y 134}, Q_{2}=P_{X 234}, Q_{3}=P_{X 312}$, and $Q_{4}=P_{Y 412}$ (see Figure 11):

Figure 11: Proof of Theorem 3.

Let

$$
S:=X-P_{2} \wedge Y-P_{4} \quad \text { and } \quad T:=X-P_{3} \wedge Y-P_{1}
$$

By Carnot's Theorem with respect to the 6 points $X, Y, P_{1} \ldots, P_{4}$ we obtain:

	X	Y	P_{1}	P_{2}	P_{3}	P_{4}	concurrent lines
enumeration	1	4	5	2	6	3	$S-T, P_{2}-P_{1}, P_{4}-P_{3}$

Furthermore, since $S=X-Q_{2} \wedge Y-Q_{4}$ and $T=X-Q_{3} \wedge Y-Q_{1}$, by Carnot's Theorem with respect to the 6 points $X, Y, Q_{1} \ldots, Q_{4}$ we have:

	X	Y	Q_{1}	Q_{2}	Q_{3}	Q_{4}	concurrent lines
enumeration	1	4	5	2	6	3	$S-T, Q_{2}-Q_{1}, Q_{4}-Q_{3}$

Since $P_{2}-P_{1}=Q_{4}-Q_{3}$ and $P_{4}-P_{3}=Q_{2}-Q_{1}$, this shows that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic if and only if $X, Y, Q_{1} \ldots, Q_{4}$ lie on a conic.
q.e.d.

Theorem 4 (Class f_{4}). Let $X, Y, P_{1} \ldots, P_{4}$ be points in the projective plane. Then the points $X, Y, P_{1}, \ldots, P_{4}$ lie on a conic iff the points $X, Y, P_{X 1 Y 4}, P_{X 3 Y 2}, P_{X 234}, P_{Y 134}$ lie on a conic.

Proof. We have to show that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic iff the points $X, Y, Q_{1}, \ldots, Q_{4}$ lie on a conic, where $Q_{1}=P_{X 1 Y 4}, Q_{2}=P_{X 3 Y 2}, Q_{3}=P_{X 234}$, and $Q_{4}=P_{Y 134}$ (see Figure 12):

Figure 12: Proof of Theorem 4.

By Carnot's Theorem with respect to the 6 points $X, Y, P_{1} \ldots, P_{4}$ we obtain:

	X	Y	P_{1}	P_{2}	P_{3}	P_{4}	concurrent lines
enumeration	1	4	6	3	2	5	$Q_{2}-Q_{1}, P_{3}-P_{4}, P_{2}-P_{1}$

Furthermore, by Carnot's Theorem with respect to the 6 points $X, Y, Q_{1} \ldots, Q_{4}$ we have:

	X	Y	Q_{1}	Q_{2}	Q_{3}	Q_{4}	concurrent lines
enumeration	1	4	2	5	6	3	$P_{1}-P_{2}, Q_{1}-Q_{2}, Q_{4}-Q_{3}$

Since $P_{3}-P_{4}=Q_{4}-Q_{3}$, this shows that $X, Y, P_{1} \ldots, P_{4}$ lie on a conic if and only if $X, Y, Q_{1} \ldots, Q_{4}$ lie on a conic.
q.e.d.

5 Incidence results for Pascal twins

We start with the proof for the Class e_{1}. This proof is again based on a multiple nested application of the theorems of Pascal and Carnot.

Theorem 5 (Class e_{1}). Let $P_{1}, P_{2}, \ldots, P_{6}$ be points in the projective plane, and $P_{i j k l}$ be the intersection of the lines $P_{i}-P_{j}$ and $P_{k}-P_{l}$. Then the points $P_{1}, P_{2}, \ldots, P_{6}$ lie on a conic iff the points $P_{1426}, P_{2531}, P_{3642}, P_{4153}, P_{5264}, P_{6315}$ lie on a conic. The two hexa-sets $P_{1}, P_{2}, \ldots, P_{6}$ and $P_{1426}, P_{2531}, P_{3642}, P_{4153}, P_{5264}, P_{6315}$, share two common Pascal lines.

Proof. We have to show that P_{1}, \ldots, P_{6} lie on a conic iff the points Q_{1}, \ldots, Q_{6} lie on a conic, where $Q_{1}=P_{1426}, Q_{2}=P_{2531}, Q_{3}=P_{3642}, Q_{4}=P_{4153}, Q_{5}=P_{5264}, Q_{6}=P_{6315}$ (see Figure 13):
By Pascal's Theorem with respect to the 6 points $P_{1} \ldots, P_{6}$ we obtain:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	collinear points
enumeration	3	6	1	4	5	2	$\left\{\begin{array}{l}P_{3}-P_{6} \wedge P_{4}-P_{5}=: R \\ P_{6}-P_{1} \wedge P_{5}-P_{2}=: S \\ P_{1}-P_{4} \wedge P_{2}-P_{3}=: T\end{array}\right.$

In particular, the three points R, S, T lie on a Pascal line of the hexa-set P_{1}, \ldots, P_{6}.

Figure 13: Proof of Theorem 5.

Furthermore, by Carnot's Theorem with respect to the 6 points $P_{1} \ldots, P_{6}$ we obtain:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	concurrent lines
enumeration	1	4	6	2	5	3	$Q_{1}-Q_{2}, \underbrace{P_{4}-P_{5}, P_{6}-P_{3}}_{\text {meet in } R}$
enumeration	2	6	4	1	3	5	$Q_{4}-Q_{3}, \underbrace{P_{1}-P_{6}, P_{5}-P_{2}}_{\text {meet in } S}$
enumeration	2	6	3	5	1	4	$Q_{6}-Q_{5}, \underbrace{P_{1}-P_{4}, P_{3}-P_{2}}_{\text {meet in } T}$

Finally, by Pascal's Theorem with respect to the 6 points $Q_{1} \ldots, Q_{6}$ we obtain:

This shows that the hexagon $P_{3} P_{6} P_{1} P_{4} P_{5} P_{2}$ (in this order) lie on a conic with Pascal line $R-S-T$ if and only if the hexagon $Q_{1} Q_{2} Q_{5} Q_{6} Q_{3} Q_{4}$ (in this order) lie on a conic with the same Pascal line. In order to find the second common Pascal line of the two conics, we proceed as follows: By Pascal's Theorem with respect to the 6 points $P_{1} \ldots, P_{6}$ we obtain:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	collinear points
enumeration	2	5	6	3	4	1	

P_{5}-P_{6} \wedge P_{4}-P_{1}=: S^{\prime}

P_{6}-P_{3} \wedge P_{1}-P_{2}=: T^{\prime}\end{array}\right.\)

Furthermore, by Carnot's Theorem with respect to the 6 points $P_{1} \ldots, P_{6}$ we obtain:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	concurrent lines
enumeration	6	3	5	1	4	2	$Q_{6}-Q_{1}, \underbrace{P_{3}-P_{4}, P_{5}-P_{2}}_{\text {meet in } R^{\prime}}$
enumeration	2	5	1	3	6	4	$Q_{2}-Q_{3}, \underbrace{P_{5}-P_{6}, P_{1}-P_{4}}_{\text {meet in } S^{\prime}}$
enumeration	4	1	3	5	2	6	$Q_{4}-Q_{5}, \underbrace{P_{1}-P_{2}, P_{3}-P_{6}}_{\text {meet in } T^{\prime}}$

Finally, by Pascal's Theorem with respect to the 6 points $Q_{1} \ldots, Q_{6}$ we obtain:

	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	collinear points
enumeration	6	1	4	5	2	3	$\begin{aligned} & \underbrace{Q_{6}-Q_{1} \wedge \overbrace{Q_{5}-Q_{2}}^{=P_{5}-P_{2}}}_{=R^{\prime}} \\ & \underbrace{\overbrace{Q_{1}-Q_{4}}^{=P_{1}-P_{4}} \wedge Q_{2}-Q_{3}}_{=S^{\prime}} \\ & \underbrace{Q_{4}-Q_{5} \wedge \overbrace{Q_{3}-Q_{6}}^{=P_{3}-P_{6}}}_{=T^{\prime}} \end{aligned}$

This shows that the conic hexagon $P_{2} P_{5} P_{6} P_{3} P_{4} P_{1}$ has the same Pascal line $R^{\prime}-S^{\prime}-T^{\prime}$ as the conic hexagon $Q_{6} Q_{1} Q_{4} Q_{5} Q_{2} Q_{3}$.
q.e.d.

Remark. By a computer search we found that the Siamese Pascal twins in the Classes $f_{1}, f_{2}, f_{3}, f_{4}$ share $4,6,3,3$ Pascal lines. In the Class $f_{2}, 4$ of the 6 common Pascal lines meet in the point P_{1234}. The Pascal twins in the Classes e_{2}, e_{3}, e_{4} have no common Pascal line.

Before we consider the Classes e_{2}, e_{3} and e_{4}, we prove two auxiliary results. The first one is a quantified version of Pascal's Theorem:

Lemma 6. Let $P_{1}, P_{2}, P_{3}, P_{4}, X, Y$ be points on a conic, and let $\ell=X-Y$. If $A=P_{1}-P_{2} \wedge \ell$, $B=P_{1}-P_{4} \wedge \ell, A^{\prime}=P_{3}-P_{2} \wedge \ell$, and $B^{\prime}=P_{3}-P_{4} \wedge \ell$, then the cross ratios (X, Y, A, B) and $\left(X, Y, A^{\prime}, B^{\prime}\right)$ are equal. Vice versa, if $\left(X, Y^{\prime}, A, B\right)=\left(X, Y^{\prime}, A^{\prime}, B^{\prime}\right)$ for some Y^{\prime} on ℓ, then either $Y^{\prime}=X$ or $Y^{\prime}=Y$.

Proof. By a projective transformation we may assume that $P_{1} P_{2} P_{3} P_{3}$ is a rectangle and X a point on its circumcircle C (see [3, proof of Satz 7.10]). Now, observe that the set of the four blue lines $P_{1} P_{2}, P_{1}-X, P_{1}-P_{4}, P_{1}-Y$ in Figure 14 is congruent to the set of the four green lines $P_{3}-P_{2}, P_{3}-X, P_{3}-P_{4}, P_{3}-Y$. For example, the angles $\varangle Y P_{1} P_{4}$ and $\varangle Y P_{3} P_{4}$ agree as angles over the same $\operatorname{arc} \widehat{Y P_{4}}$ on the circle C. The first set of lines intersects the line ℓ in the points A, X, B, Y, the second set of lines intersects the line ℓ in the points $A^{\prime}, X, B^{\prime} Y$. Hence the corresponding cross ratios agree.
Vice versa, using the definition of the cross ratio, a short calculation shows that the only solutions of the equation $\left(X, Y^{\prime}, A, B\right)=\left(X, Y^{\prime}, A^{\prime}, B^{\prime}\right)$ are $Y^{\prime}=X$ and $Y^{\prime}=Y$.
q.e.d.

Figure 14: Equality of the cross ratios $(X, Y, A, B)=\left(X, Y, A^{\prime}, B^{\prime}\right)$ in the proof of Lemma 6.

The next result can be seen as a dynamic version of Class f_{1} :
Pascal Twin Porism. Let $X, Y, P_{1} \ldots, P_{4}$ and $X, Y, P_{X 1 Y 4}, P_{X 3 Y 2}, P_{X 2 Y 3}, P_{X 4 Y 1}$ be two conic hexagons. Furthermore, let X^{\prime} be a point on the line $\ell=X-Y$, let C^{\prime} be the conic defined by the 5 points $X^{\prime}, P_{1} \ldots, P_{4}$, and let Y^{\prime} be the other intersection point of the line ℓ with C^{\prime}. Then the conic $C^{\prime \prime}$ defined by the 5 points $X^{\prime}, P_{X 1 Y 4}, P_{X 3 Y 2}, P_{X 2 Y 3}, P_{X 4 Y 1}$ passes also through Y^{\prime} (see Figure 15).

Figure 15: Proof of the Pascal Twin Porism.

Proof. We will use twice Lemma 6 in the proof to locate the point Y^{\prime}, once with respect to the
conic C^{\prime} and once with respect to the conic $C^{\prime \prime}$. To do so, we need the following points:

$$
\begin{array}{rlr}
A=P_{1}-P_{2} \wedge \ell & E=P_{X 4 Y 1}-P_{X 2 Y 3} \wedge \ell \\
B=P_{1}-P_{4} \wedge \ell & F=P_{X 4 Y 1}-P_{X 1 Y 4} \wedge \ell \\
A^{\prime}=P_{3}-P_{2} \wedge \ell & E^{\prime}=P_{X 3 Y 2}-P_{X 2 Y 3} \wedge \ell \\
B^{\prime}=P_{3}-P_{4} \wedge \ell & F^{\prime}=P_{X 3 Y 2}-P_{X 3 Y 2} \wedge \ell
\end{array}
$$

By a projective transformation, we may assume that

$$
\begin{array}{ll}
P_{1}=(0,1,1) & A^{\prime}=(1,0,1) \\
P_{2}=(1,1,1) & X=(0,0,1)
\end{array}
$$

The other points have the coordinates

$$
\begin{array}{ll}
P_{3}=(1, c, 1) & X^{\prime}=(u, 0,1) \\
P_{4}=(a, b, 1) & Y^{\prime}=(v, 0,1)
\end{array}
$$

and $\ell=(0,1,0)$. The recall that on the level of coordinates, the intersection of lines and the line joining two points is realized by the cross product in \mathbb{R}^{3}. Concretely, this results in the following coordinates for the individual points:

$$
\begin{aligned}
A & =\ell \times\left(P_{1} \times P_{2}\right) & =(1,0,0) & B
\end{aligned}=\ell \times\left(P_{1} \times P_{4}\right)=(a, 0,1-b)
$$

Using the equation $(X, Y, A, B)=\left(X, Y, A^{\prime}, B^{\prime}\right)$ from Lemma 6, we find for Y the coordinates

$$
Y=(\underbrace{a c(a-b)+b(b-1)}_{=: \alpha}, 0,(b-a c)(b-1)) .
$$

Using this, we obtain

$$
\begin{aligned}
& P_{X 4 Y 1}=\left(Y \times P_{1}\right) \times\left(X \times P_{4}\right)=\left(\alpha a, \alpha b, a c\left(a-b^{2}\right)+b(a+b)(b-1)\right) \\
& P_{X 2 Y 3}=\left(Y \times P_{3}\right) \times\left(X \times P_{2}\right)=(\alpha, \alpha, a(a+c-b c-1)+b(b-1)) \\
& P_{X 3 Y 2}=\left(Y \times P_{2}\right) \times\left(X \times P_{3}\right)=\left(\alpha, \alpha c, b^{2}+a c(1+(a-1) c)-b(1+a c)\right) \\
& P_{X 1 Y 4}=\left(Y \times P_{4}\right) \times\left(X \times P_{1}\right)=(0, \alpha b, b(a-1)(1-b+a c))
\end{aligned}
$$

and hence

$$
\begin{aligned}
E & =\ell \times\left(P_{X 4 Y 1} \times P_{X 2 Y 3}\right)=(\alpha(a-b), 0, a(a-b)(c-b)) \\
F & =\ell \times\left(P_{X 4 Y 1} \times P_{X 1 Y 4}\right)=(\alpha a b, 0, b(b-1)(b(2 a+b-1)-a c(a+b))) \\
E^{\prime} & =\ell \times\left(P_{X 3 Y 2} \times P_{X 2 Y 3}\right)=(\alpha, 0, b(b-1)-a c(a+b-2)) \\
F^{\prime} & =\ell \times\left(P_{X 3 Y 2} \times P_{X 1 Y 4}\right)=(\alpha b, 0, b(b-1)(b-c)) .
\end{aligned}
$$

It turns out that for $X^{\prime} \neq Y^{\prime}$, both equations

$$
\left(X^{\prime}, Y^{\prime}, A, B\right)=\left(X^{\prime}, Y^{\prime}, A^{\prime}, B^{\prime}\right) \quad \text { and } \quad\left(X^{\prime}, Y^{\prime}, E, F\right)=\left(X^{\prime}, Y^{\prime}, E^{\prime}, F^{\prime}\right)
$$

can be reduced to

$$
b(a c(u+v-1)-((c+1) u v)+u+v-1)+c(a-u)(a-v)+b^{2}(u-1)(v-1)=0
$$

Hence, both equations yield the same point Y^{\prime} for a given point X^{\prime} on ℓ. q.e.d.

Now, we are ready to proof the Classes e_{2}, e_{3} and e_{4}. In fact, it will turn out that these classes just follow from the Pascal Twin Porism starting with a Siamese Pascal twin in Class f_{1}.

Theorem 7 (Class e_{2}). Let $P_{1}, P_{2}, \ldots, P_{6}$ be points in the projective plane, and let $P_{i j k l}$ be the intersection of the lines $P_{i} P_{j}$ and $P_{k} P_{l}$. Then the points $P_{1}, P_{2}, \ldots, P_{6}$ lie on a conic iff the points $P_{1546}, P_{3526}, P_{2536}, P_{4516}, P_{2356}, P_{1456}$ lie on a conic.

Proof. We have to show that P_{1}, \ldots, P_{6} lie on a conic iff the points Q_{1}, \ldots, Q_{6} lie on a conic, where $Q_{1}=P_{1546}, Q_{2}=P_{3526}, Q_{3}=P_{2536}, Q_{4}=P_{4516}, Q_{5}=P_{2356}, Q_{6}=P_{1456}$ (see Figure 16). Furthermore, let $X=P_{5}$ and let $Y=P_{6}$.

Figure 16: Proof of Theorem 7.

By Theorem 1, we know that $X, Y, P_{1}, \ldots, P_{4}$ lie on a conic iff the points $X, Y, Q_{1}, \ldots, Q_{4}$ lie on a conic. Thus, by the Pascal Twin Porism, for any points X^{\prime}, Y^{\prime} on the line $X-Y$ we have that $X^{\prime}, Y^{\prime}, P_{1}, \ldots, P_{4}$ lie on a conic iff $X^{\prime}, Y^{\prime}, Q_{1}, \ldots, Q_{4}$ lie on a conic. In particular, for $X^{\prime}=Q_{5}$ we have that the three points P_{2}, Q_{5}, P_{3} are collinear, which implies that the conic through the five points $P_{1}, P_{2}, P_{3}, P_{4}, Q_{5}$ falls apart into two lines. One line contains the points P_{2}, Q_{5}, P_{3}, and the other line contains the points P_{1}, P_{4} and $Q_{6}=Y^{\prime}$. Now, by the Pascal Twin Porism we conclude that the six points P_{1}, \ldots, P_{6} lie on a conic if and only if Q_{1}, \ldots, Q_{6} lie on a conic, which completes the proof.
q.e.d.

Theorem 8 (Class e_{3}). Let $P_{1}, P_{2}, \ldots, P_{6}$ be points in the projective plane, and let $P_{i j k l}$ be the intersection of the lines $P_{i} P_{j}$ and $P_{k} P_{l}$. Then the points $P_{1}, P_{2}, \ldots, P_{6}$ lie on a conic iff the points $P_{1546}, P_{3526}, P_{2536}, P_{4516}, P_{2456}, P_{1356}$ lie on a conic.

Proof. We have to show that P_{1}, \ldots, P_{6} lie on a conic iff the points Q_{1}, \ldots, Q_{6} lie on a conic, where $Q_{1}=P_{1546}, Q_{2}=P_{3526}, Q_{3}=P_{2536}, Q_{4}=P_{4516}, Q_{5}=P_{2456}, Q_{6}=P_{1356}$ (see Figure 17). Furthermore, let $X=P_{5}$ and let $Y=P_{6}$.

Figure 17: Proof of Theorem 8.

The proof is essentially the same as the proof for Class e_{2}, the only difference is that we move X^{\prime} on the line $X-Y$ to the point $Q_{5}=X-Y \wedge P_{2}-P_{4}$. Since the three points P_{2}, Q_{5}, P_{4} are collinear, the corresponding point Y^{\prime} on the line $X-Y$ must be on the line $P_{1}-P_{3}$, which implies that $Y^{\prime}=Q_{6}$. Therefore, by the Pascal Twin Porism we have that the six points P_{1}, \ldots, P_{6} lie on a conic if and only if Q_{1}, \ldots, Q_{6} lie on a conic, which completes the proof.
q.e.d.

Theorem 9 (Class e_{4}). Let $P_{1}, P_{2}, P_{X}, P_{5}, P_{6}$ be five points in the projective plane such that no three points are on a line. Then the points $P_{15 X 6}, P_{X 526}, P_{25 X 6}, P_{X 516}, P_{2 X 56}, P_{1 X 56}$ lie on a conic.

Proof. This class follows immediately from Class e_{3} by identifying the two points P_{3} and P_{4} with the point P_{X} (see also Figure 4).
q.e.d.

References

[1] Lazare Carnot. Géométrie de Position. J. B. M. Duprat, 1803.
[2] John Conway and Alex Ryba. The Pascal mysticum demystified. Math. Intelligencer, 34(3):4-8, 2012.
[3] Lorenz Halbeisen, Norbert Hungerbühler, and Juan Läuchli. Mit harmonischen Verhältnissen zu Kegelschnitten. Perlen der klassischen Geometrie. Berlin: Springer Spektrum, 2nd edition edition, 2021.

