... which implies that \(x_0\) is not an \(\varepsilon\)-minimal element...

... we have \(x_n \ni x_{n+1}\).

Now, let \(s_\alpha := f_0(M)\) and define \(F_{\alpha+1} := F_\alpha \cup \{\langle \alpha, s_\alpha \rangle\}\).

\[ax_0^{k_0} \cdots x_i^{k_i} \text{ where...} \]

\[x = \sum_{v \in B(x)} q_v^w \cdot v \]

\[p_u \lor p_{-u} \text{ instead of } p_u \lor \neg p_{-u} \]

\[\chi_A \cap \chi_B \supseteq \chi_{A \cup B} \]

Indeed, let \(g \in [z]^\omega\), and let \(\rho \neq \iota\) be such that \(\rho(y) = y\) and \(\rho\) induces a proper cycle in \([z]^\omega\) (i.e., the cycle starts and ends with \(y\) and the other points in the cycle are pairwise distinct).

... whenever \(\sigma\) has label \(\circlearrowright\), \(\varphi_n \sigma\) cannot get label \(\circlearrowright\).

... we have \(\pi a = \tau a\).

\[f(s) := \{(m + l+1, s, 0), (m + l+1, s, 1)\} \]

... in \(\omega \setminus N_1\) instead of \(\omega \setminus (N_1 \cup N_2)\)

\[
\Psi_E : \{ S \subseteq A : \text{supp}(S) = E \} \rightarrow \mathcal{P}(\mathcal{P}(k))
\]

\[
S_0 \rightarrow \{ I \subseteq k : \exists a \in S_0 \left(\vartheta_E(a) = \{ \varphi_i(x) : i \in I \} \right) \}
\]

... \(\Psi_E\) maps \(S\) to \(\mathcal{P}(\mathcal{P}(k))\), and \(l < 2^\omega \) encodes the set \(\Psi_E(S)\).

\(g \in \omega^2\) (four times).

\[x_0 := \bigcup \{ x \cap I_{2m} : m \in \omega \} \quad \text{and} \quad x_0 := \bigcup \{ x \cap I_{2m+1} : m \in \omega \}. \]

Now, since \(f(D') \subseteq D''\) and \(f(D'') \subseteq D' \cup (\omega \setminus D)\), this...

... but since \(f(I'_n) \subseteq I''_n \cup (\omega \setminus I_0)\) and \(f(I''_n) \subseteq I'_n \cup (\omega \setminus I_0)\), this is a contradiction to \(f(\mathcal{V}) = \mathcal{V}\). Thus, \(I_0 \notin \mathcal{V}\), which implies that \(I_\omega \in \mathcal{V}\). Now, for each \(n \in I_\omega\) there exists a least number \(m_n \in I_\omega\) such that there are \(k, k' \in \omega\) with \(f^k(m_n) = f^{k'}(n)\). Let

\[I'_\omega := \left\{ n \in I_\omega : \exists k, k' \in \omega (f^k(m_n) = f^{k'}(n) \land k + k' \text{ is odd}) \right\} \]

and let \(I''_\omega := I_\omega \setminus I'_\omega\). Since the two sets \(I'_\omega\) and \(I''_\omega\) are disjoint and their union is \(I_\omega\), either \(I'_\omega\) or \(I''_\omega\) belongs to \(\mathcal{V}\), but not both. Furthermore, we get \(f(I'_n) \subseteq I''_n\) and \(f(I''_n) \subseteq I'_n\), which is again a contradiction to \(f(\mathcal{V}) = \mathcal{V}\).
\(V[G] = \{ \emptyset \} \)

\[\forall (y_2, s_2) \in x_2 \forall q \in P \left((q \geq s_2 \land q \Vdash \neg y_1 = y_2) \rightarrow q \perp r \right), \]

\(y[G] = \{ x[G] : \exists q \in G \left((x, q) \in y \right) \} \)

and since \(p \in G \), for \(y = y[G] \) we get \(y \in V[G] \). Hence...

Lemma 15.16. If a forcing notion preserves cofinalities, then it preserves also cardinalities.

Proof. Since cofinalities are always cardinals, any forcing notion which preserves cardinalities must preserve cofinalities.

For the other direction,

Since \(p \in G \), for every \(\alpha \in \lambda \), \(G \cap D_\alpha \neq \emptyset \), and therefore, \(S[G](\alpha) \in Y_\alpha \).

If \(V \models ZFC \ldots \)

Let \(V \) be a model of \(ZFC \ldots \)

is equivalent to \(\psi \), free(\(\varphi_0 \)) \subseteq \ldots

\(h_{n,i}(\langle x_1, \ldots, x_i \rangle) := \mu \{ y \in V_{\alpha_{n+1}} : \forall x_{i+1} \in V_{\alpha_n} \exists y_{i+1} \cdots \forall x_k \in V_{\alpha_n} \exists y_k \ldots \}

for each \(a \in A \), \(\{ \alpha \in G : \alpha a = a \} \in \mathcal{F} \)

Let \(G \) be the group generated by automorphisms of \(C_\omega \) of the form \(\alpha_{n_1}, n_0 \), i.e.,

\[\mathcal{G} = \langle \alpha_{n_1}, n_0 : F \in \text{fin}(\omega) \land n_0 \in \omega \rangle. \]

\(H_\omega \)

\(\delta_{\omega_1} := \bigcup_{i \in \omega_1} \delta_i \)

Minor Corrections and Improvements

Let \(\varphi, \varphi_1, \varphi_2, \varphi_3 \), and \(\psi \ldots \)

.. is equal to the formula \(\forall \nu \varphi_j \), where \(\nu \) is a variable which does not occur free in any non-logical axiom of \(T \).

subset instead of subsets

\(\ldots z^m \leq \text{seq}(m) \ldots \)
... \forall \alpha \in \omega, \text{seq}(\alpha) \leq \text{seq}(\beta) \ldots

which shows that \(V_{\text{eq}} \) can be well-ordered in the case when \(\alpha_0 \) is a successor ordinal.

\(m \cdot 2^{\aleph_0} \leq \text{seq}(m + \aleph_0) \ldots \)

\(\text{seq}(m + \aleph_0) \leq \text{seq}(m) \ldots \)

\(\text{seq}(m + \aleph_0) = \omega \ldots \)

\(\text{seq}(m + \aleph_0) = \omega \ldots \)

\(\text{seq}(m + \aleph_0) = \omega \ldots \)

\(\sigma_0(x_0) = \sigma(x_0) \) and therefore \(\sigma_0^{-1} \sigma_0(x_0) = x_0 \). Consequently we have \(\sigma_0^{-1} \sigma_0 = \vartheta_0 \), and therefore \(\rho = \sigma_0 \vartheta_0 \sigma_0^{-1} \). Thus, since \(\rho \) induces a proper cycle, this implies \(y \in \{x_0, \ldots, x_k\} \).

The Ordered Mostowski Model instead of “Ordered Mostowski Models”.

Fraïssé-limit

Fraïssé-limit

\(\Psi : \mathcal{P}(A) \ldots \)

\(J \) are arbitrary finite, disjoint subfamilies.

In other words, \(\text{MA}(\kappa) \) holds for each cardinal \(\kappa < c \)

\[\text{up}(x, y) = \{ \langle x, 0 \rangle, \langle y, 0 \rangle \} \]

and

\[\text{op}(x, y) = \{ \langle \{ \langle x, 0 \rangle \}, 0 \rangle, \langle \{ \langle x, 0 \rangle, \langle y, 0 \rangle \}, 0 \rangle \} \].

Replace everywhere \(G \) with \(G \hat{} \), and cancel in the index the definition of \(G \).

In order to show the second part of this proof \((G \) is \(\mathbb{P} \)-generic) one needs FACT 15.7.

\(\text{collapses} \; \kappa \) [bold] and \(\text{preserves} \; \kappa \) [bold]

This is because whenever \(q_1 \vdash \mathcal{S} \models \gamma_1 \) and \(q_2 \vdash \mathcal{S} \models \gamma_2 \), where \(\gamma_1 \neq \gamma_2 \), then \(q_1 \perp q_2 \).

Replace \(p \) with \(p_0 \) on line 6, 7, 9, 10, 15.

\(\text{countable union of at most countable sets of ordered pairs} \ldots \)

\(\text{countable union of at most countable sets of ordered pairs} \ldots \)

\(\text{refine} \) the construction in the proof of (a). By \(\ldots \)

\(\text{is a countable transitive model in} \; V, \; N[G] \models \Phi_0 \), and if \(p_0 \vdash \varphi \), then \(N[G] \models \varphi \).

\(\text{then} \; N[G] \models \varphi_0 + \varphi \).

Since \(\mathcal{U} \) is generated by \(\mathcal{U} \), for each \(n \in \omega \) there is an \(x_n' \in \mathcal{U} \) such that \(x_n' \subseteq x_n \). Then define \(A := \{ f(x_n') : n \in \omega \} \) and notice that \(y \subseteq x_n' \subseteq x_n \).
A general form of the Δ-System-Lemma (see Kunen, Thm. 1.6, p. 49) is needed here.

$\ldots \leq \omega_2 \cdot \omega_2 \ldots$

\ldots P-point—and in particular every Ramsey ultrafilter—in \ldots

\ldots P-point in $V[G_\delta]$, for some $\delta \in \omega_2$.