Corrections and Improvements

6 July 2021
I would like to thank Riccardo Plati, Dávid Uhrik, and Michael Weiss for their numerous comments.

Chapter 3

page 35 , line 10 ...which implies that x_{0} is not an \in-minimal element. . .
page 48 , line 9
$\forall x(\exists z(z \in x) \rightarrow \ldots$
page 48 , line $13 \quad \ldots$ we have $x_{n} \ni x_{n+1}$.
page 55, line -11 ff. (a) (b) (c) instead of 1.2.3.
page 56, line -4 . . . any infinite ordinal. . .
page 62 , line $-2 \quad \ldots C \in \mathscr{W}_{0} \ldots$
page 63 , line $2 \quad \ldots C \in \mathscr{W}_{0} \ldots$
page 69 , line $4 \quad|\operatorname{seq}(\kappa)|=\kappa$

Chapter 5

page 118 , line 3 Now, let $s_{\alpha}:=f_{0}(M)$ and define $F_{\alpha+1}:=F_{\alpha} \cup\left\{\left\langle\alpha, s_{\alpha}\right\rangle\right\}$.
page 127 , line $14 \quad I_{n, k}(X)$

Chapter 6

page 141 , line $21 \quad a x_{0}^{k_{0}} \cdots x_{l}^{k_{l}}$ where...
page 141 , line $-4 \quad x=\sum_{v \in B(x)} q_{v}^{x} \cdot v$
page 152 , line - $16 \quad p_{u} \vee p_{-u}$ instead of $p_{u} \vee \neg p_{-u}$
page 154, line $11 \quad \chi_{A} \cap \chi_{B} \supseteq \chi_{A \cup B}$

Chapter 7

page 185 , line 2 ff . Indeed, let $y \in[z]^{\sim}$, and let $\rho \neq \iota$ be such that $\rho(y)=y$ and ρ induces a proper cycle in $[z]^{\sim}$ (i.e., the cycle starts and ends with y and the other points in the cycle are pairwise distinct).
page 186 , line $2 \ldots$ whenever σ has label (i), $\varphi_{m} \sigma$ cannot get label (i).

Chapter 8

page 201 , line $-8 \quad S \mapsto(k, E)$
page 202 , line $8 \quad \ldots$ for some $m \in n \ldots$
page 208, line $4 \quad \ldots$ we have $\pi a=\tau a$.
page 210 , line $7 \quad f(s):=\{(m+l+1, s, 0),(m+l+1, s, 1)\}$
page 213 , line $9 \quad \ldots$ in $\omega \backslash N_{1}$ instead of $\omega \backslash\left(N_{1} \cup N_{2}\right)$
page 215 , line 20 f .

$$
\begin{aligned}
& \Psi_{E}:\{S \subseteq A: \operatorname{supp}(S)=E\} \longrightarrow \\
& \mathscr{P}(\mathscr{P}(k)) \\
& S_{0} \longmapsto\left\{I \subseteq k: \exists a \in S_{0}\left(\vartheta_{E}(a)=\left\{\varphi_{i}(x): i \in I\right\}\right)\right\}
\end{aligned}
$$

page 215 , line -7 $\ldots \Psi_{E}$ maps S to $\mathscr{P}(\mathscr{P}(k))$, and $l<2^{2^{k}}$ encodes the set $\Psi_{E}(S) \ldots$

Chapter 9

page 228 , line -8
$\mathfrak{i}=\min \left\{|\mathscr{I}|: \mathscr{I} \subseteq[\omega]^{\omega}\right.$ is maximal independent $\}$
page 229 , line 11
$A_{k}:=A_{0} \cup\left\{t \cup\{k\}: t \in A_{0}\right\}$
page 229 , line -10
$\left\{x \in[\omega]^{\omega}: x \in \mathscr{I}_{0} \wedge f(x)=1\right\} \cup\left\{(\omega \backslash y) \in[\omega]^{\omega}: y \in \mathscr{I}_{0} \wedge f(y)=0\right\}$
page 231 , line $10 \mathrm{ff} . \quad g \in{ }^{\omega} 2$ (four times).
page 231, line -1 $\bigcap I \backslash \bigcup J \supseteq\left(\bigcap I^{\prime} \backslash \bigcup J^{\prime}\right) \cap \bigcap_{n \in m} X_{n}^{g(n)} * \supseteq\left(\bigcap I^{\prime} \backslash \bigcup J^{\prime}\right) \cap Y_{g}$
page 232 , line $3 \quad \ldots$ and therefore $Z \cap(\bigcap I \backslash \bigcup J)$ is infinite.
page 232 , line $19 \ldots$ show that \mathscr{F}^{\prime} is a dominating ...
page 233 , line $-4 \quad \ldots$ for all $m \in A$ with $m \geq g_{\xi}(n) \ldots$
page 236 , line $3 \quad \ldots \mathscr{A}_{\xi} \in \mathscr{E} \ldots$

Chapter 10

page 245 , line -4 f . \ldots such that $y_{0} \notin C$ and $y_{1} \in C$.
page 246 , line $13 \quad\left[s, y_{n}\right]^{\omega} \cap C=\emptyset$
page 248 , line $2 \quad D_{\xi}=\left\{y \in[\omega]^{\omega}: \forall z \in[\omega]^{\omega}\left(z \subseteq^{*} y \rightarrow[\emptyset, z]^{\omega} \cap C_{\xi}=\emptyset\right)\right\}$
page 248 , line $6 \quad \ldots x \in[\omega]^{\omega} \mathscr{A}_{\xi} \ldots$

Chapter 11

page 266 , line $-15 \mathrm{f} . \quad \ldots x_{\alpha+1} x_{\alpha}$ exists. . . (twice)
page 267 , line 18
page 279 , line 4
page 279 , line 12 ff .
Now, since $f\left(D^{\prime}\right) \subseteq D^{\prime \prime}$ and $f\left(D^{\prime \prime}\right) \subseteq D^{\prime} \cup(\omega \backslash D)$, this. .
...but since $f\left(I_{0}^{\prime}\right) \subseteq I_{0}^{\prime \prime} \cup\left(\omega \backslash I_{0}\right)$ and $f\left(I_{0}^{\prime \prime}\right) \subseteq I_{0}^{\prime} \cup\left(\omega \backslash I_{0}\right)$, this is a contradiction to $f(\mathscr{U})=\mathscr{U}$. So, $I_{0} \notin \mathscr{U}$, which implies that $I_{\omega} \in \mathscr{U}$. Now, for each $n \in I_{\omega}$ there exists a least number $m_{n} \in I_{\omega}$ such that there are $k, k^{\prime} \in \omega$ with $f^{k}\left(m_{n}\right)=f^{k^{\prime}}(n)$. Let

$$
I_{\omega}^{\prime}:=\left\{n \in I_{\omega}: \exists k, k^{\prime} \in \omega\left(f^{k}\left(m_{n}\right)=f^{k^{\prime}}(n) \wedge k+k^{\prime} \text { is odd }\right)\right\}
$$

and let $I_{\omega}^{\prime \prime}:=I_{\omega} \backslash I_{\omega}^{\prime}$. Since the two sets I_{ω}^{\prime} and $I_{\omega}^{\prime \prime}$ are disjoint and their union is I_{ω}, either I_{ω}^{\prime} or $I_{\omega}^{\prime \prime}$ belongs to \mathscr{U}, but not both. Furthermore, we get $f\left(I_{\omega}^{\prime}\right) \subseteq I_{\omega}^{\prime \prime}$ and $f\left(I_{\omega}^{\prime \prime}\right) \subseteq I_{\omega}^{\prime}$, which is again a contradiction to $f(\mathscr{U})=\mathscr{U}$.
page 280 , line $3 \quad \ldots$ which shows that $\tilde{g}(\mathscr{U}) \supseteq \mathscr{V}$.
page 280, line -5 $\quad\left\{a^{\prime} \in \omega:\left\{b \in \omega:\left\langle a^{\prime}, b\right\rangle \in X_{0}\right\} \notin \mathscr{V}\right\} \in \mathscr{U}$
page 281 , line $-1 \quad \ldots$ for $y_{Q}:=\pi_{\mathscr{U}}\left(Y_{Q} \cap D\right) \ldots$

Chapter 14

page 324 , line $2 \mathrm{ff} . \quad[$ throughout Chapter 14$] \mathbb{P}=(P, \leq)$
page 326, line - 20 . . .for any uncountable set. . .
page 327 , line $7 \quad$. .the set $\{p \in \mathscr{F}: \operatorname{dom}(p)=K\}$ is countable. . .
page 327, line 16 Now we show that $|\mathscr{D}|<\mathfrak{c}$ cannot...
page 330 , line -5 Let $\mathscr{F}_{0}:=\left\{\omega \backslash s: s \in[\omega]^{<\omega}(\omega)\right\} \ldots$
page 331 , line - $3 \quad$ For each $\tilde{\mathscr{Y}} \in \operatorname{fin}\left(P_{\beta_{0}}\right) \ldots$
page 332 , line $2 \quad \ldots$ finite set $\tilde{\mathscr{Y}}_{0} \in \operatorname{fin}\left(P_{\beta_{0}}\right) \ldots$
page 332, line - 2 ff. \quad Now, for each $x \in \mathscr{F}_{\beta_{0}}$ and $m \in \omega$, let

$$
D_{x}:=\left\{\left(\left\langle s_{n_{i}}: i \in k+1\right\rangle, X\right) \in P: x \in X\right\},
$$

and

$$
D_{m}:=\left\{\left(\left\langle s_{n_{i}}: i \in k+1\right\rangle, X\right) \in P: m \in k+1\right\} .
$$

By Claim 2, for each $x \in \mathscr{F}_{\beta_{0}}$ and $m \in \omega$, the sets D_{x} and D_{m} are open dense subsets of P. Hence, since $\left|\mathscr{F}_{\beta_{0}}\right|<\mathfrak{c}$, the set

$$
\mathscr{D}:=\left\{D_{x} \subseteq P: x \in \mathscr{F}_{\beta_{0}}\right\} \cup\left\{D_{m} \subseteq P: m \in \omega\right\}
$$

is of cardinality...
page 334 , line -6
page 335 , line 11
. . .belongs to the dual ideal of the filter generated by $\mathscr{F}_{\left.\eta\right|_{\beta_{0}}} \ldots$ of them.

Chapter 15

page 342 , line $-16 \quad \mathbf{V}[G]=\{\emptyset\}$
page 350 , line 8

$$
\forall\left\langle{\underset{\sim}{y}}_{2}, s_{2}\right\rangle \in \underset{\sim}{x} x_{2} \forall q \in P\left(\left(q \geq s_{2} \wedge q \| \mathbb{P} \underset{\sim}{y_{1}}={\underset{\sim}{x}}_{2}^{y_{2}}\right) \rightarrow q \perp r\right),
$$

page 352, line -14 $\quad \underset{\sim}{x} 1:=\{\langle\emptyset, p\rangle,\langle\emptyset, q\rangle\} \ldots$
page 353 , line $12 \quad \ldots$.then there is a \mathbb{P}-name $\underset{\sim}{y}$ and a pair $\langle\underset{\sim}{y}, r\rangle \in \underset{\sim}{B} \ldots$
page 353, line $14 \quad \ldots$ and since $\underset{\sim}{y}[G]=\{\underset{\sim}{x}[G]: \exists q \in G(\langle\underset{\sim}{x}, q\rangle \in \underset{\sim}{y})\}$
page 353 , line -18 fthen there is a \mathbb{P}-name $\underset{\sim}{y}$ and a pair $\langle\underset{\sim}{y}, r\rangle \in \underset{\sim}{B} \ldots$
page 353 , line -3 f . $\quad \ldots$ and since $p \in G$, for $y=\underset{\sim}{y}[G]$ we get $y \in \mathbf{V}[G]$. Hence. . .
page 360, line 6 ff . Four times $\bigcup G$ instead of just G.
page 361 , line 18 ff . LEMMA 15.16. If a forcing notion preserves cofinalities, then it preserves also cardinalities.
page 361, line 20 f. Proof. Since cofinalities are always cardinals, any forcing notion which preserves cardinalities must preserve cofinalities.
For the other direction,
page 362 , line 15 ff . \quad Since $p \in G$, for every $\alpha \in \lambda, G \cap D_{\alpha} \neq \emptyset$, and therefore, $\mathcal{S}[G](\alpha) \in Y_{\alpha}$.

Chapter 16

page 371 , line $-3 \quad$ If $\mathbf{V} \vDash$ ZFC...
page 372 , line $1 \quad \ldots$ Let \mathbf{V} be a model of ZFC ...
page 372 , line $8 \quad \ldots$ is equivalent to ψ, free $\left(\varphi_{0}\right) \subseteq \ldots$
page 372 , line $-3 \quad \ldots$ reflects $\bar{\psi}$.
page 373 , line 3 f .
$h_{n, i}\left(\left\langle x_{1}, \ldots, x_{i}\right\rangle\right):=\mu\left\{y \in V_{\alpha_{n+1}}: \forall x_{i+1} \in V_{\alpha_{n}} \exists y_{i+1} \cdots \forall x_{k} \in V_{\alpha_{n}} \exists y_{k} \ldots\right.$
page 379 , line $-7 \quad \ldots$ the forcing notion $\mathbb{K}_{0} \ldots$

Chapter 17

page 384, line 19
page 389 , line -9
for each $a \in A,\{a \in \mathcal{G}: a a=a\} \in \mathscr{F}$
Let \mathcal{G} be the group generated by automorphisms of \mathbb{C}_{ω} of the form $\alpha_{\pi_{F}, n_{0}}$, i.e.,

$$
\mathcal{G}=\left\langle\alpha_{\pi_{F}, n_{0}}: F \in \operatorname{fin}(\omega) \wedge n_{0} \in \omega\right\rangle .
$$

page 397 , line -8 fcorresponds an automorphism α_{π} of \mathbb{P} by stipulating

$$
\alpha_{\pi} p(\pi\langle\bar{a}, \xi\rangle, \eta):=p(\bar{a}, \xi, \eta)
$$

page 397, line -2 $\quad\left\{\bar{H}: H \in \mathscr{F}_{0}\right\} \cup\left\{\operatorname{fix}_{\overline{\mathcal{G}}}(E): E \in \operatorname{fin}(\bar{A} \times \kappa)\right\}$.
page 398 , line 6 f. ...i.e., for every $\sigma \in \operatorname{sym}_{\mathcal{G}_{0}}(a), \bar{\sigma} \subseteq \operatorname{sym}_{\overline{\mathcal{G}}}(a)$.

Chapter 19

page 338 , line $1 \quad$. .the function $H: \bigcup_{n \in \omega}{ }^{n} 2 \rightarrow \operatorname{fin}(\omega) \ldots$

Chapter 20

page 445 , line 7 fffor some limit ordinal $\lambda \in \omega_{1}$ let

$$
\bar{x}:=\left\{y \in T^{\prime \prime}: y<x\right\} .
$$

For each \bar{x} we add an extra node $w_{\bar{x}}$ to $T^{\prime \prime}$ and stipulate

$$
z<w_{\bar{x}} \Longleftrightarrow z<x \quad \text { and } \quad w_{\bar{x}}<z \Longleftrightarrow x \leq z
$$

Roughly speaking, $w_{\bar{x}}$ is a node between $\left\{z \in T^{\prime \prime}: z<x\right\}$ and x. Let

$$
T^{\prime \prime \prime}:=T^{\prime \prime} \cup\left\{w_{\bar{x}}: x \in T^{\prime \prime} \wedge \text { o.t. }(x)=\lambda\right\}
$$

where $\lambda \in \omega_{1}$ is a limit ordinal. Notice that the root of $T^{\prime \prime \prime}$ is $w_{\overline{x_{0}}}$, where x_{0} is...
page 451, line $-7 \quad f\left(k_{i+1}\right):= \begin{cases}f\left(k_{i}\right) & \text { if } k_{i} \in A, \\ k_{i} & \text { otherwise } .\end{cases}$

Chapter 21

page 460 , line -5 $\quad H_{\omega_{1}}$
page 461 , line $4 \quad \ldots$ GCH holds in the ground model and $|P| \leq \omega_{1}$, then $\chi=\omega_{3} \ldots$

Chapter 22

page 478, line $5 \quad \ldots$ model $\mathbf{V}\left[\left.G\right|_{\alpha}\right]$, fix an arbitrary dense set $D \subseteq \operatorname{Fn}(\omega, 2)$ and let $\underset{\sim}{D} \in \mathbf{V}\left\{\left.G\right|_{\alpha}\right] \ldots$
page 478 , line $12 \quad \ldots T_{3, i, j} \geq T_{2}\left[s_{i, j}\right]$.

Chapter 23

page 486 , line $-14 \quad \ldots T_{3, i, j} \geq T_{2}\left[s_{i, j}\right]$.
page 486 , line $-13 \quad \ldots T_{3}\left[s_{i, j}\right] \in D_{3}$.
page 488 , line 8

$$
\mathscr{T}[s]:=T_{0}\left[s_{0}\right] \times \ldots \times T_{d-1}\left[s_{d-1}\right]
$$

page 489 , line $8 \quad\left|\mathscr{T}_{i}^{\prime}\left(l_{k}\right)\right|=2^{k}$
page 493 , line -16 $\quad \delta_{\omega_{1}}:=\bigcup_{\iota \in \omega_{1}} \delta_{\iota}$

Minor Corrections and Improvements

page 14 , line $16 \quad$ Let $\varphi, \varphi_{1}, \varphi_{2}, \varphi_{3}$, and $\psi \ldots$
page 16, line -6 ...is equal to the formula $\forall \nu \varphi_{j}$, where ν is a variable which does not occur free in any non-logical axiom of T .
page 41 , line 9 subset instead of subsets
page 120 , line $1 \quad \ldots 2^{\mathfrak{m}} \leq \operatorname{seq}(\mathfrak{m}) \ldots$
page 120 , line $14 \quad \ldots 2^{\mathfrak{m}} \cdot 2^{\aleph_{0}} \leq \operatorname{seq}\left(\mathfrak{m}+\aleph_{0}\right) \ldots$
page 126 , line 2 fsuch that we have $\varphi\left(U^{\prime}, X\right)$.
page 143 , line -2 f . which shows that $\mathrm{V}_{\alpha_{0}}$ can be well-ordered in the case when α_{0} is a successor ordinal.
page 154 , line 8 add a space: of G
page 154, line -16 add a space: \}.Notice
page 185 , line 3 ff . \ldots is as above. So, $\rho \sigma_{y}\left(x_{0}\right)=\sigma_{y}\left(x_{0}\right)$ and therefore $\sigma_{y}^{-1} \rho \sigma_{y}\left(x_{0}\right)=x_{0}$. Consequently we have $\sigma_{y}^{-1} \rho \sigma_{y}=\vartheta^{n}$, and therefore $\rho=\sigma_{y} \vartheta^{n} \sigma_{y}^{-1}$. Thus, since ρ induces a proper cycle, this implies $y \in\left\{x_{0}, \ldots, x_{k}\right\}$.
page 198, line -9 The Ordered Mostowski Model instead of "Ordered Mostowski Models".
page 211, line -3 Fraïssé-limit
page 213, line 18 Fraïssé-limit
page 215 , line $-11 \quad \Psi: \mathscr{P}(A) \ldots$
page 231 , line -9 $\ldots J$ are arbitrary finite, disjoint subfamilies. . .
page 234 , line -11 add a space: shatter x
page 323 , line $2, \ldots \quad(P, \leq)$
page 324, line -7 $\quad \mathscr{D} \subseteq \mathscr{P}(P)$
page 325 , line 17 In other words, $\mathrm{MA}(\kappa)$ holds for each cardinal $\kappa<\mathfrak{c}$
page 343 , line -6 ff .

$$
\operatorname{up}(\underset{\sim}{x}, \underset{\sim}{y}):=\{\langle\underset{\sim}{x}, \mathbf{0}\rangle,\langle\underset{\sim}{y}, \mathbf{0}\rangle\}
$$

and

$$
\operatorname{op}(\underset{\sim}{x}, \underset{\sim}{y}):=\{\langle\{\langle\underset{\sim}{x}, \mathbf{0}\rangle\}, \mathbf{0}\rangle,\langle\{\langle\underset{\sim}{x}, \mathbf{0}\rangle,\langle\underset{\sim}{y}, \mathbf{0}\rangle\}, \mathbf{0}\rangle\} .
$$

page 343 , line 10 page 345 , line -7 page 357 , line 4 ff .

Replace everywhere $\underset{\sim}{ }$ with G, and cancel in the index the definition of G.

In order to show the second part of this proof (G is \mathbb{P}-generic) one needs FACT 15.7.

Axiom of Foundation: Let $G \subseteq P$ be \mathbb{P}-generic over \mathbf{V}. With respect to G, we define a rank-function $\mathrm{rk}_{G}: \mathbf{V}^{\mathbb{P}} \rightarrow \Omega$ by stipulating

$$
\operatorname{rk}_{G}(\underset{\sim}{z}):=\bigcup\left\{\operatorname{rk}_{G}(\underset{\sim}{y})+1: \exists p \in G(\langle\underset{\sim}{y}, p\rangle \in \underset{\sim}{z})\right\} .
$$

Let $\underset{\sim}{x}$ and $\underset{\sim}{y}$ be two \mathbb{P}-names. First, we show that $\underset{\sim}{x}[G]=\underset{\sim}{y}[G] \operatorname{implies}^{\operatorname{rk}}{ }_{G}(\underset{\sim}{x})=\operatorname{rk}_{G}(\underset{\sim}{y})$. To see this, assume that $\alpha=\operatorname{rk}_{G}(\underset{\sim}{y})<\operatorname{rk}_{G}(\underset{\sim}{x})$. By definition of rk_{G}, there is a name $\underset{\sim}{z}$ with $\alpha \leq \operatorname{rk}_{G}(\underset{\sim}{z})$ and $\underset{\sim}{z}[G] \in \underset{\sim}{x}[G]$. Since $\alpha \leq \operatorname{rk}_{G}(\underset{\sim}{z})$, we have $\underset{\sim}{z}[G] \notin y[G]$, and hence, $\underset{\sim}{x}[G] \neq \underset{\sim}{y}[G]$.
Now, let

$$
\alpha_{0}:=\bigcap\left\{\operatorname{rk}_{G}(\underset{\sim}{y}): \exists p \in G(\langle\underset{\sim}{y}, p\rangle \in \underset{\sim}{x})\right\} .
$$

Then there is a \mathbb{P}-name ${\underset{\sim}{x}}_{0}$ such that ${\underset{\sim}{x}}_{0}[G] \in \underset{\sim}{x}[G]$ and $\operatorname{rk}_{G}\left({\underset{\sim}{x}}_{0}\right)=\alpha_{0}$, which implies that $\underset{\sim}{x}[G] \cap \underset{\sim}{y_{0}}[G]=\emptyset$.
collapses κ [bold] and preserves κ [bold]
This is because whenever $q_{1} \Vdash_{\mathbb{P}} \underset{\sim}{\mathcal{S}}(\underset{\sim}{\alpha})=\gamma_{1}$ and $q_{2} \Vdash_{\mathbb{P}} \underset{\sim}{\mathcal{S}}(\underset{\sim}{\alpha})=\gamma_{2}$, where $\gamma_{1} \neq \gamma_{2}$, then $q_{1} \perp q_{2}$.
page 362 , line 6 ff . Replace p with p_{0} on line $6,7,9,10,15$.
page 364 , line 17 f.
page 364 , line 17 f .
page 372 , line -5
page 378 , line 5
page 378 , line 20
page 391 , line - 3
page 407 , line 8 f .
page 428 , line -5
page 465 , line 2 ff .
. . .countable union of at most countable sets of ordered pairs.countable union of at most countable sets of ordered pairs. . . \ldots. (b), we refine the construction in the proof of (a). By ...
\ldots is a countable transitive model in $\mathbf{V}, \mathbf{N}[G] \vDash \Phi_{0}$, and if $p_{0} \Vdash_{\mathbb{P}} \varphi$, then $\mathbf{N}[G] \vDash \varphi$.
. . then $\mathbf{N}[G] \vDash \Phi_{0}+\varphi$.
add a space: containsa q instead of $\underset{\sim}{q}$ and q, respectively.
\ldots let $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{Q}_{\alpha}: \alpha \in \omega_{2}\right\rangle \ldots$
Since $\hat{\mathscr{U}}$ is generated by \mathscr{U}, for each $n \in \omega$ there is an $x_{n}^{\prime} \in \mathscr{U}$ such that $x_{n}^{\prime} \subseteq x_{n}$. Then define $A:=\left\{f\left(x_{n}^{\prime}\right): n \in \omega\right\}$ and notice that $y \subseteq^{*} x_{n}^{\prime} \subseteq x_{n}$.
page 478 , line $12 \quad$. .there is some $\left\langle q_{0}, q_{1}\right\rangle \in\left(\left.G\right|_{\alpha} \times G(\alpha)\right) \cap E$.
page 492, line -11 A general form of the Δ-System-Lemma (see Kunen, Thm. 1.6, p.49) is needed here
page 493 , line $3 \quad \ldots \leq \omega_{2} \cdot \omega_{2} \ldots$
page 493 , line $-8 \quad \ldots P$-point-and in particular every Ramsey ultrafilter-in . . .
page 551 , line -6 $\ldots P$-point in $\mathbf{V}\left[\left.G\right|_{\delta}\right]$, for some $\delta \in \omega_{2}$.

