Corrections and Improvements

8 April 2022

We would like to thank Jeremy Feusi, Joscha Gillessen and Robert Schweizer for their numerous comments.

Chapter 1

page 12 , line -18 f . The elements of a theory are the axioms of the theory, which are called nonlogical axioms. In general, a non-logical axiom is just a formula which is not a logical axiom. Notice that non-logical axioms are sentences (i.e., formulae without free variables).
page 13 , line $3 \quad \ldots$ with free $(\varphi)=\{x\}$
page 13, line-12 and for variables ν which do not occur free in any non-logical axiom:
page 13, line -7 f . It is worth mentioning that the restriction on (\forall) is not essential, but will simplify certain proofs (e.g., the proof of the Deduction Theorem 2.1).
page 16, line 15 In Appendix 17 At the end of the book...

Chapter 2

page 19, line -7 f . \ldots and $\boldsymbol{\Phi}+\psi \vdash \varphi$, where in the formal proof of φ from $\boldsymbol{\Phi}+\psi$, Generalisation was not applied to variables which occur free in ψ, then...
page 20, line 17 ...does not occur free in ψ.
page 22, line $1 \quad \boldsymbol{\Phi}+\{\varphi\}$
page 25, line -7 (Proof by Contraposition)
page 28 , line $5 \quad$ instance of L_{12}
page 28, line -2 $\quad \forall \nu \varphi \circ \psi$
page 30 , line $1 \quad \ldots$ for some sentence $\varphi \ldots$
page 33, line $1 \quad$ We first show $\psi \ldots$ This proves φ.

Chapter 3

page 39, line $7 \quad \mathbf{M}_{2} \vDash \neg \varphi_{1} \wedge \neg \varphi_{2}$

Chapter 4

page 51 , line 1 f . \ldots such that $\sigma_{m} \in \bar{T}$. if no such m exists, we set $m=0$
page 51 , line $3 \quad \ldots$ contradicting $\sigma_{m} \in \overline{\mathrm{~T}}$; notice that $\operatorname{Con}\left(\mathrm{T}+\mathrm{T}_{0}\right)$. (respectively $\mathrm{T} \nvdash \sigma_{0}$ in the case of $m=0$)
page 51 , line $9 \quad \ldots \mathrm{~T}_{0}=\left[\neg \sigma_{0}\right]$ is \ldots

Chapter 5

page 54 , line $1 \quad \# \tau_{0}, \ldots$
page 60 , line $8 \quad \sigma \in \tilde{\mathbf{T}} \Longleftrightarrow \mathbf{M} \vDash \neq \sigma$

Chapter 8

page 84 , line 16
... no common divisor greater than 1 .

Chapter 9

page 96 , line 1
page 101, line -15
$\ldots \mathbf{2}^{\# \wedge} \cdot \mathbf{3}^{\# \psi_{0}} \cdot \mathbf{5} \# \psi_{1}$
page 104, line -16
$\left(\operatorname{var}\left(c_{k}\right) \wedge c_{k} \neq v \rightarrow c_{k+\operatorname{lh}\left(c^{\prime \prime}\right)}^{\prime}=c_{k}\right)$

Chapter 10

page 118 , line -10
$\operatorname{prv}_{\mathrm{T}}^{\mathrm{R}}(x)$
page 118 , line $-9 \quad \operatorname{prv}_{\mathrm{T}}^{\mathrm{R}}(\ulcorner\sigma\urcorner)$

Chapter 13

page 155 , line 9
$\ldots \forall z(z \in x \rightarrow z \in y)$
page 155 , line -15
$\ldots\{x\}$, where $\{x\}$ denotes the set which contains the single element x.
page 159 , line -2
...with domain α, for some ordinal number α, then...
page 162 , line $1 \quad \forall x(x \neq \emptyset \rightarrow \exists y(y \in x \wedge(y \cap x=\emptyset)))$

Chapter 14

page 179, line -10
$\left\ulcorner\forall v_{j} \varphi\right\urcorner:=\langle 7, j,\ulcorner\varphi\urcorner\rangle$
page 186 , line 6
... from every non-empty set.

Chapter 17

page 203, line -7
$\forall x \forall y(x+y=y+x)$
page 204, line 6
$\forall x \forall y \forall z(x<y \wedge 0<z \rightarrow \ldots)$
page 204, line -3
\ldots of the form $\langle 0, y\rangle$.
page 205, line 13
$\left\langle x_{0}, y_{0}\right\rangle<\left\langle x_{1}, y_{1}\right\rangle: \Longleftrightarrow y_{0}+x_{1}<y_{1}+x_{0}$
page 205, line 14
$z=\langle x, y\rangle$ if $\langle x, y\rangle>\langle 0,0\rangle$
page 208, line - 7
$\ldots+\left|a_{k}^{m}-a_{k}^{n}\right|+\ldots$
page 209, line 3
page 209, line 10 Since $b_{k}>\delta, \ldots$
page 214, line -4
$-\left\lfloor-n \cdot a_{k_{-n}}\right\rfloor$ otherwise.

Minor Corrections and Improvements

page 9, line -12	... most basic formulae we have, ...
page 11, line -22	... arbitrary first-order formulae
page 14, line -12	instance of PA_{3}
page 14, line -7	instance of PA_{2}
page 14, line -1	$\varphi_{9} \rightarrow\left(\varphi_{10} \rightarrow \ldots\right.$
page 15, line 1	$\varphi_{10} \rightarrow\left(\varphi_{10} \wedge \varphi_{9}\right) \quad$ from φ_{11} and φ_{9} by \ldots
page 15 , line 2	Commutativity and associativity of \wedge and \vee (up to logical equivalence)...
page 16, line 9	from φ_{12} and φ_{10} by...
page 17, line -11	Prove (K), (L.0), and (R) from the tautologies list at book's end first.
page 22, line 9	from φ_{12} and φ_{10} by...
page 36, line 6	In other words,
page 40, line 5 ff .	replace φ_{0} by φ.
page 43, line -13	. . .whether-the. .
page 50, line -22	\ldots as an initial segment.
page 96, line 1	... be an unary ...
page 137, line -8	$\mathscr{L}_{\text {PrA }}=\{0, s,+$,

