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Au départ, l'art du puzzle semble un art

bref, un art mine, tout entier ontenu

dans un maigre enseignement de la Gestalt-

theorie: l'objet visé n'est pas une somme

d'éléments qu'il faudrait d'abord isoler et

analyser, mais un ensemble, 'est-à-dire une

forme, une struture: l'élément ne préexiste

pas à l'ensemble, il n'est ni plus immé-

diat ni plus anien, e ne sont pas les

éléments qui déterminent l'ensemble, mais

l'ensemble qui détermine les éléments : : :

(Georges Pere,

La Vie mode d'emploi)
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Introdution

Combinatoris, inluding in�nitary ombinatoris, is a broad �eld of Mathematis

whih is quite di�ult to desribe properly. Nevertheless, let us start with a de�nition

of ombinatoris whih shall be suitable for our purpose:

Combinatoris is the branh of mathematis whih studies olletions

of objets that satisfy ertain riteria, and is in partiular onerned

with deiding how large or how small suh olletions might be.

In the following we give a few examples whih should illustrate some aspets of in�ni-

tary ombinatoris appearing later in this work. Let us start with an example from

graph theory.

Example 1 (König's Lemma). A tree is a onneted undireted graph without iruits

one of whose verties is designated as the origin. A tree is in�nite if its set of verties

is ountable in�nite and it is �nitely branhing if eah vertex has only �nitely many

suessors. A branh in a tree is a maximal path beginning at the origin. Now,

König's Lemma [43, VI, �2, Satz 6℄ states that every in�nite, �nitely branhing tree

ontains an in�nite branh. Notie that �nitely branhing is neessary to assure that

the tree is in�nitely high.

Even though this fat looks quite obvious, in order to prove it one must use some

kind of hoie. The full Axiom of Choie AC states that a Cartesian produt of

non-empty sets is non-empty, or equivalently, that every set of non-empty sets has

a hoie funtion. It is easy to see that König's Lemma follows from AC. On the

other hand, König's Lemma � whih is a purely ombinatorial result � is equivalent

to the statement AC

!;<!

, whih says that every ountable family of non-empty �nite

sets has a hoie funtion (f. [35, Form10℄). It is well known that not only AC, but

also AC

!;<!

and many other weakened forms of AC are independent of the axioms of

Zermelo-Fraenkel Set Theory, denoted by ZF.

At this point, let us brie�y explain the meaning of �independent� and �onsistent�.

Let � be any set of statements, or axioms, then � is alled onsistent if we annot de-

rive a ontradition from �, whih is � by Gödel's ompleteness theorem � equivalent

to the fat that � has a model (e.g., the set of permutations of three objets is a

model for the axioms of group theory). Further, a statement ' is alled independent

of � if either set � [ f'g and � [ f:'g is onsistent.
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Let us turn bak to our example. There are models of ZF in whih AC � and

onsequently AC

!;<!

� is true, but there are also models of ZF in whih AC

!;<!

� and

onsequently AC � fails. Moreover, there are also models of ZF in whih AC

!;<!

is

true but AC fails. Thus, we an onlude that even basi ombinatorial statements

like König's Lemma may depend on the underlying model of set theory.

This �rst example shows that � depending on the set theoretial axioms we are

starting with � some objets, satisfying ertain riteria, might or might not exist.

Throughout this work, we will always assume AC, so, our basi axiom system will

be ZFC, whih is ZF + AC. This also means that we will never disuss how muh of

AC is needed to get ertain results.

The next example an be seen as a problem in in�nitary extremal ombinatoris.

The word �extremal� omes from the nature of problems this �eld deals with, and

refers to the seond part of our de�nition: how large or how small olletions satisfying

ertain riteria might be.

For example, how many people must be on a party to be sure that there are three

people who all either know eah other or don't know eah other? Or, given a �nite set

of non-zero integers S. How large an a set A � S be suh that A does not ontain

the sum of any two of its members. It turns out that (independent of the given set

S) there is always an A whih ontains at least one-third of the numbers in S.

If the objets onsidered are in�nite, then the answer how large or how small

ertain sets an be might depend on the underlying model of set theory, as the next

example shows.

Example 2 (reaping number). A family R of in�nite subsets of the natural numbers

! is alled reaping (also alled unsplitting), if for every oloring of ! with two olors

there exists a monohromati set in R. The reaping number r is the minimal size of

a reaping family. Now we an ask: How large is r ?

It is easy to see that a reaping family annot be ountable. Indeed, let A = fA

i

:

i 2 !g be any ountable family of in�nite subsets of !. For eah i 2 !, pik n

i

and m

i

from the set A

i

in suh a way that for all i 2 !, n

i

< m

i

< n

i+1

. Eah n

i

(i 2 !) gets olored blue and all other numbers red. For this oloring, there is no

monohromati set in A, and hene, A annot be a reaping family. Consequently,

assuming the Continuum Hypothesis CH, any reaping family must have the same

ardinality as the ontinuum, denoted by , and we get the same assuming Martin's

Axiom MA. On the other hand, with the foring tehnique � invented by Paul Cohen

in the early 1960's (f. [13℄) � one an show that the minimal size of a reaping family

is independent of ZFC. In other words, there are models of ZFC in whih r = , but

there are other models in whih r < .

So, the seond example shows that we get di�erent answers � depending on the

additional axioms of set theory we start with � when we try to deide how large or

how small ertain olletions might be.
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Another �eld of ombinatoris is the so-alled Ramsey Theory, and sine many

results in this work are �partition-versions� of lassial Ramsey-type theorems, let us

give a brief desription of Ramsey Theory.

Loosely speaking, Ramsey Theory (whih an be seen as a part of extremal ombi-

natoris) is that branh of ombinatoris whih deals with strutures preserved under

partitions, or olorings. Typially, one looks at the following kind of question: If a

partiular objet (e.g., algebrai, geometri or ombinatorial) is arbitrarily olored

with �nitely many olors, what kinds of monohromati strutures an we �nd?

For example, van der Waerden's Theorem tells us that if the integers are olored

with �nitely many olors, then there are arbitrarily long monohromati arithmeti

progressions. Or, for any oloring of the points in the Eulidean plane with �nitely

many olors, there are three monohromati points whih are the veries of a right-

angled triangle of unit area.

The most famous result in Ramsey Theory is surely Ramsey's Theorem. In fat,

there are two versions of Ramsey's Theorem, an in�nite version [57, Theorem A℄ and

a �nite version [57, Theorem B℄, but beause the seond one follows from the �rst

one, we onsider Theorem A as �Ramsey's Theorem�, also alled �Ramsey Theorem�:

Example 3 (Ramsey's Theorem). For any positive integer n, let [!℄

n

denote the set of

all n-element subsets of the natural numbers. Now, Ramsey's Theorem tells us that if

we olor [!℄

n

with �nitely many olors, we �nd an in�nite subset H � ! suh that all

n-element subsets of H have the same olor, and suh a set H we all homogeneous.

The following is just a onsequene of Ramsey's Theorem:

Finitary Ramsey Theorem. For all positive integers m;n; r, where n � m, there

exists a number N 2 ! suh that for every oloring of [N ℄

n

with r olors, we �nd a

set H 2 [N ℄

m

suh that [H℄

n

is monohromati.

For example the �party-problem� mentioned above is a typial problem in Ramsey

theory and an easy Ramsey-type argument shows that at least six persons must be

on the party. On the other hand, if we ask how many people must get invited to a

party to make sure that there are �ve people who all either know eah other or don't

know eah other, then the answer is not known, but it is onjetured that at least 43

persons must be invited (see [56℄).

Ramsey's theorems have appliations to many di�erent �elds suh as Banah

spae theory (f. [51℄), and set theory without the axiom of hoie (see e.g., [30,

Proposition 7.3.1℄).

Sometimes, we also get Ramsey-type (or anti Ramsey-type) results even for a

partition into in�nitely many lasses. For example, there is a oloring of the points

in the Eulidean plane with ountably many olors, suh that no two points of any

�opy of the rational line� get the same olor (see [42℄). This result an be seen as an

anti Ramsey-type theorem (sine we are far away from �monohromati strutures�),

and it shows that Ramsey-type theorems annot be generalized arbitrarily. On the
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other hand, one an onsider just these olorings whih �behave well�, or whih have

some nie monohromati strutures, and investigate how ompliated suh olorings

may be. Suh an approah leads to ombinatorial properties, as the next example

illustrates.

Example 4 (Ramsey property). Let [!℄

!

denote the set of all in�nite subsets of !,

and for H 2 [!℄

!

, let [H℄

!

denote the set of all in�nite subsets of H. A set A � [!℄

!

has the Ramsey property if there is an H 2 [!℄

!

suh that either [H℄

!

� A or

[H℄

!

\ A = ;. In other words, if we olor all in�nite subsets of ! with two olors,

and we �nd an in�nite subset of !, all of whose in�nite subsets have the same olor,

then the oloring has the Ramsey property.

With the aid of AC it is not hard to onstrut a set A � [!℄

!

whih does not have

the Ramsey property. On the other hand, one an show that all analyti sets have

the Ramsey property and it is onsistent with ZF that eah A � [!℄

!

has the Ramsey

property. Further, assuming the existene of an inaessible ardinal, one an show

that it is onsistent with ZFC that all projetive sets have the Ramsey property, but

it is not known if the assumption of an inaessible ardinal is neessary.

Let us turn bak to Ramsey's Theorem whih tells us that for every oloring

� : [!℄

2

! f0; 1g there is an in�nite homogeneous set H � !. But it does not tell

us where to �nd suh set H. If there would be an ultra�lter over ! suh that the

homogeneous set always belongs to the ultra�lter, this would be useful, espeially

from a ombinatorial point of view. This leads to the following:

Example 5 (Ramsey ultra�lters). Let U be an ultra�lter over !, then U is alled a

Ramsey ultra�lter if for every oloring � : [!℄

2

! f0; 1g there is an in�nite homoge-

neous set H 2 U .

One an show that either CH or MA implies the existene of Ramsey ultra�lters.

On the other hand, it is onsistent with ZFC that there are no Ramsey ultra�lters at

all. Ramsey ultra�lters, together with Mathias foring, play an important role in the

investigation of the Ramsey property, and the beautiful interation between Ramsey

ultra�lters, Mathias foring and the Ramsey property was the main motivation to

investigate the orresponding theory for sets of partitions.

❀ ❀ ❀

The aim of this work is to investigate ombinatorial properties of sets of parti-

tions along the guideline given by the preeding examples. Sine, from the ategory

theoretial point of view, partitions are the duals of subsets, going from subsets to

partitions is alled �dualization�. The main di�erene between subsets of ! and par-

titions of ! is that partitions do not have a proper omplement. If they would have,

there would be nothing to do than replae the word �subset� by �partition�. But

4



this is not the ase, and sometimes, it is not even straightforward to �nd the right

dualization.

For example, onsider the spaes �! (whih is the spae of ultra�lters over !) and

�! n! (the spae of non-prinipal ultra�lters over !). If we want to dualize these two

spaes, we have to dualize �rst the notion of ultra�lters, whih gives us the notion of

partition-ultra�lters, de�ned as maximal partition-�lters. It turns out that there are

two natural ways to do this, so we get two sets of partition-ultra�lters. Now, we have

to de�ne a topology on eah of these two sets of partition-ultra�lters, and it turns out

that we have again two possibilities to do this. Thus, we end up with four topologial

spaes of partition-ultra�lters, but none of them is homeomorphi to �! or to �! n!.

Other di�ulties and asymmetries our when we try to dualize Ramsey's Theorem

(see Chapter IV) or some ardinal harateristis of the ontinuum (see Chapter II),

or if we try to �nd a dual form of Ramsey ultra�lters (see Chapter VII).

❀ ❀ ❀

As mentioned above, the following work an be seen as a dualization � in terms

of partitions � of the ombinatoris of sets of subsets of !, and onsists mainly of

the papers [22℄, [23℄, [24℄ and [27℄, whih are all published in refereed journals.

The only exeption is Chapter IV (where a theorem is given, whih an be seen as

the partition form � rather than the dual form � of Ramsey's Theorem). Let us now

brie�y summarize the ontent of eah hapter:

In Chapter I we introdue our terminology and give the basi de�nitions of par-

titions of !. Further, it is shown that from the ategory theoretial point of view,

partitions are the duals of subsets, whih motivates the term �dualization� for the

proess of going from subsets to partitions.

Heneforth, for any property, like the Ramsey property, or ardinal harateristi

of the ontinuum, like the reaping number r, et., the dual Ramsey property or the

dual-reaping ardinal R, et., refers to the orresponding partition form of the Ramsey

property and the reaping number, et.

In Chapter II we dualize some well-known ardinal harateristis of the onti-

nuum like the reaping number r (see Example 2) and the splitting number s. It

will be shown that the dual forms of these ardinal harateristis do in general not

agree with their standard form. For example, it is onsistent with ZFC that the dual-

splitting ardinal S is stritly bigger than s, whih would be obvious if S = , but it

is also onsistent that S is stritly smaller than the ontinuum. Moreover, one an

show that � no matter in whih model of ZFC we are � the dual tower number is al-

ways !

1

(the �rst unountable ardinal), whih is smaller than or equal to the lassi

tower number; and that a maximal almost orthogonal family � whih orresponds to

a maximal almost disjoint family � has always the same size as the ontinuum, and

5



therefore, suh a family an be stritly greater than its lassial relative. Thus, dual

ardinal numbers an be �xed, whereas their lassial relatives an be onsistently

moved. On the other hand, there is also a ardinal harateristis of the ontinuum

whih is �xed � like the ardinality of a family F � [!℄

!

suh that for every in�nite

subset of ! there is a disjoint set in F , whih has always the same size as the on-

tinuum � whereas its dualization O an be proved to be greater than or equal to p

(the so-alled pseudo-intersetion number) and less than or equal to i (the so-alled

independent number). Further, it is provable in ZFC that the dual-reaping ardinal

R is less than or equal to minfr;Og, but it is greater than or equal to p. Summariz-

ing the previous fats, the dual form of ardinal harateristis of the ontinuum is

ompletely asymmetri to the lassial ones. The results of this hapter an also be

found in [22℄.

In Chapter III we investigate the four topologial spaes mentioned above whih

an be seen as the dualizations of the spaes �! and �! n!, whih are both ompat

Hausdor�. Even though all four topologial spaes are natural dualizations of �!

or �! n !, none of these four spaes is homeomorphi to �! or �! n !. To prove

this, we will be using some ombinatorial tools like König's Lemma (see Example 1).

In partiular, it will be shown that two of these four spaes are Hausdor� but not

ompat, and the other two are not Hausdor� but ountable ompat. Further, the

dualization and the existene of P -points will be disussed. For a slightly more general

approah in terms of �lters on semilattie see [27℄.

After a short introdution to Ramsey Theory, we present in Chapter IV a partition

form of Ramsey's Theorem (see Example 3), whih will be used to de�ne Ramseyan

ultra�lters in Chapter VII. Ramsey's Theorem says that if we olor the n-element

subsets of ! with �nitely many olors, then we �nd an in�nite homogeneous set. So,

in a dual form of Ramsey's Theorem � whih was introdued by Timothy Carlson in

[11℄ � we would expet that if we olor the n-part partitions of ! with �nitely many

olors, then we �nd an in�nite homogeneous partition. But there is a oloring of the

2-part partitions of ! with just two olors, suh that there is no in�nite homogeneous

partition of !. So, the dual form of Ramsey's Theorem is not as general as the

lassial version. On the other hand, if we replae the n-element subsets of ! by n-

part partitions of integers k 2 !, then the orresponding partition form of Ramsey's

Theorem has similar features as the lassial version, even though it is not the proper

dualization (see Chapter I.5).

In Chapter V we begin to investigate the dual Ramsey property (see Example 4).

In this ontext, the only important ardinal (also used in Chapter VI) is the dual-

shattering ardinal H, whih is the dualization of the shattering number h. Firstly, it

will be shown how H is related to the dual Ramsey property. In partiular, we will

see that H = add(R

[

0

) = ov(R

[

0

), where R

[

0

denotes the ideal of ompletely dual

Ramsey null sets, and add and ov denote the additivity and the overing numbers,

respetively. Seondly, we investigate H itself. One an show that H � h and that it

is onsistent with ZFC that H < h (even under MA). This would be obvious if H = !

1

,

6



but we will see that H > !

1

as well as H > ov(B

0

) (where B

0

denotes the ideal of

meager sets) is onsistent with ZFC. The results of this hapter an be found again

in [22℄.

Finally, after disussing asymmetries in the dualization proess, we look in Chap-

ter VI at the symmetries between the Ramsey property and the dual Ramsey property.

Some results about the dual Ramsey property are straightforward dualizations of re-

sults about the Ramsey property. But as a matter of fat we will see that most proofs

in the dual ase are muh more involved than the lassi ones. The reason leading

to more sophistiated proofs is that a partition � unlike a subset � does not have a

proper omplement. It will be shown that the dual Ramsey property is losed under

a generalized Suslin operation involving the dual-shattering ardinal H. Further, the

notion of game-families and game-�lters will be introdued and dual Mathias for-

ing (restrited to these game-�lters) will be investigated. In partiular, it will be

shown that an !

2

-iteration of dual Mathias foring with ountable support starting

from Gödel's onstrutible universe yields a model in whih every �

1

2

-set has the

dual Ramsey property, but not every �

1

2

-set has the Baire property. A similar model

exists with respet to the Ramsey property. Almost all results of this hapter an be

found in [23℄.

In Chapter VII we de�ne an ordering on the set of partition-�lters whih is similar

to the Rudin-Keisler ordering on �!. Further, we introdue a partition form (whih is

not the dual form!) of Ramsey ultra�lters (see Example 5), alled Ramseyan ultra�l-

ters. The Rudin-Keisler ordering on �! is de�ned as follows: U � V if U is the image

of V under the anonial extension �f : �! ! �! of some map f : ! ! !. Now,

Ramsey ultra�lters over ! build the minimal points of the Rudin-Keisler ordering on

�! n !. It will be shown that a similar result is true for Ramseyan ultra�lters with

respet to the ordering on the set of partition-�lters, and that CH implies the exis-

tene of 2



pairwise non-equivalent Ramseyan ultra�lters. Further, it will be shown

that dual Mathias foring restrited to a Ramseyan ultra�lter has the same features

as Mathias foring restrited to a Ramsey ultra�lter. In partiular, it has the homo-

geneity property, has pure deision and an be deomposed. Ramsey ultra�lters an

also be desribed as happy families that are also �lters, and so, we also dualize the

notion of happy families and show that the so-alled relatively happy families have

a similar haraterization in terms of games as their lassi relatives. Finally, we

onsider the dual form of some ardinal harateristis of the ontinuum whih are

to some extend related to Ramseyan ultra�lters. This hapter is essentially [24℄.

7





CHAPTER I

Partitions, a Dual Form of Sets

Most of our set-theoretial terminology is standard and an be found in textbooks

like [3℄, [36℄ and [44℄. However, let us reall some frequently used notation.

1. Some basi de�nitions

Let S be a set. jSj denotes the ardinality of the set S, whih is the least ordinal

number � suh that there exists a bijetion between S and �. In partiular, ! denotes

the least in�nite ordinal, !

1

denotes the least unountable ordinal, and so on. Let

P(S) denote the power-set of S. For a ardinal number �, let [S℄

�

:= fT 2 P(S) :

jT j = �g and [S℄

<�

:= fT 2 P(S) : jT j < �g.

The least in�nite ordinal number is denoted by ! = f0; 1; 2; : : :g whih is the set

of natural numbers, where a natural number n = fk 2 ! : k < ng (in partiular,

0 = ;). Further, let  := jP(!)j denote the ardinality of the ontinuum.

For our purpose, without loss of generality we onsider the set [!℄

!

as the set of

irrational numbers, and the set [!℄

<!

as the set of rationals. However, sometimes it

is more onvenient to identify the reals with the set

!

! (the set of all funtions from

! to !) or with the set

!

2 (the set of all funtions from ! to f0; 1g).

2. Partitions of !

The main objets of this work will be partitions of !. A partition X of ! is a

subset of P(!) suh that the following holds:

(i) if b 2 X, then b 6= ;,

(ii) if b

1

; b

2

2 X and b

1

6= b

2

then b

1

\ b

2

= ;,

(iii)

S

X = !.

In other words, a partition of ! is a set of pairwise disjoint, non-empty subsets of

! suh that the union is all of !. The set of all partitions of ! is denoted by (!)

�!

.

A partition means always a partition of !. If X is a partition and b 2 X, then we

all b a blok of X. If a partition has in�nitely many bloks (or equivalently, if X is

in�nite) we all X an in�nite partition. The set of all in�nite partitions is denoted

by (!)

!

. Further, the set of all �nite partitions is denoted by (!)

<!

.

A partial partition X

0

is a subset of P(!) suh that (i) and (ii) hold but instead

of (iii) we have

(iii)'

S

X

0

=: dom(X

0

) � !.

9
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Note that a partition is always also a partial partition. If dom(X

0

) 2 !, then X

0

is

a partition of some n 2 !. The set of all partial partitions X

0

where dom(X

0

) 2 ! is

denoted by (N). Further, for s 2 (N), s

�

denotes the partial partition s[ffdom(s)gg.

3. Notation

Throughout this work we will usually denote:

� elements of ! by lower ase letters like n;m; k; h : : :

� elements of [!℄

!

by lower ase letters like x; y : : :

� partitions by upper ase letters like X; Y : : :

� �nite subsets of [!℄

!

by lower ase letters like a; b : : :

� elements of (N) by lower ase letters like s; t : : :

� subsets of [!℄

!

by alligraphi letters like F ;S;U : : :

� sets of partitions by even more alligraphi letters like F ;S ;U : : :

� ardinal harateristis of the ontinuum whih are related to [!℄

!

by lower ase

frature letters like h; r; s : : :

� ardinal harateristis of the ontinuum whih are related to partitions by upper

ase frature letters like H;R;S : : :

4. Relations on the set of partitions

Let X

1

; X

2

be two partial partitions. We say that X

1

is oarser than X

2

, or

that X

2

is �ner than X

1

, and write X

1

v X

2

, if for all bloks b 2 X

1

the set

b \ dom(X

2

) is the union of some sets b

i

\ dom(X

1

), where eah b

i

is a blok of

X

2

. In partiular,

�

f!g

	

is the oarsest partition and (!) :=

�

fng : n 2 !

	

is the �nest partition. Let X

1

u X

2

denote the �nest partial partition whih is

oarser than X

1

and X

2

suh that dom(X

1

u X

2

) = dom(X

1

) [ dom(X

2

), and let

X

1

tX

2

denote the oarsest partial partition whih is �ner than X

1

and X

2

suh that

dom(X

1

tX

2

) = dom(X

1

) [ dom(X

2

).

If p 2 [!℄

<!

is a �nite subset of !, then fpg is a partial partition with dom(fpg) =

p. For two partial partitions X

1

and X

2

we write X

1

v

�

X

2

if there is a �nite set

p � dom(X

1

) suh thatX

1

ufpg v X

2

and say thatX

1

is almost oarser thanX

2

, or

that X

2

is almost �ner than X

1

. If X

1

v

�

X

2

, X

2

v

�

X

1

and dom(X

1

) = dom(X

2

),

then we write X

1

�

= X

2

. If X

�

= (!) or X =

�

f!g

	

, then X is alled trivial; in other

words, X is trivial if X is either the one-blok-partition or all bloks of X are �nite

and just �nitely many bloks ontain more than one element.

Let X

1

; X

2

be two partial partitions. If eah blok of X

1

an be written as the

intersetion of a blok of X

2

and dom(X

1

), then we write X

1

� X

2

. Note that

X

1

� X

2

implies dom(X

1

) � dom(X

2

).

If X is a partial partition, then

Min(X) :=

�

n 2 ! : 9b 2 X

�

n = min(b)

�	

;
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where min(b) :=

T

b. If we order the bloks of X by their least element, then X(n)

denotes the n

th

blok with respet to this ordering and X(n)(k) denotes the k

th

element (with respet to the natural ordering) of X(n).

5. Partitions as the dual form of subsets

One an think of the duality between subsets and partitions in a ategory-theoreti

way.

Let N be an arbitrary set. For our purposes, N will be just !. Consider one-to-one

funtions into N from arbitrary domains, and all two suh funtions, say f : A! N

and g : B ! N equivalent if there is a bijetion h : A ! B suh that f = gh. Then

the equivalene lasses an be identi�ed with the subsets of N , beause f and g are

equivalent if and only if they have the same image.

In fat, in general ategories, we an de�ne a �subobjet� to be suh an equivalene

lass. For this, we need ategory-theoreti de�nitions of �one-to-one� and �bijetion�:

A bijetion is a map with a two-sided inverse (with respet to omposition), and a

map is one-to-one if and only if it is anellable on the left.

Now we apply the general ategory-theoreti notion of duality: Reverse the di-

retion of all arrows and (therefore) reverse the order of omposition. �Bijetion� is

self-dual, but the dual of �one-to-one map� is �right-anellable map� whih amounts

to (in the ategory of sets) �onto map�. So, the dual of a subobjet of N would be

an equivalene lass of surjetions f : N ! A (for arbitrary sets A); here f : N ! A

and g : N ! B are equivalent if and only if there is a bijetion h : B ! A suh that

f = hg. Untangling the de�nitions, we �nd that f and g are equivalent if and only if

the partitions they indue on N (the pre-images of singletons in A and in B) are the

same. In other words, dualizing the notion of subset (or, more preisely, dualizing a

ategory-theoreti desription of subsets) gives (a ategory-theoreti desription of)

partitions.

Further, the inlusion relation on subsets admits a ategory-theoreti desription

in terms of the one-to-one maps; it just says that f = gh for some h, not neessarily

a bijetion. Dualizing, you get a desription, in terms of surjetions, of the �oarser

than� relation on partitions. So, the dualization of the inlusion relation between

subsets is the �oarser than� relation between partitions.

Similarly, where �nite sets our in some theory, we would expet partitions with

�nitely many piees in the dual theory, beause both say that the A (or B) above is

�nite.

With the onept of dualization we an seek for dualizations of ardinal harater-

istis of the ontinuum (see [12℄) or for a dual form of Ramsey's Theorem (see [11℄).

On the other hand, from the ombinatorial point of view it is sometimes appropri-

ate to look for a �partition form� of ertain ombinatorial theorems, whih might be

di�erent from the orresponding dual form (see for example Chapter IV).
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CHAPTER II

Dualizations of Cardinal Charateristis

The dualization of some ardinal harateristis of the ontinuum was �rst inves-

tigated by Jaek Ciho«, Adam Krawzyk, Barbara Majher-Iwanow and Bogdanin

W�eglorz in [12℄. In this hapter we proeed their work.

Sometimes, it will be onvenient to onsider in�nite partitions suh that at least

one blok is in�nite, thus, let (!)

!

0

denote the set of all those partitions.

Two partitionsX

1

; X

2

2 (!)

!

are alled almost orthogonal, denoted X

1

?

�

X

2

, if

X

1

uX

2

62 (!)

!

; otherwise, they are alled ompatible, denoted X

1

jX

2

. If X

1

uX

2

=

�

f!g

	

, then they are alled orthogonal, denoted X

1

?X

2

.

Reall that  := jP(!)j denotes the ardinality of the ontinuum.

1. On the dual-splitting ardinals S and S

0

LetX

1

; X

2

be two partitions. We sayX

1

splitsX

2

ifX

1

jX

2

and there is a partition

Y v X

2

suh that X

1

?Y . A family S � (!)

!

is alled splitting if for eah non-

trivial X 2 (!)

!

there exists an S 2 S suh that S splits X. The dual-splitting

ardinal S (S

0

, respetively) is the least ardinal number � for whih there exists a

splitting family S � (!)

!

(S � (!)

!

0

, respetively) of ardinality �.

It is obvious that S � S

0

. In the following, we ompare �rst the dual-splitting

number S

0

with the well-known unbounding number b (a de�nition of b an be found

in [65℄).

Theorem II.1.1. b � S

0

.

Proof. Assume there exists a family S = fS

�

: � < � < bg � (!)

!

0

whih is

splitting. Let B = fb

�

: � < �g � [!℄

!

a set of in�nite subsets of ! suh that

b

�

2 S

�

(for all � < �). Let f

b

�

2

!

! be the (unique) inreasing funtion suh that

range(f

b

�

)=b

�

. Beause � < b, the set ff

b

�

: � < �g is not unbounded. Therefore,

there exists a one-to-one funtion d 2

!

! suh that f

b

�

<

�

d (for all � < �). With

the funtion d we onstrut an in�nite partition D. First we de�ne an in�nite set of

pairwise disjoint �nite sets p

i

(i 2 !):

p

i

:=

�

d

i

(0); d

i+1

(0)

�

;

where d

i

denote the i-fold omposition of d. Now, the bloks of D are de�ned as

follows:

n is in the k

th

blok of D , n 2 p

i

and i�max

�

l(l + 1)=2 < i : l 2 !

	

= k:

13
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Beause d dominates B, for all b

�

2 B there exists a natural number m

�

suh that for

all i > m

�

we have d

i

(0) � b

�

(d

i

(0)) < d

i+1

(i) (f. [65, page 121℄). So, for all i > m

�

,

p

i

\ b

�

6= ; and therefore by the onstrution of the bloks of D, b

�

intersets eah

blok of D. But this implies that D is not ompatible with any element of S and

hene, S annot be a splitting family. a

Let us now ompare S

0

with the splitting number s (f. [65℄).

Corollary II.1.2. It is onsistent with ZFC that s < S

0

.

Proof. Beause b � S

0

is provable in ZFC, it is enough to show that s < b is

onsistent with ZFC, whih is proved by Saharon Shelah in [58℄. a

Now we show that ov(B

0

) � S (where B

0

denotes the ideal of meager sets).

In [12℄ it is shown that if � < ov(B

0

) and fX

�

: � < �g � (!)

!

is a family of

partitions, then there exists Y 2 (!)

!

suh that Y?X

�

for eah � < �. This implies

the following

Corollary II.1.3. ov(B

0

) � S.

Proof. Let S; Y 2 (!)

!

. If S?Y , then S does not split Y and therefore a family of

ardinality less than ov(B

0

) an not be splitting. a

As a orollary we get again a onsisteny result:

Corollary II.1.4. It is onsistent with ZFC that s < S.

Proof. After an !

1

-iteration of Cohen foring with �nite support starting from a

model V j= ov(B

0

) = !

2

= , we get a model in whih !

1

= s < ov(B

0

) = !

2

= .

Hene, by Corollary II.1.3, this is a model for !

1

= s < S = !

2

. a

Until now we have max

�

ov(B

0

); b

	

� S

0

, whih would be trivial if one ould

show that S

0

= . But this is not the ase (f. [12℄). To onstrut a model in whih

S

0

<  we will use a modi�ed version of a foring notion introdued in [12℄.

Let F be an arbitrary but �xed ultra�lter over !. Let Q be the notion of foring

de�ned as follows: The onditions of Q are pairs hs; Ai suh that s 2 (N) (alled

the stem of the ondition), A 2 (!)

<!

, A(0) 2 F and s � A, stipulating hs; Ai �

ht; Bi if and only if t � s and B v A. If hs; A

1

i; hs; A

2

i are two Q -onditions, then

hs; A

1

u A

2

i � hs; A

1

i; hs; A

2

i. Hene, two Q -onditions with the same stem are

ompatible and beause there are only ountably many stems, the foring notion Q

is �-entered.

Now we will see that Q adds an in�nite partition whih is ompatible with all

old in�nite partitions but is not almost �ner than any old partition. (So, the foring

notion Q is in a sense like the dualization of Cohen foring.)

Lemma II.1.5. Let G be Q -generi over V . Then G 2 (!)

!

0

and V [G℄ j= 8X 2

(!)

!

\ V

�

GjX ^ :(X v

�

G)

�

:
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Proof. Let X 2 V be an arbitrary, in�nite partition. Then for every n 2 !, the set

D

n

is dense in Q , where D

n

is a set of Q -onditions hs; Ai, de�ned as follows:

(1) s(0) has more than n elements,

(2) at least n bloks of X are unions of bloks of A,

(3) there are at least n di�erent bloks b

i

2 X, suh that

S

b

i

2 s uX.

Therefore, at least one blok of G is in�nite, beause of (1), G is ompatible with X,

beause of (2), and X is not oarser

�

than G, beause of (3). Now, beause X was

arbitrary, the Q -generi partition G has the desired properties. a

Beause the foring notion Q is �-entered and eah Q -ondition an be enoded

by a real number, foring with Q does neither ollapse any ardinals nor hange the

ardinality of the ontinuum. Thus, following [12℄, we get:

Proposition II.1.6. It is onsistent with ZFC that S

0

< .

Proof. Take an !

1

-iteration of Q with �nite support, starting from a model in whih

 = !

2

, then the !

1

generi objets form a splitting family. a

Even though a partition does not have a omplement, for eah non-trivial partition

X we an de�ne a non-trivial partition Y , suh that X?Y : Let X = fb

i

: i 2 !g 2

(!)

!

and assume that the bloks b

i

are ordered by their least element and that eah

blok is ordered by the natural order. A blok is alled trivial, if it is a singleton.

With respet to this ordering de�ne for eah non-trivial partition X the partition X

\

as follows:

If X 2 (!)

!

0

, then n is in the i

th

blok of X

\

i� n is the i

th

element of a blok of

X, and if X =2 (!)

!

0

, then n;m are in the same blok of X

\

i� n;m are both least

elements of bloks of X.

It is not hard to see that for eah non-trivial X 2 (!)

!

, X?X

\

.

A family W � (!)

!

0

is alled weakly splitting, if for eah partition X 2 (!)

!

,

there is a W 2 W suh that W splits X or W splits X

\

. The ardinal number

wS is the least ardinal number � for whih there exists a weakly splitting family of

ardinality �. (It is obvious that wS � S

0

.)

A family U is alled a �-base for a free ultra�lter F over ! provided for every

x 2 F there is a u 2 U suh that u � x. De�ne

�u := min

�

jUj : U � [!℄

!

is a �-base for a free ultra-�lter over !

	

:

In [2℄ it is shown that �u = r, where r is the reaping number de�ned in the intro-

dution (see [69℄ for more results onerning r).

Now we an give an upper and a lower bound for the size of wS.

Theorem II.1.7. wS � r.

Proof. We will show that wS � �u. Let U := fu

�

2 [!℄

!

: � < �ug be a �-basis for a

free ultra�lter F over !. Without loss of generality we may assume that all the u

�

2 U

are o-in�nite. LetU =

�

Y

u

2 (!)

!

: u 2 U^Y

u

= fu

i

: u

i

= u_(u

i

= fng^n 62 u)g

	

.
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Now we take an arbitrary X = fb

i

: i 2 !g 2 (!)

!

and de�ne for every u 2 U the

sets I

u

:= fi : b

i

\ u 6= ;g and J

u

:= fj : b

j

\ u = ;g. It is lear that for every u,

I

u

[ J

u

= !.

If we �nd a u 2 U suh that jI

u

j = jJ

u

j = !, then Y

u

splits X. To see this, de�ne

the two in�nite partitions

Z

1

:=

�

a

k

: a

k

=

[

i2I

u

b

i

_ 9j 2 J

u

(a

k

= b

j

)

	

and

Z

2

:=

�

a

k

: a

k

=

[

j2J

u

b

j

_ 9i 2 I

u

(a

k

= b

i

)

	

:

We have X u Y

u

= Z

1

(therefore Z

1

v X; Y

u

) and Z

2

v X but Z

2

?Y

u

.

If we �nd an x 2 F suh that jI

x

j < ! (and therefore jJ

x

j = !), then we �nd an

x

0

� x, suh that I

x

0

= fig and jb

i

n x

0

j = ! (this is beause F is a free ultra-�lter).

Now take a u 2 U suh that u � x

0

, and sine X 2 (!)

!

0

, Y

u

splits X

\

.

If we �nd an x 2 F suh that jJ

x

j < ! (and therefore jI

x

j = !), let I(n) be an

enumeration of I

x

and de�ne y := x\

S

k2!

b

I(2k)

. Then y � x and jxnyj = !. Hene,

either y or !ny is a superset of some u 2 U . But now jJ

u

j = ! and we are in a former

ase. a

A lower bound for wS is ov(B

0

):

Theorem II.1.8. ov(B

0

) � wS.

Proof. Let � < ov(B

0

) and W = fW

�

: � < �g � (!)

!

0

. Assume that for eah

W

�

2 W the bloks are ordered by their least element and eah blok is ordered by

the natural order. Further assume that b

i(�)

is the �rst blok of W

�

whih is in�nite.

Now, for eah � < � the set D

�

of funtions f 2

!

! suh that

8n;m; k : 9t

n

2 b

n

9t

m

2 b

m

9h 2 ! 9t

h

; t

0

h

2 b

h

9s 2 b

i(�)

f(t

n

) = f(t

h

) ^ f(t

m

) = f(t

0

h

) ^ jfs

0

� s : f(s

0

) = f(s)gj = k + 1:

is the intersetion of ountably many open dense sets and therefore the omplement

of a meager set. Beause � < ov(B

0

), we �nd an unbounded funtion g 2

!

! suh

that g 2

T

�<�

D

�

. The partition G = fg

�1

(n) : n 2 !g 2 (!)

!

0

is orthogonal to eah

member of W and for eah W

�

2W and eah k 2 !, there exists an s 2 b

i(�)

, suh

that s is the k

th

element of a blok of G. Hene, W an not be a weakly splitting

family. a

2. On the dual-reaping ardinals R and R

0

A family R � (!)

!

is alled reaping (reaping

0

, respetively), if for eah par-

tition X 2 (!)

!

(X 2 (!)

!

0

, respetively) there exists a partition R 2 R suh that

R?X or R v

�

X. The dual-reaping ardinal R (R

0

, respetively) is the least

ardinal number � for whih there exists a reaping (reaping

0

, respetively) family of

ardinality �.



II.2 17

It is lear that R

0

� R. Further, by �nite modi�ations of the elements of a reaping

family we may replae v

�

by v in the de�nition above.

If we anel in the de�nition of the reaping number the expression \R v

�

X", we

get the de�nition of an orthogonal family:

A family O � (!)

!

is alled orthogonal (orthogonal

0

, respetively), if for

eah non-trivial partition X 2 (!)

!

(for eah partition X 2 (!)

!

0

, respetively)

there exists a partition O 2 O suh that O?X. The dual-orthogonal ardinal O

(O

0

, respetively) is the least ardinal number �, for whih there exists a orthogonal

(orthogonal

0

, respetively) family of ardinality �. It is obvious that O

0

� O. Note

that o = , where o is de�ned like O but for in�nite subsets of ! instead of in�nite

partitions. (Take the omplements of the members of an almost disjoint family of

ardinality . Beause an orthogonal family must avoid all these omplements, it

must have at least the ardinality .)

It is also lear that eah orthogonal

(0)

family is also a reaping

(0)

family and there-

fore R

(0)

� O

(0)

. Further one an show that R

0

is unountable (f. [12℄). Now we show

that O

0

� d, where d is the well-known dominating number (for a de�nition f. [65℄),

and that ov(B

0

) � O

0

.

Theorem II.2.1. O

0

� d.

Proof. Let fd

�

2

!

! : � < dg be a dominating family. Then it is not hard to see

that the family fD

�

: � < �g � (!)

!

, where eah D

�

is onstruted from d

�

like D

from d in the proof of Theorem II.1.1, is an orthogonal family. a

Let i be the least ardinality of an independent family (a de�nition and some

results an be found in [44℄), then

Theorem II.2.2. O � i.

Proof. Let I � [!℄

!

be an independent family of ardinality i. Let I

0

:= fr 2

[!℄

!

: r

�

=

T

A n

S

Bg, where A;B 2 [I℄

<!

, A 6= ;, A \ B = ;, and r

�

= x means

j(r n x)[ (x n r)j < !. It is not hard to see that jI

0

j = jIj = i. Now let I = I

1

[ I

2

where I

1

:=

�

X

r

2 (!)

!

: r 2 I

0

^ X

r

= fb

i

: b

i

= r _ (b

i

= fng ^ n 62 r)g

	

and

I

2

:=

�

Y

r

: 9X

r

2 I

1

(Y

r

= X

\

r

)

	

. We see that I � (!)

!

and jI j = i. It remains

to show that I is an orthogonal family.

Let Z 2 (!)

!

be arbitrary and let r := Min(Z). If r 2 I

0

, then X

r

?Z (where

X

r

2 I

1

). And if r 62 I

0

, then there exists an r

0

2 I

0

suh that r \ r

0

= ;. But then

Y

r

0

?Z (for Y

r

0

2 I

2

). a

Beause R � O, the ardinal number i is also an upper bound for R. But for R,

we also �nd another upper bound.

Theorem II.2.3. R � r.
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Proof. Like in Theorem II.1.7 we show that R � �u. Let U := fu

�

2 [!℄

!

: � < �ug

be as in the proof of Theorem II.1.7 and let

U =

�

Y

u

2 (!)

!

: u 2 U ^ Y

u

= fu

i

: u

i

= ! n u _ (u

i

= fng ^ n 2 u)g

	

:

Take an arbitrary partitionX 2 (!)

!

. Let r := Min(X) and r

1

:=

�

n 2 r : fng 2 X

	

.

If we �nd a u 2 U suh that u � r

1

, then Y

u

v X. Otherwise, we �nd a u 2 U suh

that either u � ! n r or u � r n r

1

and in both ases Y

u

?X. a

Now we will show that it is onsistent with ZFC that O an be small. For this we

�rst show that a Cohen real enode an in�nite partition whih is orthogonal to eah

old non-trivial in�nite partition. (This result is in fat a orollary of [12, Lemma 5℄.)

Lemma II.2.4. If  2

!

! is a Cohen real over V , then C := f

�1

(n) : n 2 !g 2

(!)

!

0

\ V [℄ and 8X 2 (!)

!

\ V

�

:(X

�

= f!g)! C?X

�

.

Proof. We will onsider the Cohen-onditions as �nite sequenes of natural numbers,

s = fs(i) : i < n < !g. Let X = fb

i

: i 2 !g 2 V be an arbitrary, non-trivial in�nite

partition. The set D

n;m

of Cohen-onditions s suh that

(i) jfi : s(i) = 0gj � n,

(ii) 9k > n 9i(s(i) = k),

(iii) 9a

n

2 b

n

9a

m

2 b

m

9l 9a

1

; a

2

2 b

l

�

s(a

n

) = s(a

1

) ^ s(a

m

) = s(a

2

)

�

,

is dense for all n;m 2 !. Note that beause of (i), C 2 (!)

!

0

. Now, beause X was

arbitrary, the in�nite partition C is orthogonal to eah in�nite partition whih is in

V . a

We now an show that O an be small:

Proposition II.2.5. It is onsistent with ZFC that O < ov(B

0

).

Proof. Take an !

1

-iteration of Cohen foring with �nite support, starting from a

model in whih we have  = !

2

= ov(B

0

), then the !

1

generi objets form an

orthogonal family. Beause this !

1

-iteration of Cohen foring does not hange the

ardinality of ov(B

0

), we have a model in whih !

1

= O < ov(B

0

) = !

2

holds. a

Beause R � O, we also get the relative onsisteny of R < ov(B

0

). Note that

this is not true for r.

As a lower bound for R

0

we �nd p, where p is the pseudo-intersetion number (a

de�nition of p an be found in [65℄).

Theorem II.2.6. p � R

0

.

Proof. In [4℄ it is proved that p = m

�-entered

, where

m

�-entered

= minf� : \MA(�) for �-entered posets� fails g:

Let R = fR

�

: � < � < pg be a set of in�nite partitions. Now remember that the

foring notion Q (de�ned in Setion 1) is �-entered and beause � < p we �nd an

X 2 (!)

!

0

suh that R does not reap X. a
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As a orollary we get:

Corollary II.2.7. If we assume MA, then R

0

= .

Proof. If we assume MA, then p = . a

3. What about towers and orthogonal families?

Let �

mao

be the least ardinal number � for whih there exists an in�nite maximal

almost orthogonal family of ardinality �, and let �

tower

be the least ardinal number

� for whih there exists a family F � (!)

!

of ardinality �, suh that F is well-

ordered by v

�

and :9Y 2 (!)

!

8X 2 F (Y v

�

X).

Krawzyk proved that �

mao

=  (f. [12℄) and Carlson proved that �

tower

= !

1

(f. [46℄). So, these ardinals are interesting. But what happens if we anel the word

�almost� in the de�nition of �

mao

? In fat nothing happens sine Otmar Spinas has

shown in [62℄ that an in�nite maximal orthogonal family has always ardinality .

4. The diagrams of the results

Now we summarize the results proved in this hapter together with some other

known results.

The dual-splitting number:

b

S

0



S

!

1

ov(B

0

)

wS

r

The dual-reaping number and the dual-orthogonal number:

d

i



O

0

O

!

1

p

R

0

R

r

In the diagrams, the ardinal harateristis grow larger as one moves up or to the

right.

Consisteny results:

� s < S

� S

0

< 

� O < ov(B

0

)
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CHAPTER III

Topologies on the Set of Partition-Ultra�lters

In this hapter we de�ne four topologies on the set of partition-ultra�lters over

! and show that none of these topologial spaes is homeomorphi to �! or �! n !.

For a slightly more general approah in terms of semilatties see [27℄.

1. Partition-ultra�lters

In this hapter we will onsider just homogeneous partitions, i.e., partitions

of ! all of whose bloks are in�nite, but we do not introdue a new notation, thus,

throughout this hapter, (!)

�!

denotes the set of all homogeneous partitions.

We an de�ne partition-�lters in two di�erent ways:

A set F � (!)

�!

is a v-partition-�lter, if the following holds:

(a)

�

f!g

	

=2 F .

(b) For any X; Y 2 F we have X u Y 2 F .

() If X 2 F and X v Y 2 (!)

�!

, then Y 2 F .

A set F � (!)

�!

is a w-partition-�lter, if the following holds:

(a) For any X; Y 2 F we have X t Y 2 F .

(b) If X 2 F and X w Y 2 (!)

�!

, then Y 2 F .

A v-partition-�lter F � (!)

�!

is alled prinipal, if there is a partition X 2 (!)

�!

suh that F = fY : X v Y g. A setU � (!)

�!

is a partition-ultra�lter (of

some type), ifU is a partition-�lter whih is not properly ontained in any other

partition-�lter (of the same type).

Notie that a v-partition-ultra�lterU whih does not ontain a �nite partition is

always non-prinipal, and vie versa, a prinipal partition-ultra�lter always ontains

a �nite partition, in fat, it ontains a 2-blok partition (see [27, Fat 3.1℄). Thus,

ifU is a non-prinipal v-partition-ultra�lter, X 2U and X v

�

Y , then Y 2U .

Similarly, ifU is a w-partition-ultra�lter, X 2U and Y v

�

X, then Y 2U .

Let PUF

v

�

(!)

�!

�

and PUF

w

�

(!)

�!

�

denote the set of allv-partition-ultra�lters

and w-partition-ultra�lters, respetively, on !.

2. Topologies on PUF

v

�

(!)

�!

�

and PUF

w

�

(!)

�!

�

In the following, we will de�ne two topologies on PUF

v

�

(!)

�!

�

as well as on

PUF

w

�

(!)

�!

�

, but let us do it just for PUF

v

�

(!)

�!

�

. First de�ne for eah X 2 (!)

�!

21
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two sets

(X)

+

:= fU 2 PUF

v

�

(!)

�!

�

: X 2U g

and

(X)

�

:= fU 2 PUF

v

�

(!)

�!

�

: X =2U g = PUF

v

�

(!)

�!

�

n (X)

+

:

Set O

+

:= f(X)

+

: X 2 (!)

�!

g and O

�

:= f(X)

�

: X 2 (!)

�!

g and all the topology

generated by O

+

the positive topology �

+

and the topology generated by O

�

the

negative topology �

�

. Note that O

+

is a base for �

+

, but O

�

is not a base for �

�

.

This di�erene aounts for some of the asymmetries. In the same way we an de�ne

the negative and positive topology on PUF

w

�

(!)

�!

�

.

In the sequel, the topologial spae




PUF

v

�

(!)

�!

�

; �

+

�

is denoted by PUF

+

v

�

(!)

�!

�

and




PUF

v

�

(!)

�!

�

; �

�

�

is denoted by PUF

�

v

�

(!)

�!

�

. Similarly,




PUF

w

�

(!)

�!

�

; �

+

�

is

denoted by PUF

+

w

�

(!)

�!

�

and




PUF

w

�

(!)

�!

�

; �

�

�

by PUF

�

w

�

(!)

�!

�

.

Let UF

�

P(!)

�

denote the set of ultra�lters over ! and let UF

�

[!℄

!

�

denote the

set of non-prinipal ultra�lters over !. Following the onstrution above, one an

de�ne four topologies on UF

�

P(!)

�

, namely UF

+

�

�

P(!)

�

, UF

�

�

�

P(!)

�

, UF

+

�

�

P(!)

�

and

UF

�

�

�

P(!)

�

, but eah of these topologial spaes is homeomorphi to �!, the spae of

ultra�lters over !. Further, one an also de�ne four topologies on UF

�

[!℄

!

�

(whih is

the set of non-prinipal ultra�lters over !), namely UF

+

�

�

[!℄

!

�

, UF

�

�

�

[!℄

!

�

, UF

+

�

�

[!℄

!

�

and UF

�

�

�

[!℄

!

�

, but eah of these topologial spaes is homeomorphi to �! n !, the

spae of non-prinipal ultra�lters over !.

Fat III.2.1. The spaes PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and PUF

�

w

�

(!)

�!

�

are all T

1

spaes (i.e., all singletons are losed).

Proof. For any singleton fU g look at

S

X=2U

(X)

+

for the positive topology and

S

X2U

(X)

�

for the negative topology. A simple argument using the maximality of

partition-ultra�lters shows that these sets are just the omplement of fU g. But sine

they are open in the respetive topologies, fU g is losed in either topology. a

3. The spaes PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and PUF

�

w

�

(!)

�!

�

3.1. Prinipal spaes. We shall all a topologial spae prinipal if it ontains

an open set with just one element. Being prinipal is obviously a property preserved

under homeomorphisms, so it is a topologial invariant. Conerning PUF

+

v

�

(!)

�!

�

, we

like to mention the following:

Fat III.3.1. IfU 2 PUF

v

�

(!)

�!

�

andU ontains a �nite partition, then there is a

2-blok partition X suh thatU = fY 2 (!)

�!

: X v Y g, and hene,U is prinipal.

Proof. Let m := minfn : 9Y 2U (jY j = n)g. This minimum exists by assumption.

Let X 2U be suh that jXj = m.

First we show that for all Y 2 U we have X v Y . Suppose this is not the

ase for some Y 2U , then we have X 6= X u Y 2U (sineU is a �lter), whih

implies jX u Y j < jXj = m and ontradits the de�nition of m. On the other hand,
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there is a 2-blok partition Z with Z v X, and beause Z v X we get Z v Y

for any Y 2U . Therefore, sineU is an ultra�lter, we get Z = X, whih implies

fY 2 (!)

�!

: X v Y g =U and m = 2. a

This leads to the following observation:

Fat III.3.2. The spae PUF

+

v

�

(!)

�!

�

is a prinipal topologial spae, whereas the

spae PUF

+

w

�

(!)

�!

�

is non-prinipal.

Proof. That PUF

+

v

�

(!)

�!

�

is prinipal follows diretly from Fat III.3.1. For the

seond assertion we note that for every partition Y 2 (!)

�!

we �nd Z

1

; Z

2

2 (!)

�!

suh that Y v Z

1

, Y v Z

2

and Z

1

t Z

2

=2 (!)

�!

, and therefore, we �ndU

1

;U

2

2

PUF

w

�

(!)

�!

�

with Z

1

2U

1

and Z

2

2U

2

, whih implies thatU

1

andU

2

both belong

to (Y )

+

. So, for eah Y 2 (!)

�!

, the set (Y )

+

is not a singleton. In fat, by this

argument, PUF

+

w

�

(!)

�!

�

does not have any �nite open sets. a

3.2. The spae PUF

+

v

�

(!)

�!

�

. First notie that like in the spae �!, the prinipal

v-partition-ultra�lters form a dense set in PUF

+

v

�

(!)

�!

�

, but sine there are ontin-

uum many 2-blok partitions (one for eah subset of !), they annot witness that the

spae PUF

+

v

�

(!)

�!

�

is separable. Moreover, we get the following

Observation III.3.3. The spae PUF

+

v

�

(!)

�!

�

is not separable.

Proof. Spinas proved in [62℄ that there is an unountable set fX

�

: � 2 Ig � (!)

!

of in�nite partitions suh that X

�

u X

�

0

=

�

f!g

	

whenever � 6= �

0

(see the end of

Chapter II). Thus, (X

�

)

+

\ (X

�

0

)

+

= ; (for � 6= �

0

), whih implies that there is no

ountably dense set in the spae PUF

+

v

�

(!)

�!

�

. a

Proposition III.3.4. The spae PUF

+

v

�

(!)

�!

�

is a Hausdor� spae.

Proof. LetU andV be two distint v-partition-ultra�lters. BeauseU 6=V and

both are maximalv-partition-�lters, we �nd partitions X 2U and Y 2V suh that

X u Y =

�

f!g

	

. Thus, we getU 2 (X)

+

,V 2 (Y )

+

and (X)

+

\ (Y )

+

= ;. a

For two partitions X; Y 2 (!)

�!

we write X?

v

Y if X u Y =

�

f!g

	

. Before we

prove the next proposition, we state the following useful

Lemma III.3.5. If X

0

; : : : ; X

n

2 (!)

�!

is a �nite set of non-trivial partitions, then

there is a non-trivial partition Y 2 (!)

�!

suh that Y?

v

X

i

for all i � n.

Proof. Let Z

0

:= Min(X

0

). If Z

i

is suh that Z

i

\X

i+1

(k) 6= ; for every k � jX

i+1

j,

then Z

i+1

= Z

i

. Otherwise, we de�ne Z

i+1

� Z

i

as follows: If Z

i

\ X

i+1

(k) 6= ;,

then Z

i+1

\X

i+1

(k) = Z

i

\X

i+1

(k); and if Z

i

\X

i+1

(k) = ;, then Z

i+1

\X

i+1

(k) =

min(X

i+1

(k)). It is easy to see that ! n Z

i

is in�nite for every i � n. Finally, let

Y = fY (0); Y (1)g 2 (!)

�!

be suh that Z

n

� Y (0) and by onstrution we get

Y?

v

X

i

for all i � n. a

Proposition III.3.6. The spae PUF

+

v

�

(!)

�!

�

is not ompat.
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Proof. Let A = f(X)

+

: X 2 (!)

!

g, then it is easy to see that

S

A = PUF

+

v

�

(!)

�!

�

.

We will show that A is a over with no �nite subovers. Assume to the ontrary that

there are �nitely many in�nite partitions X

0

; : : : ; X

n

2 (!)

!

suh that (X

0

)

+

[ : : : [

(X

n

)

+

= PUF

+

v

�

(!)

�!

�

. By Lemma III.3.5 we �nd a non-trivial partition Y 2 (!)

�!

suh that Y?

v

X

i

(for all i � n). LetU 2 PUF

v

�

(!)

�!

�

be suh that Y 2U , then

X

i

=2U (for all i � n), whih ontradits the assumption. a

3.3. The spae PUF

�

v

�

(!)

�!

�

.

Proposition III.3.7. The spae PUF

�

v

�

(!)

�!

�

is not a Hausdor� spae.

Proof. LetU andV be two distint w-partition-ultra�lters. Take any non-trivial

partitions X

0

; : : : ; X

k

; Y

0

; : : : ; Y

`

2 (!)

�!

suh that

U 2 (X

0

)

�

\ : : : \ (X

k

)

�

and V 2 (Y

0

)

�

\ : : : \ (Y

`

)

�

:

Now, by Lemma III.3.5, there is a non-trivial partition Z suh that Z?

v

X

i

(for

i � k) and Z?

v

Y

j

(for j � `), whih implies Z 2

T

i�k

(X

i

)

�

\

T

j�`

(Y

j

)

�

. Hene,

T

i�k

(X

i

)

�

\

T

j�`

(Y

j

)

�

is not empty. a

Proposition III.3.8. The spae PUF

�

v

�

(!)

�!

�

is ountably ompat.

Proof. Let A = f

T

A

i

: i 2 !g be suh that

S

A =

S

i2!

(

T

A

i

) = PUF

v

�

(!)

�!

�

,

where eah A

i

is a �nite set of open sets of the form (X)

�

for someX 2 (!)

�!

. Assume

S

i2I

(

T

A

i

) 6= PUF

v

�

(!)

�!

�

for every �nite set I � !. If A

i

= f(X

i

0

)

�

; : : : ; (X

i

n

)

�

g

and A

j

= f(X

j

0

)

�

; : : : ; (X

j

m

)

�

g and

T

A

i

[

T

A

j

6= PUF

v

�

(!)

�!

�

, then we �nd a

U 2 PUF

v

�

(!)

�!

�

suh thatU 2 PUF

v

�

(!)

�!

�

n

�

T

A

i

[

T

A

j

�

. Hene, there are

k � n and ` � m suh that X

i

k

and X

j

`

are both inU , whih implies X

i

k

u X

j

`

6=

�

f!g

	

. We de�ne a tree T as follows: For n 2 ! the sequene hs

0

; : : : ; s

n

i belongs

to T if and only if for every i � n there is an (X

i

k

)

�

2 A

i

suh that s

i

= X

i

k

and

(s

0

u : : :u s

n

) 6=

�

f!g

	

. The tree T , ordered by inlusion, is by onstrution (and by

our assumption) a tree of height ! and eah level of T is �nite. Therefore, by König's

Lemma, the tree T ontains an in�nite branh. Let hX

i

: i 2 !i be an in�nite branh

of T , where X

i

2 A

i

. By onstrution of T , for every �nite I = f�

0

; : : : ; �

n

g � ! we

have X

�

0

u : : : u X

�

n

6=

�

f!g

	

. Thus, the partitions onstituting the branh have

the �nite intersetion property and therefore we �nd aU 2 PUF

v

�

(!)

�!

�

suh that

X

i

2U for every i 2 !. Now,U =2

S

i2!

(X

i

)

�

whih implies thatU =2

S

A, but this

ontradits

S

A = PUF

v

�

(!)

�!

�

. a

3.4. The spae PUF

+

w

�

(!)

�!

�

.

Proposition III.3.9. The spae PUF

+

w

�

(!)

�!

�

is a Hausdor� spae.

Proof. Let U andV be two distint w-partition-ultra�lters. Beause U 6= V

and both are maximal �lters, we �nd partitions X 2 U and Y 2 V suh that

X t Y =2 (!)

�!

. Hene we getU 2 (X)

+

,V 2 (Y )

+

and (X)

+

\ (Y )

+

= ;. a
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For two partitions X; Y 2 (!)

�!

we write X?

w

Y if X u Y =2 (!)

�!

. Before we

prove the next proposition, we state the following useful

Lemma III.3.10. If X

0

; : : : ; X

n

2 (!)

<!

is a �nite set of non-trivial, �nite partitions,

then there is a �nite partition Y 2 (!)

<!

suh that Y?

w

X

i

for all i � n.

Proof. De�ne an equivalene relation on ! as follows:

s � t () 8i; k

�

s 2 X

i

(k)$ t 2 X

i

(k)

�

Beause every partition X

i

is �nite and we only have �nitely many partitions X

i

, at

least one of the equivalene lasses must be in�nite, say I. Sine eah blok of eah

partition X

i

is in�nite and the partitions have been assumed to be non-trivial, we

also must have ! n I is in�nite. Let I

�1

:= I and de�ne I

i+1

:= I

i

_

[fs

i+1

g in suh a

way that for any t 2 I we have s

i+1

2 X

i+1

(k)! t =2 X

i+1

(k). Let Y := fI

n

; ! n I

n

g,

then Y 2 (!)

�!

and for every i � n, Y t X

i

ontains a �nite blok and therefore,

Y?

w

X

i

(for all i � n). a

Proposition III.3.11. The spae PUF

+

w

�

(!)

�!

�

is not ompat.

Proof. LetA = f(X)

+

: X 2 (!)

<!

g, then it is easy to see that

S

A = PUF

w

�

(!)

�!

�

.

Assume to the ontrary that there are �nitely many �nite partitions X

0

; : : : ; X

n

2

(!)

<!

suh that (X

0

)

+

[ : : : [ (X

n

)

+

= PUF

w

�

(!)

�!

�

. By Lemma III.3.10 we �nd a

Y 2 (!)

<!

suh that Y?

w

X

i

(for all i � n). LetU 2 PUF

w

�

(!)

�!

�

be suh that

Y 2U , then X

i

=2U (for all i � n), whih ontradits the assumption. a

3.5. The spae PUF

�

w

�

(!)

�!

�

.

Proposition III.3.12. The spae PUF

�

w

�

(!)

�!

�

is not a Hausdor� spae.

Proof. We �rst show that if U 2 (X)

�

for some X 2 (!)

!

, then there is an

X

0

2 (!)

<!

suh that X

0

v X (and therefore (X

0

)

�

� (X)

�

) andU 2 (X

0

)

�

. Sine

U 2 (X)

�

, there is a Y 2 p suh that Y t X =2 (!)

�!

, whih is equivalent to the

following statement (reall that we only allowed in�nite bloks): There are y 2 Y

and x 2 X suh that x \ y is a non-empty, �nite set. Now, for X

0

:= fx; ! n xg we

obviously have X

0

v X and p 2 (X

0

)

�

.

Let U and V be two distint w-partition-ultra�lters and take any partitions

X

0

; : : : ; X

k

; Y

0

; : : : ; Y

l

2 (!)

�!

suh thatU 2 (X

0

)

�

\ : : : \ (X

k

)

�

andV 2 (Y

0

)

�

\

: : : \ (Y

l

)

�

. By the fat mentioned above we may assume that the X

i

's as well as

the Y

i

's are �nite partitions. Now, by Lemma III.3.10, there is a �nite partition Z

suh that Z?

w

X

i

(for i � k) and Z?

w

Y

j

(for j � l), whih implies Z 2

T

i�k

(X

i

)

�

\

T

j�l

(Y

j

)

�

. Hene,

T

i�k

(X

i

)

�

\

T

j�l

(Y

j

)

�

is not empty. a

Proposition III.3.13. The spae PUF

�

w

�

(!)

�!

�

is ountably ompat.

Proof. Replaing �u� by �t� and �v� by �w�, one an simply opy the proof of

Proposition III.3.8. a
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3.6. Conlusion. Now we are ready to state the main result of this paper.

Theorem III.3.14. None of the spaes PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

, PUF

+

w

�

(!)

�!

�

and

PUF

�

w

�

(!)

�!

�

is homeomorphi to �! or �! n !. Moreover, no two of the spaes �!,

�! n !, PUF

+

v

�

(!)

�!

�

, PUF

�

v

�

(!)

�!

�

and PUF

+

w

�

(!)

�!

�

are homeomorphi.

Proof. The proof is given in the following table whih is just the ompilation of the

results from the previous setions. The separation property T

1

holds for all spaes

and thus does not help to disern any two of these spaes; it is just inluded for

ompleteness.

�! �! n ! PUF

+

v

�

(!)

�!

�

PUF

�

v

�

(!)

�!

�

PUF

+

w

�

(!)

�!

�

PUF

�

w

�

(!)

�!

�

prinipal Yes No Yes No

T

1

Yes Yes Yes Yes Yes Yes

Hausdor� Yes Yes Yes No Yes No

tb. ompat Yes Yes Yes Yes

ompat Yes Yes No No

a

4. About the spae PUF

+

v

�

(!)

!

�

In the following we investigate the spae PUF

+

v

�

(!)

!

�

, where PUF

v

�

(!)

!

�

denotes

the set of all non-prinipal v-partition-ultra�lters.

Notie �rst that for X; Y 2 (!)

!

, in PUF

+

v

�

(!)

!

�

we have (X)

+

� (Y )

+

if and

only if X v

�

Y .

4.1. The height of tree �-bases of PUF

+

v

�

(!)

!

�

. We �rst give the de�nition of

the dual-shattering ardinal H, whih will be further investigated in Chapter V. A

family A � (!)

!

is alled maximal almost orthogonal (mao) if A is a maximal

family of pairwise orthogonal partitions (see also the end of Chaper II). As a matter

of fat we like to mention that every in�nite mao family has the ardinality of the

ontinuum (f. [12℄ or [62℄). A family Aa of mao families of partitions shatters a

partitionX 2 (!)

!

, if there is an A 2 Aa and two distint partitions in A whih are

both ompatible (i.e., not orthogonal) with X. A family of mao families of partitions

is shattering if it shatters eah partition of (!)

!

. The dual-shattering ardinal H

is the least ardinal number � for whih there is a shattering family of ardinality �.

The dual-shattering ardinal H is a dualization of the well-known shattering num-

ber h introdued by Bohuslav Balar, Jan Pelant and Petr Simon in [1℄ and the letter

h omes from the word �height�. In [1℄ it is proved that

h = minf� : there is a tree �-base for �! n ! of height �g ;

where a family B of non-empty open sets is alled a �-base for a spae S provided

every non-empty open set of S ontains a member of B, and a tree �-base T is

a �-base whih is a tree when onsidered as a partially ordered set under reverse

inlusion (i.e., for every t 2 T the set fs 2 T : s � tg is well-ordered by �). The
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height of an element t 2 T is the ordinal � suh that fs 2 T : s ) tg is of order type

�, and the height of a tree T is the smallest ordinal � suh that no element of T has

height �.

One an show that H � h and H � S, where S is the dual-splitting ardinal

(f. [12℄ or see Chapter V).

It is onsistent with ZFC that H = �

2

= 2

�

0

(see Chapter V or [22℄) and also that

�

1

= H < h = �

2

(f. [62℄). Further, it is onsistent with ZFC + MA + 2

�

0

= �

2

that

H = �

1

< h = �

2

(f. [10℄).

Following Balar, Pelant and Simon, it is not hard to prove the following

Proposition III.4.1. Let H be the dual-shattering ardinal de�ned as above, then

H = min

�

� : there is a tree �-base for PUF

+

v

�

(!)

!

�

of height �

	

:

Proof. Bearing in mind that for every ountable dereasing sequene of basi open

sets (X

0

)

+

� (X

1

)

+

� : : : � (X

n

)

+

� : : : there is a basi open set (Y )

+

suh that for

all i 2 ! we have (Y )

+

� (X

i

)

+

(f. [46, Proposition 4.2℄), one an follow the proof

of the Base Matrix Lemma 2.11 of [1℄. a

Beause the shattering number and the dual-shattering ardinal an be di�erent,

this gives us an asymmetry between the two spaes �! n ! and PUF

+

v

�

(!)

!

�

.

4.2. On P -points in PUF

+

v

�

(!)

!

�

. In this setion we give a sketh of the proof that

P -points exist in PUF

+

v

�

(!)

!

�

if we assume CH, and that in general, both existene

and non-existene of P -points are onsistent with the axioms of set theory.

An v-partition-ultra�lterU in PUF

+

v

�

(!)

!

�

is a P -point if the intersetion of any

family of ountably many neighbourhoods ofU is a (not neessarily open) neighbour-

hood ofU .

First we show that a P -point in PUF

+

v

�

(!)

!

�

indues in a anonial way a P -point

in �! n !.

Lemma III.4.2. If there is a P -point in PUF

+

v

�

(!)

!

�

, then there is a P -point in �! n!

as well.

Proof. LetU be a P -point in PUF

+

v

�

(!)

!

�

, then it is not hard to see that the �lter

generated by fMin(X) : X 2 pg is a P -point in �! n !. a

Proposition III.4.3. It is onsistent with ZFC that PUF

+

v

�

(!)

!

�

does not ontain any

P -point.

Proof. Saharon Shelah proved in [60, Chapter VI, �4℄ that it is onsistent with ZFC

that there are no P -points in �! n !. But in a model of ZFC in whih there are no

P -points in �! n !, there are also no P -points in PUF

+

v

�

(!)

!

�

by Lemma III.4.2. a

Let W = h(!)

!

;�i be the partial order de�ned as follows:

X � Y () X v

�

Y :

The foring notion W is a natural dualization of P(!)=�n.
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Lemma III.4.4. If G

p

is W -generi over V, then G

p

is a P -point in PUF

+

v

�

(!)

!

�

in the

model V[G

p

℄.

Proof. First notie that the foring notion W is �-losed (f. [46, Proposition 4.2℄)

and hene, W does not add new reals. For every ountable set of neighbourhoods

fN

i

: i 2 !g of the �lter G

p

we �nd a ountable set of partitions fX

i

: i 2 !g � G

p

suh that (X

i

)

+

� N

i

and X

i

v

�

X

j

for i � j. Now, sine every partition X 2 (!)

!

an be enoded by a real number and W does not add new reals, there is a W -

ondition Y whih fores that the sequene X

0

�

w X

1

�

w : : : belongs to V, and sine

W is �-losed we �nd an in�nite partition Z v Y suh that Z v

�

X

i

for every i 2 !.

Hene, Z fores that (Z)

+

belongs to

T

i2!

N

i

and that Z belongs to G

p

. a

Proposition III.4.5. Assume CH, then there is a P -point in PUF

+

v

�

(!)

!

�

.

Proof. Assume V j= CH. Let � be large enough suh that P((!)

!

) 2 H(�), i.e.,

the power-set of (!)

!

(in V) is hereditarily of size < �. Let N be an elementary

submodel of hH(�);2i ontaining all the reals of V suh that jNj = 2

�

0

. We onsider

the foring notion W in the model N. Sine jNj = 2

�

0

, in V there is an enumeration

fD

�

� (!)

!

: � < 2

�

0

g of all dense sets of W whih lie in N. Sine W is �-

losed and beause V j= CH, W is 2

�

0

-losed in V and therefore we an onstrut

a desending sequene fX

�

: � < 2

�

0

g in V suh that X

�

2 D

�

for eah � < 2

�

0

.

Let G

p

:= fX 2 (!)

!

: X

�

v X for some X

�

g, then G

p

is W -generi over N. By

Lemma III.4.4 we have N[G

p

℄ j= �there is a P -point in PUF

+

v

�

(!)

!

�

� and beause N

ontains all reals of V and every ountable desending sequene of basi open sets

(Y

i

)

+

an be enoded by a real number, the P -point G

p

in the model N[G

p

℄ is also a

P -point in PUF

+

v

�

(!)

!

�

in the model V, whih ompletes the proof. a



CHAPTER IV

The Partition Form of Ramsey's Theorem

In this hapter we present a generalized version of Carlson's Lemma whih an be

seen as the partition form of Ramsey's Theorem.

1. Historial bakground

The earliest results in Ramsey Theory are the theorems of Bartel L. van der

Waerden and Frank P. Ramsey. We begin by disussing van der Waerden's Theorem:

van der Waerden's Theorem. For all n; r 2 ! there exists an N 2 ! suh that

for every oloring of f0; : : : ; Ng with r + 1 olors, there exists a monohromati

arithmeti progression of length n+ 1.

This result was �rst proved by van der Waerden in [67℄ (for a short but not easy

proof see [20℄ and for a desription of how van der Waerden found his proof we

refer the reader to [68℄). Almost 40 years after van der Waerden's proof, Alfred W.

Hales and Robert I. Jewett found a proof for a proper ombinatorial statement whih

implies van der Waerden's Theorem. To state the Hales-Jewett Theorem, we �rst

have to give the de�nition of a ombinatorial line.

For n;N 2 ! where N > 0, a set fx

0

; : : : ; x

n

g � f0; : : : ; ng

N

is alled a ombina-

torial line i� for eah m < N we have x

i

(m) = i (for all i � n) or x

i

(m) = x

i+1

(m)

(for all i < n); and the former ase is true for at least one m < N . Now we an

formulate the

Hales-Jewett Theorem. For all n; r 2 !, there exists a positive natural num-

ber N suh that for every oloring of f0; : : : ; ng

N

with r + 1 olors, there exists a

monohromati ombinatorial line.

This result was �rst proved by Hales and Jewett in [31℄ (a very sophistiated

proof providing a primitive reursive bound for the Hales-Jewett funtion is given by

Shelah in [59℄).

On Deember 16th, 1929, Ramsey's artile �On a problem of formal logi� was

issued (f. [57℄). This artile begins with two ombinatorial theorems whih are The-

orem A and Theorem B. Beause the seond one follows from the �rst one, we onsider

Theorem A as the �Ramsey Theorem�, also alled �Ramsey's Theorem�, and all The-

orem B the �Finitary Ramsey Theorem�, beause it is the �nite version of Theorem A.

In order to state these two theorems of Ramsey, we have to give again some

notations.

29
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For n 2 !, we denote the set of all n-element sets of natural numbers by [!℄

n

.

Further, for any set of natural numbers H and n 2 !, [H℄

n

denotes the set of all

n-element subsets of H. Ramsey's Theorem states as follows.

Ramsey's Theorem. For every n 2 ! and for every oloring of [!℄

n

with �nitely

many olors, there exists an in�nite set H � ! suh that [H℄

n

is monohromati.

The �nite version of Ramsey's Theorem, whih is Theorem B of [57℄, is the fol-

lowing:

Finitary Ramsey Theorem. For all m;n; r 2 !, where n � m, there exists an

N 2 ! suh that for every oloring of [N ℄

n

with r + 1 olors, there exists a set

H 2 [N ℄

m

suh that [H℄

n

is monohromati.

The Finitary Ramsey Theorem was disovered and proved independently by Paul

Erdös and George Szekerés (see [16℄). They arrived at it in the following geometrial

ontext.

Erdös-Szekerés Theorem. For every n 2 !, there exists an N 2 ! with the

following property: If P is a set of N points of the Eulidean plane without 3 olinear

points, then P ontains n points whih form the verties of a onvex n-gon.

The Hales-Jewett Theorem and the Finitary Ramsey Theorem are ommonly on-

sidered as the two main roots of Ramsey Theory. Both results are oloring theorems

of the same type, so it is surprising that they remained quite unrelated for a long time

until Ronald L. Graham and Brue L. Rothshild extended in [19℄ the Hales-Jewett

Theorem in a remarkable way. Using the notion of n-parameter sets, they proved a

result ([19, Corollary 10℄) from whih one an derive both the Hales-Jewett Theorem

and the Finitary Ramsey Theorem (see also [55℄). For any set X and n 2 !, let (X)

n

denote the set of all partitions of X ontaining exatly n piees.

Graham-Rothshild Result. For any m;n; r 2 !, where m � n, there exists a

natural number N suh that for every oloring of (N)

n

with r+1 olors, there exists

a partition P 2 (N)

n

suh that (P )

n

is monohromati.

This result looks very similar to the Finitary Ramsey Theorem. The relation

beomes learer if we onsider an n-element subset of N as an injetive funtion from

n into N , and similarly, a partition of N ontaining n piees as a surjetive funtion

from N onto n, where we identify in both ases two funtions if they are equal modulo

a permutation of n. Therefore, partitions with n piees are a dual form of sets with

n elements (see also Chapter I).

For more bakground and further results in Ramsey Theory we refer the reader

to [50℄ and [21℄.

Ten years after Graham and Rothshild proved their ombinatorial result, Steve G.

Simpson tried to prove a dual version of the Ramsey Theorem and sueeded with

the help of Timothy J. Carlson. The original motivation of Simpson to prove suh a

dualization of Ramsey's Theorem was to �nd a ombinatorial statement whih is like
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the theorem of Leo Harrington and Je� Paris (f. [52℄), but stronger in the sense that

it annot be proved in reasonably strong subsystems of seond-order arithmeti. The

ruial point in the proof of the so-alled Dual Ramsey Theorem, whih is Theorem 1.2

of [11℄, is the Lemma 2.4 of [11℄, whih was proved in a slightly stronger form by

Carlson (f. [11, Theorem 6.3℄). In the following we give a slightly more general

version of Carlson's Lemma whih an be seen as the partition form of Ramsey's

Theorem.

2. The partition form of Ramsey's Theorem

Remember that for s 2 (N), s

�

denotes the partition s [

�

fdom(s)g

	

, and notie

that js

�

j = jsj+ 1.

For s 2 (N) and X 2 (!)

!

with s v X, let

(s;X)

!

:= fY 2 (!)

!

: s � Y v Xg :

A set (s;X)

!

, where s and X are as above, is alled a dual Ellentuk neighbor-

hood (f. [11, p. 275℄ or Chapter V).

For a natural number n, let (!)

n�

denote the set of all u 2 (N) suh that juj = n.

Further, for n 2 ! and X 2 (!)

!

let

(X)

n�

:= fu 2 (N) : juj = n ^ u

�

v Xg ;

and if s 2 (N) is suh that jsj � n and s v X, let

(s;X)

n�

:= fu 2 (N) : juj = n ^ s � u ^ u

�

v Xg :

With the notation given above, we an state our main result as follows:

Theorem IV.2.1. For any oloring of (!)

n�

with r + 1 olors, where r; n 2 ! and

n > 0, there exists an in�nite partition X 2 (!)

!

suh that (X)

n�

is monohromati.

To prove the Theorem IV.2.1, we will make use of Carlson's Lemma (see [11,

Lemma 2.4℄). In our notation it reads as follows.

Carlson's Lemma. For any oloring of (!)

n�

with r + 1 olors, where r; n 2 ! and

n > 0, and for any dual Ellentuk neighborhood (s;X)

!

, where jsj � n, there exists

a Y 2 (s;X)

!

suh that (s; Y )

n�

is monohromati.

With this result we are prepared to give the

Proof of Theorem IV.2.1. The proof is by indution on n. For n = 1, Theo-

rem IV.2.1 follows immediately from Carlson's Lemma. So, let n; r 2 ! be given suh

that 1 < n and assume that Theorem IV.2.1 is already proved for all n

0

2 ! with

n

0

< n.

Fix an arbitrary oloring � : (!)

n�

! r + 1. Let X

0

2 (!)

!

and let s

0

2 (N) be

suh that js

0

j = n � 1 and s

�

0

� X

0

. Further assume we already have onstruted

X

i

2 (!)

!

and s

i

2 (N) suh that js

i

j = (n� 1) + i and s

�

i

� X

i

.

We onstrut partitions s

i+1

and X

i+1

with the same properties as above. As a

byprodut, the onstrution yields a partial mapping � from (!)

(n�1)�

to r + 1.
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Let ft

i

k

2 (N) : k � h

i

g be an enumeration of all t v s

i

with dom(t) = dom(s

i

)

and jtj = n � 1. Let Y

i

�1

:= X

i

, then by Carlson's Lemma, for eah k there exists a

Y

i

k

2 (s

�

i

; Y

i

k�1

)

!

suh that �j

((t

i

k

)

�

;Y

i

k

)

n�

is onstant, say

�j

((t

i

k

)

�

;Y

i

k

)

n�

=: �(t

i

k

) :

Let X

i+1

:= Y

i

h

i

and let s

i+1

2 (N) be suh that s

�

i+1

� X

i+1

and js

i+1

j = (n � 1) +

(i + 1). Finally, let Y 2 (!)

!

be the unique partition suh that for all i 2 ! we

have s

i

� Y . For eah u 2 (Y )

n�

there exist exatly two numbers i; k 2 ! suh that

(t

i

k

)

�

� u, and we an de�ne

�(u) := �(t

i

k

) :

Notie that �(u) is well de�ned for every u 2 (Y )

n�

. By the indution hypothesis we

�nd a Z 2 (Y )

!

suh that �j

(Z)

(n�1)�

is onstant, say �j

(Z)

(n�1)�

= fjg. Let s

�

v Z

be suh that jsj = n and let s

�

0

� s be suh that js

0

j = n � 1. The domain of

s

0

, dom(s

0

), orresponds with dom(s

i

) for some i 2 !. Consider now the partition

X

i+1

. By the onstrution of X

i+1

we know that for all t v s

i

with jtj = n � 1

and dom(t) = dom(s

i

) we have �j

(t

�

;X

i+1

)

n�

is onstant and by the onstrution of Z,

this onstant value is j, thus �j

(t

�

;X

i+1

)

n�

= fjg and in partiular �(s

�

0

) = j. Hene,

beause (s; Z)

!

� (s

�

0

; X

i+1

)

!

, we get �(s) = j, whih ompletes the proof. a

3. A weakened form of the Halpern-Läuhli Theorem

One an show that the Finitary Ramsey Theorem, the Ramsey Theorem as well

as the Hales-Jewett Theorem, the Graham-Rothshild Result and a weakened form

of the Halpern-Läuhli Theorem are derivable from Theorem IV.2.1. We just give the

proof for the weakened Halpern-Läuhli Theorem (the full form, proved by James D.

Halpern and Hans Läuhli, an be found in [32℄).

To state this weakened form, we have to give �rst some notations: For k 2 !, let

k

2 be the set of all funtions � : k ! 2 and let 2

<!

:=

S

k2!

k

2. A set T � 2

<!

is

alled a tree if for every � 2 T and k � dom(�) we have �j

k

2 T . So, the set 2

<!

itself forms a tree. For a tree T � 2

<!

and l 2 ! let

T (l) := f� 2 T : dom(�) = lg :

If T

d

= T

0

� : : :� T

d�1

�

�

2

<!

�

d

where d 2 ! is a produt of trees T

i

� 2

<!

, then for

l 2 ! let

T

d

(l) := f� 2 T

d

: � 2 T

0

(l)� : : :� T

d�1

(l)g :

A tree T � 2

<!

is alled perfet if for eah � 2 T there exist two distint funtions

�

0

; �

1

2 T suh that dom(�

0

) = dom(�

1

) and �

0

j

dom(�)

= �

1

j

dom(�)

= �.

Corollary IV.3.1. For every positive d 2 !, and for every oloring of

S

l2!

�

l

2

�

d

with �nitely many olors, there exists a produt of perfet trees T

d

= T

0

� : : :� T

d�1

and an in�nite set H � ! suh that

S

l2H

T

d

(l) is monohromati.



IV.4 33

Proof. Let d be a �xed positive natural number and let n := 2

d

. Beause j

d

2j = 2

d

,

there exists a one-to-one orrespondene � between n and

d

2. For any l 2 !, an

element h�

0

; : : : ; �

d�1

i 2

�

l

2

�

d

is a sequene of length d of funtions �

i

: l ! 2. For

any l 2 ! we de�ne the funtion � :

�

l

2

�

d

!

�

d

2

�

l

as follows:

�(h�

0

; : : : ; �

d�1

i) := h�

0

; : : : ; �

l�1

i where �

j

(i) := �

i

(j) :

Notie that for eah l 2 !, the funtion � is a one-to-one funtion from

�

l

2

�

d

onto

�

d

2

�

l

. Now we de�ne the funtion � : (!)

n�

!

�

2

<!

�

d

by

�(s) := �

�1

(h�

0

; : : : ; �

dom(s)�1

i) ;

where �

j

(i) := �(k)(i) for j 2 s(k). Note that �(s) 2

�

dom(s)

2

�

d

. Finally, for any

oloring � :

S

l2!

�

l

2

�

d

! r + 1, where r 2 !, we de�ne the oloring � : (!)

n�

!

r + 1 by stipulating �(s) := �(�(s)). Let X 2 (!)

!

be as in the onlusion of

Theorem IV.2.1 (w.r.t. the oloring �). Let s

�

n

� X be suh that js

n

j = n and let

H := Min(X) nMin(s

n

). Further let

S

n

:= ft 2 (N) : t � s

n

_ (s

n

� t v X ^ jtj = n)g

and de�ne

T

d

:= f� : 9t 2 S

n

(� = �(t))g :

We leave it to the reader to hek that T

d

and H are as desired and that they have

the desired properties. a

4. The �dual form� of Ramsey's Theorem versus its �partition form�

Let us ompare Theorem IV.2.1 with the so-alled Dual Ramsey Theorem of Carl-

son and Simpson (f. [11, Theorem 1.2℄). The following notations are used to state

their Dual Ramsey Theorem.

For n 2 ! let (!)

n

denote the set of all partitions of ! ontaining exatly n bloks

and for X 2 (!)

!

let

(X)

n

:= fY 2 (!)

n

: Y v Xg :

For s 2 (N) let O

s

:= fX 2 (!)

n

: s � Xg � (!)

n

. For a �nite set S � (N) de�ne

B

S

:=

T

s2S

O

s

, then the set of all B

S

, where S � (N) is �nite, forms a basis of a

topology on (!)

n

. Now we an formulate the

Dual Ramsey Theorem. If � : (!)

n

! r+ 1, where n; r 2 !, is suh that for eah

i � r, �

�1

(i) is a Borel set (with respet to the produt topology), then there exists

an X 2 (!)

!

suh that �j

(X)

n

is onstant.

A restrition on the oloring is neessary beause one an show � using AC � that

there exists a oloring of (!)

2

with 2 olors suh that for no in�nite partition X, (X)

2

is monohromati.

As mentioned above, the Graham-Rothshild result is � in terms of partitions �

the analogue of the Finitary Ramsey Theorem, but stronger in the sense that it also
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implies the Hales-Jewett Theorem (whih deals in some sense also with partitions).

Further, the Graham-Rothshild result, the Finitary Ramsey Theorem, the Hales-

Jewett Theorem, are ompletely �nite results. On the �in�nite� side we have the

Dual Ramsey Theorem, whih is in some sense the analogue � in terms of partitions �

of the Galvin-Prikry result. Putting all together, we get the following diagram, where

the �partition-results� are on the left, results dealing with �sets of singletons� are on

the right, and where an arrow means an impliation:

Dual Ramsey Theorem

?

?

y

? ? ? ���! Ramsey Theorem

?

?

y

?

?

y

Graham-Rothshild ���! Finitary Ramsey Theorem

?

?

y

Hales-Jewett

What is missing in this diagram is a �partition version� of the Ramsey Theorem,

or equivalently, an in�nite version of the Graham-Rothshild result. Now, Theo-

rem IV.2.1 �lls this gap, and even though it is just a onsequene of the Dual Ramsey

Theorem, one an de�ne in a natural way its assoiated �lters, whih will play an

important r�le in Chapter VII (see also [24℄). (Notie that suh a onstrution does

not exist with respet to the Dual Ramsey Theorem.) These partition-�lters an be

seen as a strengthened version of the well-studied Ramsey �lters over !, and they are

important in the investigation of the ombinatoris of Dual Mathias foring, whih is

the �partition version� of Mathias foring (f. Chapter VII).

As mentioned above, the Dual Ramsey Theorem does not hold for arbitrary ol-

orings. This is similar to the ase when the in�nite subsets of ! are olored: One

an show � using AC � that there is a oloring of [!℄

!

with 2 olors, suh that for no

S 2 [!℄

!

, [S℄

!

is monohromati. This yields to the following property of olorings of

[!℄

!

.

Ramsey Property: A �nite oloring of [!℄

!

has the Ramsey property, if there is a

set S 2 [!℄

!

suh that [S℄

!

is monohromati.

Fred Galvin and Karel Prikry proved in [17℄ that every Borel-oloring has the

Ramsey property. Moreover, Jak Silver has shown in [61℄ that this holds also for

every analyti oloring.

There is a natural analogue of the Galvin-Prikry result in terms of partitions,

namely the so-alled Dual Galvin-Prikry Theorem (see [11, Theorem 1.3℄), and sim-

ilar to the Galvin-Prikry result, the Dual Galvin-Prikry Theorem yields to the dual
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Ramsey property (introdued in [11℄). Further, in Chapter VI (see also [23℄) we will

see that also every analyti oloring has the dual Ramsey property.

With these results, we get the following diagram:

Dual Galvin-Prikry ���! Galvin-Prikry

?

?

y

?

?

y

Theorem IV.2.1 ���! Ramsey Theorem

?

?

y

?

?

y

Graham-Rothshild ���! Finitary Ramsey Theorem

Considering these symmetries between the Ramsey Theorem and Theorem IV.2.1, it

is reasonable to onsider Theorem IV.2.1 as the partition form of Ramsey's Theorem.

Another Ramsey type theorem whih is slightly stronger than Theorem IV.2.1 an be

found in [28℄.
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CHAPTER V

The Shattering Cardinal and the Dual Ramsey Property

In Chapter III Setion 4.1 we de�ned the dual-shattering ardinal H as the min-

imum height of a tree �-base of PUF

+

v

�

(!)

!

�

. In this hapter we will give some

equivalent de�nitions of H and show that H > !

1

is onsistent with ZFC.

1. The dual Ellentuk topology and the dual Ramsey property

First we de�ne a topology on the set of in�nite partitions: Let X 2 (!)

!

and

s 2 (N) suh that s v X, then

(s;X)

!

:= fY 2 (!)

!

: s � Y ^ Y v Xg

and

(X)

!

:= (;; X)

!

:

Now, let the basi open sets on (!)

!

be the sets (s;X)

!

(where X and s as above).

These sets are alled the dual Ellentuk neighborhoods. The topology on (!)

!

indued by the dual Ellentuk neighborhoods is alled the dual Ellentuk topology

(f. [12℄).

Let C � (!)

!

be a set of partitions, then we say that C has the dual Ramsey

property, or that C is dual Ramsey, if there is a partition X 2 (!)

!

suh that

(X)

!

� C or (X)

!

\C = ;. If for eah dual Ellentuk neighborhood (s; Y )

!

there is

an X 2 (s; Y )

!

suh that (s;X)

!

� C or (s;X)

!

\C = ;, we all C ompletely

dual Ramsey. If for eah dual Ellentuk neighborhood the latter ase holds, we say

that C is ompletely dual Ramsey null.

Remark 1. In [11℄ it is proved that a set is ompletely dual Ramsey if and only if

it has the Baire property with respet to the dual Ellentuk topology, and that it

is ompletely dual Ramsey null if and only if it is meager with respet to the dual

Ellentuk topology. From this it follows that a set is ompletely dual Ramsey null if

and only if the omplement ontains a dense and open subset (with respet to the

dual Ellentuk topology).

Let R

[

0

be the set of sets of partitions whih are ompletely dual Ramsey null.

The set R

[

0

� P

�

(!)

!

�

is an ideal whih is not prime. Let us onsider the additivity

number add(R

[

0

) and the overing number ov(R

[

0

) of the ideal R

[

0

: add(R

[

0

) is

the smallest ardinal � suh that there exists a family Jj = f J

�

2 R

[

0

: � < �g with

S

Jj 62 R

[

0

; and ov(R

[

0

) is the smallest ardinal � suh that there exists a family

Jj = f J

�

2 R

[

0

: � < �g with

S

Jj = (!)

!

.

37
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Beause (!)

!

62 R

[

0

, it is lear that add(R

[

0

) � ov(R

[

0

). Further, it is easy to see

that !

1

� add(R

[

0

). Later we will see that add(R

[

0

) = ov(R

[

0

).

2. The distributivity number dsb(W )

A omplete Boolean algebra hB;�i is alled �-distributive, where � is a ardinal,

if and only if for every family hu

�i

: i 2 I

�

; � < �i of members of B the following

holds:

Y

�<�

X

i2I

�

u

�i

=

X

f2

Q

�<�

I

�

Y

�<�

u

�f(�)

:

It is well known (f. [36℄) that for a foring notion hP;�i the following statements

are equivalent:

� r.o.(P ) is �-distributive (where �r.o.� stands for �regular open�).

� The intersetion of � open dense sets in P is dense.

� Every family of � maximal anti-hains of P has a ommon re�nement.

� Foring with P does not add a new subset of �.

Let the foring notion W = h(!)

!

;v

�

i be de�ned as at the end of Chapter III, and let

the distributivity number dsb(W ) be the least ardinal � for whih the Boolean

algebra r.o.(W ) is not �-distributive.

3. The four ardinals are equal

Now we will show that the four ardinals H, add(R

[

0

), ov(R

[

0

) and dsb(W ) are

all equal. This is a similar result as in the ase when we onsider in�nite subsets of

! instead of in�nite partitions (f. [54℄ and [1℄).

Fat V.3.1. If T � (!)

!

is an open and dense set with respet to the dual Ellentuk

topology, then it ontains a mao family.

Proof. First hoose an almost orthogonal family A � T whih is maximal in T .

Now for an arbitrary X 2 (!)

!

, T \ (X)

!

6= ;. So, X must be ompatible with some

A 2 A and therefore A is mao. a

Lemma V.3.2. H � add(R

[

0

).

Proof. Let hS

�

: � < � < Hi be a sequene of ompletely dual Ramsey null sets

and let T

�

� (!)

!

n S

�

(� < �) be suh that T

�

is open and dense with respet to

the dual Ellentuk topology (whih is always possible by Remark 1). For eah � < �

let

T

�

�

:=

�

X 2 (!)

!

: 9Y 2 T

�

�

X v

�

Y ^ :(X

�

= Y )

�	

:

It is easy to see that for eah � < � the set T

�

�

is open and dense with respet to the

dual Ellentuk topology.

Let U

�

� T

�

�

(� < �) be mao. Beause � < H, the set hU

�

: � < �i annot be

shattering. Let for � < � U

�

�

:= fX 2 (!)

!

: 9Z

�

2 U

�

(X v

�

Z

�

)g, then U

�

�

� T

�

and

T

�<�

U

�

�

is open and dense with respet to the dual Ellentuk topology:
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T

�<�

U

�

�

is open: lear.

T

�<�

U

�

�

is dense: Let (s; Z)

!

be arbitrary. Beause hU

�

: � < �i is not shattering,

there is a Y 2 (s; Z)

!

suh that 8� < � 9X

�

2 U

�

(Y v

�

X

�

): Hene, Y 2

T

�<�

U

�

�

.

Further we have by onstrution

\

�<�

U

�

�

\

[

�<�

S

�

= ;;

whih ompletes the proof. a

Lemma V.3.3. H � dsb(W ).

Proof. Let hT

�

: � < � < Hi be a sequene of open and dense sets with respet to

the dual Ellentuk topology. Now the set

T

�<�

U

�

�

, onstruted as in Lemma V.3.2,

is dense (and even open) and a subset of

T

�<�

T

�

. Therefore H � dsb(W ). a

Lemma V.3.4. add(R

[

0

) � H.

Proof. Let hR

�

: � < Hi be a shattering family and for � < H let

D

�

:= fX : 9Y 2 R

�

(X v

�

Y )g :

For eah � < H, D

�

is dense and open with respet to the dual Ellentuk topology:

D

�

is open: lear.

D

�

is dense: Let (s; Z)

!

be arbitrary and X 2 (s; Z)

!

. Beause R

�

is mao, there is

a Y 2 R

�

suh that X

0

:= X uY 2 (!)

!

. Let X

00

�

= X

0

suh that X

00

2 (s; Z)

!

, then

X

00

v

�

Y .

Now we show that

T

�<H

P

�

= ; and therefore

S

�<H

�

(!)

!

nD

�

�

= (!)

!

. Assume

there is an X 2

T

�<H

D

�

, then 8� < H 9Y

�

2 R

�

(X v

�

Y

�

). But this ontradits

that hR

�

: � < Hi is shattering. a

Lemma V.3.5. dsb(W ) � H.

Proof. In the proof of Lemma V.3.4 we onstruted a sequene hD

�

: � < Hi of

open and dense sets with an empty intersetion. Therefore

T

�<H

D

�

is not dense. a

Corollary V.3.6. ov(R

[

0

) � H.

Proof. In the proof of Lemma V.3.4, we proved in fat that ov(R

[

0

) � H. a

Corollary V.3.7. add(R

[

0

) = ov(R

[

0

) = dsb(W ) = H.

Proof. It is lear that add(R

[

0

) � ov(R

[

0

). By the Lemmas V.3.3 and V.3.5 we

know that H = dsb(W ). Further by the Lemma V.3.2 and the Corollary V.3.6 it

follows that H � add(R

[

0

) � ov(R

[

0

) � H. Hene we have add(R

[

0

) = ov(R

[

0

) =

dsb(W ) = H. a
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Corollary V.3.8. The union of less than H ompletely dual Ramsey sets is dual

Ramsey, but the union of H ompletely dual Ramsey sets an be a set whih does not

have the dual Ramsey property.

Proof. Follows from Remark 1 and Corollary V.3.7. a

4. On the onsisteny of H> !

1

First, let us give some fats onerning the dual Mathias foring: The onditions

of dual Mathias foring M

[

are pairs hs;Xi suh that s 2 (N), X 2 (!)

!

and

s v X, stipulating

hs;Xi � ht; Y i if and only if (s;X)

!

� (t; Y )

!

(see also Chapter VII.5).

It will be shown in Chapter VI.2 that dual Mathias foring an be deomposed as

W � M

[

U

, where W =




(!)

!

;v

�

�

and M

[

U

denotes restrited dual Mathias foring,

i.e., onditions must have their seond oordinate in U , where U is a W -generi

partition-ultra�lter (see again Chapter VII.5).

Beause dual Mathias foring has pure deision (see Chapter VI.2), it is proper

and has the Laver property and therefore adds no Cohen reals. (For the de�nition of

properness and the Laver property we refer the reader to [18℄.)

After an !

2

-iteration of dual Mathias foring with ountable support, starting

from a model in whih the ontinuum hypothesis holds, we get a model in whih the

dual-shattering ardinal H is equal to !

2

.

Let V be a model of CH and let P

!

2

:= hP

�

;

_

Q

�

: � � !

2

; � < !

2

i be a ountable

support iteration of dual Mathias foring, i.e., for all � < !

2

,

P

�

\

_

Q

�

� M

[ 00

:

In the sequel we will not distinguish between a member of W and its representative.

In the proof of the following theorem, a set C � !

2

is alled an !

1

-lub if C is

unbounded in !

2

and losed under inreasing sequenes of length !

1

.

Theorem V.4.1. If G is P

!

2

-generi over V , where V j= CH, then V [G℄ j= H = !

2

.

Proof. In V [G℄ let hD

�

: � < !

1

i be a family of open dense subsets of W . Beause

dual Mathias foring is proper and by a standard Löwenheim-Skolem argument, we

�nd a !

1

-lub C � !

2

suh that for eah � 2 C and every � < !

1

the set D

�

\ V [G

�

℄

belongs to V [G

�

℄ and is open dense in W

V [G

�

℄

. Let A 2 W

V [G℄

be arbitrary. By

properness and generiity and beause P

!

2

has ountable support, we may assume

that A 2 G(�)

0

for an � 2 C, where G(�)

0

is the �rst omponent aording to

the deomposition of Mathias foring of the

_

Q

�

[G

�

℄-generi objet determined by G.

As � 2 C, G(�)

0

learly meets every D

�

(� < !

1

). But now X

�

, the

_

Q

�

-generi

partition (determined by G(�)

00

) is below eah member of G(�)

0

, hene below A and

in

T

�<!

1

D

�

. Beause A was arbitrary, this proves that

T

�<!

1

D

�

is dense in W and

therefore dsb(W ) > !

1

. Again by properness of dual Mathias foring V [G℄ j= 2

!

0

= !

2

and we �nally have V [G℄ j= H = !

2

. a
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In the model onstruted in the proof of Theorem V.4.1 we have H > t, where t is

the well-known tower number (for a de�nition of t f. [65℄). Moreover, we an show

the following:

Corollary V.4.2. The statement H > ov(B

0

) is relatively onsistent with ZFC.

Proof. Beause dual Mathias foring is proper and does not add Cohen reals, P

!

2

does also not add Cohen reals. Further it is known that t � ov(B

0

) (f. [53℄ or

[3℄). Now beause foring with P

!

2

does not add Cohen reals, in V [G℄, the overing

number ov(B

0

) is still !

1

(beause eah real in V [G℄ is in a meager set with ode in

V ). This ompletes the proof. a

Remark 2. In [65℄ Theorem3.1.() it is shown that ! � � < t implies that 2

�

= 2

!

0

.

We do not have a similar result for the dual-shattering ardinal H. If we start our

foring onstrution P

!

2

with a model V j= CH+ 2

!

1

= !

3

, then again by properness

of dual Mathias foring we have V [G℄ j= H = !

2

= 2

!

0

< 2

!

1

= !

3

, where G is

P

!

2

-generi over V .

Remark 3. By iterating just Mathias foring, Spinas showed in [62℄ that H < h is

onsistent with ZFC. Further, Jörg Brendle has proved in [10℄ that also MA + !

1

=

H < h = !

2

=  is onsistent with ZFC.

5. The diagram of the results

In ZFC it is provable that H � h and H � S, where S is the dual-splitting ardinal

(f. [12℄ or see Chapter II). Thus, if we summarize the results whih are known about

H, we get the following diagram:

b

S

0



h

H

S

!

1

ov(B

0

)

In the diagram, the ardinal harateristis grow larger as one moves up or to the

right.

Consisteny results:

� ov(B

0

) < H

� H < ov(B

0

) (this is beause h < ov(B

0

) is onsistent with ZFC)

� MA + !

1

= H < h = !

2

= 
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CHAPTER VI

Symmetries between two Ramsey properties

In this hapter we ompare the Ramsey property with the dual Ramsey property,

whih was introduted in Chapter V. Even though the two properties are di�erent,

it an be shown that all lassial results known for the Ramsey property also hold for

the dual Ramsey property. In partiular we will see that the dual Ramsey property

is losed under a generalized Suslin operation (the similar result for the Ramsey

property was proved by Matet). Further we ompare two notions of foring, the

Mathias foring and a dual form of it, and will give some symmetries between them.

1. Two Ramsey properties and two notions of foring

First we de�ne a topology on [!℄

!

. Let x 2 [!℄

!

and a 2 [!℄

<!

suh that max(a) <

min(x); then [a; x℄

!

:= fy 2 [!℄

!

: y � (a [ x) ^ a � yg. Now let the basi open sets

on [!℄

!

be the sets [a; x℄

!

. These sets are alled the Ellentuk neighborhoods. The

topology indued by the Ellentuk neighborhoods is alled the Ellentuk topology.

Related to the Ellentuk topology we get the Mathias foring M , whih is

de�ned as follows:

ha; xi 2 M , a 2 [!℄

<!

^ x 2 [!℄

!

^ max(a)<min(x);

ha; xi � hb; yi , b � a ^ x � y ^ (a n b) � y:

If ha; xi is an M -ondition, then we all a the stem of the ondition. The Mathias

foring M has a lot of ombinatorial properties (see [49℄, [39℄, or [25℄). Note that we

an onsider an M -ondition ha; xi as an Ellentuk neighborhood [a; x℄

!

and ha; xi �

hb; yi if and only if [a; x℄

!

� [b; y℄

!

.

The lassial Ramsey property is a property of sets of in�nite subsets of ! (of

sets of reals). A set A � [!℄

!

has the Ramsey property (or is Ramsey) if 9x 2

[!℄

!

([x℄

!

� A _ [x℄

!

\ A = ;): If there exists an x suh that [x℄

!

\ A = ; we all A

a Ramsey null set. A set A � [!℄

!

is ompletely Ramsey if for every Ellentuk

neighborhood [s; y℄

!

there is an x 2 [s; y℄

!

suh that [s; x℄

!

� A or [s; x℄

!

\A = ;. If

we are always in the latter ase, then we all A ompletely Ramsey null.

The dual Ramsey property, whih is a property of sets of partitions, was

already introdued in Chapter V.1, where one an �nd also the de�nition of the dual

Ellentuk topology.

Related to the dual Ellentuk topology we get the dual Mathias foring M

[

,

whih was already de�ned in Chapter V. Dual Mathias foring is similarly to Mathias

43
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foring, but uses the dual Ellentuk neighborhoods instead of the Ellentuk neighbor-

hoods. So,

hs;Xi 2 M

[

, (s;X)

!

is a dual Ellentuk neighborhood

and

hs;Xi � ht; Y i , (s;X)

!

� (t;Y )

!

:

If hs;Xi is an M

[

-ondition, then we all s again the stem of the ondition. Beause

dual Mathias foring is very lose to Mathias foring, it also has some nie properties

similar to those of M .

Now we an start to give some symmetries between the two Ramsey properties

and between the two Mathias forings.

2. Basi fats

In this setion we give the tools to onsider sets of partitions as sets of reals

and to ompare the two Ramsey properties. We will give also some basi fats and

well-known results onerning the dual Ramsey property and dual Mathias foring.

Further we give some symmetries between Mathias foring and the dual Mathias

foring.

To ompare the two Ramsey properties we �rst show that we an onsider eah

A � [!℄

!

as a set of in�nite partitions of ! and vie versa. For this we de�ne some

arithmetial relations and funtions.

Let n;m 2 !, then div(n;m) := maxfk 2 ! : k �m � ng and

&fn;mg :=

1

2

�

(maxfn;mg)

2

�maxfn;mg

�

+minfn;mg ;

where we onsider &fn;mg as unde�ned if n = m.

Let x 2 [!℄

!

; then trans(x) � ! is suh that n 62 trans(x) i� there is a �nite

sequene s of natural numbers of length l + 1 suh that

n = &fs(0); s(l)g and 8k 2 f1; : : : ; lg

�

&fs(k � 1); s(k)g 62 x

�

:

Note that trans(x) � x. If x 2 [!℄

!

, then we an onsider x as a partition with

\

x

(n;m) () n = m or &fn;mg 62 trans(x):

The orresponding partition of a real x 2 [!℄

!

is denoted by p(x). Note that

p(x) 2 (!)

!

i� 8k 9n > k 8m < n

�

:\

x

(n;m)

�

, and further, if y � x, then p(y) v

p(x).

A partition X of ! we enode by a real p(X) (the partition ode of X) as

follows.

p(X) :=

�

k 2 ! : 9n 9m

�

k = &fn;mg ^ :\

X

(n;m)

�	

:

Note that if X

1

v X

2

then p(X

1

) � p(X

2

). With these de�nitions we get the

following.

Fat VI.2.1. The dual Ellentuk topology is �ner than the topology of the Baire

spae.
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Proof. Let s 2 !

<!

and U

s

= ff 2 !

!

: s � fg be a basi open set in the Baire

spae !

!

. Beause there is a bijetion between !

!

and [!℄

!

, we an write U

s

as a set

V

s

0

= fr 2 [!℄

!

: s

0

� r ^min(r n s) > max(s)g :

Now p[V

s

0

℄\(!)

!

(where p[V

s

0

℄ := fp(r) : r 2 V

s

0

g) is open with respet to the dual

Ellentuk topology. Therefore, the dual Ellentuk topology is �ner than the topology

of the Baire spae. a

Remark 1. A similar result is true for the Ellentuk topology (f. [15℄).

Fat VI.2.2. A set C � (!)

!

is ompletely dual Ramsey if and only if C has the

Baire property with respet to the dual Ellentuk topology and it is ompletely dual

Ramsey null if and only if it is meager with respet to the dual Ellentuk topology.

Proof. This is proved in [11℄. a

Remark 2. The analogous result is known for the Ramsey property with respet to

the Ellentuk topology (f. [15℄).

Let us now give some symmetries between the two Mathias forings: If X

G

is

M

[

-generi over V and Y 2 (X

G

)

!

, then also Y is M

[

-generi over V (f. [11, Theo-

rem 5.5℄). From this it follows immediately that M

[

is proper and therefore does not

ollapse !

1

.

Further, for any M

[

-ondition hs;Xi and any sentene � of the foring language

M

[

, there is an M

[

-ondition hs; Y i � hs;Xi suh that hs; Y i

M

[

� or hs; Y i

M

[

:�

(f. [11, Theorem 5.2℄ ). This property is alled pure deision.

Remark 3. The similar results for Mathias foring M an be found in [49℄ (or in

[37℄).

We an write dual Mathias foring as a two step iteration where one �rst fores

with W =




(!)

!

;v

�

�

(de�ned in Chapter III).

Also Mathias foring an be written as a two step iteration, where the �rst step

is the foring notion U = hP(!)=�n;�

�

i, where x �

�

y if jx n yj < !.

Fat VI.2.3. The foring notion W is �-losed and if D is W -generi over V, then

Min(D ) is a Ramsey ultra�lter in V[D ℄.

Proof. Let X

1

� X

2

� : : : be a dereasing sequene W -onditions. Choose a

sequene f

i

(i 2 !) of �nite sets of natural numbers, suh that X

i+1

u ff

i

g v X

i

.

De�ne y

0

:= X

0

(0) and y

n

:= X

n

(k) where k := 3 +

S

i<n

(

S

f

i

). Now

Y := fy

i

: i 2 !g [ (! n

[

i2!

y

i

)

is oarser

�

than eah X

i

(i 2 !) and therefore W is �-losed.

Now we laim that the set fMin(X) : X 2 D g is a Ramsey ultra�lter in V[D ℄.

Remember that a foring notion whih is �-losed adds no new reals to V (f. [36,
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Lemma 19.6℄). Take a � 2 2

[!℄

2

and a Y 2 (!)

!

, then by Ramsey's Theorem, for

Min(Y ) 2 [!℄

!

there exists an in�nite r � Min(Y ) suh that � is onstant on [r℄

2

.

Finally let

X :=

�

b : b 2 Y ^ b \ r 6= ;

	

[

[

�

b : b 2 Y ^ b \ r = ;

	

;

then X v Y and Min(X) = r. Thus, H

�

:=

�

X 2 (!)

!

: �j

[Min(X)℄

2

is onstant

	

is

dense in W , and therefore H

�

\D 6= ;. a

Remark 4. It is easy to see that the foring notion U is �-losed. Further we have

that if U is U-generi over V, then U is a Ramsey ultra�lter in V[U ℄.

The foring notion W is stronger than the foring notion U.

Fat VI.2.4. IfU is W -generi, then the set fMin(X) : X 2U g is U-generi.

Proof. Let A � [!℄

!

be a maximal anti-hain in U, i.e., A is a maximal almost

disjoint family. Then the set D

A

:=

�

X 2 W : 9a 2 A(Min(X) �

�

a)

	

is dense in

W . a

We de�ne now the seond step of the two step iteration: Let F � (!)

!

, then the

partial order P

F

is de�ned as follows.

hs;Xi 2 P

F

, X 2 F ^ (s;X)

!

is a dual Ellentuk neighborhood,

hs;Xi � ht; Y i , (s;X)

!

� (t;Y )

!

:

Remark 5. For F � [!℄

!

we an de�ne the partial order P

F

similarly.

Fat VI.2.5. Let

_

U be the anonial W -name for the W -generi objet, then

W � P

_

U

� M

[

:

Proof.

W � P

_

U

=

�


p; h~s;

~

Xi

�

: p 2 W ^ p

W

h~s;

~

Xi 2 P

_

U

	

=

�


p; h~s;

~

Xi

�

: p 2 (!)

!

^ p

W

(

~

X 2

_

U ^ ~s v

~

X)

	

:

Now the embedding

h : M

[

�! W � P

_

U

hs;Xi 7�!




X; h�s;

�

Xi

�

is a dense embedding (see [18℄ De�nition 0.8):

1. It is easy to see that h preserves the order relation �.

2. Let hp; h~s;

~

Xii 2 W � P

_

U

. Beause W is �-losed, there is a ondition q � p,

a segment s 2 (N) and a partition X 2 (!)

!

suh that q

W

�s = ~s ^

�

X =

~

X.

Evidently,




q; h�s;

�

Xi

�

2 W � P

_

U

is stronger than




p; h~s;

~

Xi

�

. Let Z := q uX and

let Z

0

v

�

Z be suh that s v Z

0

, and we have h

�

hs; Z

0

i

�

�




p; h~s;

~

Xi

�

.

a
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Remark 6. Let

_

U be the anonial U-name for the U-generi objet, then U�P

_

U

� M :

The dual Mathias foring is stronger than the Mathias foring.

Fat VI.2.6. The dual Mathias foring adds Mathias reals.

Proof. LetU be W -generi over V; then by Fat VI.2.4, U := fMin(X) : X 2U g

is U-generi over V. Now we de�ne h : P

U

! P

U

as follows.

h : P

U

�! P

U

hs;Xi 7�!




Min(s);Min(X) nMin(s)

�

For h, the following is true:

(i) If q

1

; q

2

2 P

U

, q

1

� q

2

, then h(q

1

) � h(q

2

).

(ii) For all q 2 P

U

and for all p

0

� h(q), there is a q

0

2 P

U

suh that q and q

0

are

ompatible and h(q

0

) � p

0

.

Therefore, with [37℄ Part I, Lemma 2.7 we �nally get V

M

� V

M

[

. a

3. The dual Ramsey property and Suslin's operation

In this setion we will show that the dual Ramsey property is losed under a

generalized Suslin operation. As a orollary we will get the already known result that

analyti sets are ompletely dual Ramsey.

Following Chapter V, letR

[

0

� P

�

(!)

!

�

be the ideal of all ompletely dual Ramsey

null sets. Reall that add(R

[

0

) is the smallest ardinal � suh that there exists a family

Jj = f J

�

2 R

[

0

: � < �g with

S

Jj 62 R

[

0

, and that ov(R

[

0

) is the smallest ardinal

� suh that there exists a family Jj = f J

�

2 R

[

0

: � < �g with

S

Jj = (!)

!

. In

Chapter V (see also [22℄) it is shown that ov(R

[

0

) = add(R

[

0

) = H (where H is the

dual-shattering ardinal) and that H > !

1

is relatively onsistent with ZFC.

Let Seq(�) := �

<!

and for f 2 �

!

and n 2 !, let

�

f(n) denote the �nite sequene




f(0); f(1); : : : ; f(n � 1)

�

. The generalized Suslin operation A

�

(for a ardinal

�) is de�ned as follows:

A

�

�

Q

s

: s 2 Seq(�)

	

:=

[

f2�

!

\

n2!

Q

�

f(n)

;

where Q

s

� (!)

!

for all s 2 Seq(�). In Theorem VI.3.5 below we will show that for

eah ardinal � < H, the ompletely dual Ramsey sets are losed under the operation

A

�

. But �rst we give some other results.

A set R � (!)

!

is dual Ellentuk meager if R is meager with respet to the

dual Ellentuk topology. Remember that a set is dual Ellentuk meager if and only

if it is ompletely dual Ramsey null and a set is ompletely dual Ramsey if and only

if it has the Baire property with respet to the dual Ellentuk topology.

If (s;X)

!

is a dual Ellentuk neighborhood, then we say that R is dual Ellentuk

meager in (s;X)

!

if R \ (s;X)

!

is dual Ellentuk meager. By [11, Theorem 4.1℄, R
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is dual Ellentuk meager in (s;X)

!

if for all (t;Y )

!

� (s;X)

!

there exists a partition

Z 2 (t;Y )

!

suh that (t;Z)

!

\R = ;.

Fix a set R � (!)

!

and let

M :=

[

�

(s;X)

!

: R is dual Ellentuk meager in (s;X)

!

	

:

Further let M(R ) :=M \R . We �rst show the following.

Lemma VI.3.1. If (s;X)

!

is a dual Ellentuk neighborhood suh that (s;X)

!

� M ,

then R is dual Ellentuk meager in (s;X)

!

.

Proof. If (s;X)

!

� M , then (s;X)

!

=

S

�

(t;Y )

!

� (s;X)

!

: R is dual Ellentuk

meager in (t;Y )

!

	

. Let N :=

S

�

(u;Z)

!

� (s;X)

!

: R\(u;Z)

!

= ;

	

. Beause N is an

Ellentuk open set, N is ompletely dual Ramsey. Therefore, for any (t;Y )

!

� (s;X)

!

there exists a partition Y

0

2 (t;Y )

!

suh that (t;Y

0

)

!

� N or (t;Y

0

)

!

\N = ;. If we

are in the latter ase, then beause (t;Y

0

)

!

� (s;X)

!

, we �nd a (u;Y

00

)

!

� (t;Y

0

)

!

suh

that R is dual Ellentuk meager in (u;Y

00

)

!

. Hene, there exists a (u;Z)

!

� (u;Y

00

)

!

suh that (u;Z)

!

\R = ;, whih ontradits (t;Y

0

)

!

\ N = ;. So we are always in

the former ase, whih implies that R is dual Ellentuk meager in (s;X)

!

. a

With this result, we an easily prove the following

Lemma VI.3.2. The set M(R ) is dual Ellentuk meager.

Proof. Take a dual Ellentuk neighborhood (s;X)

!

and let

S :=

[

�

(t;Z)

!

� (s;X)

!

: R is dual Ellentuk meager in (t;Z)

!

	

:

Then S, as the union of open sets, is open and a subset of (s;X)

!

. Beause (s;X)

!

is also losed (in the dual Ellentuk topology), the set C := (s;X)

!

n S is losed. By

[11, Theorem 4.1℄, the sets C and S both are ompletely dual Ramsey. Therefore

we �nd for every (s

0

;X

0

)

!

� (s;X)

!

a partition Y 2 (s

0

;X

0

)

!

suh that (s

0

;Y )

!

� S

or (s

0

;Y )

!

� C. Now if (s

0

;Y )

!

� S, then by Lemma VI.3.1, R is dual Ellentuk

meager in (s

0

;Y )

!

and if (s

0

;Y )

!

� C, then (s

0

;Y )

!

\ M(R ) = ;. To see this,

assume there is an H 2 M(R ) \ (s

0

;Y )

!

. Beause H 2 M(R ) there exists a

dual Ellentuk neighborhood (t;Z)

!

suh that H 2 (t;Z)

!

and R is dual Ellentuk

meager in (t;Z)

!

. Beause H 2 (t;Z)

!

and H 2 (s

0

;Y )

!

there is a dual Ellentuk

neighborhood (u;U)

!

� (t;Z)

!

\ (s

0

;Y )

!

. But with (u;U)

!

� (t;Z)

!

it follows that

R is dual Ellentuk meager in (u;U)

!

and therefore (u;U)

!

� S, a ontradition to

(u;U)

!

� (s

0

;Y )

!

� C.

Therefore, in both ases M(R ) is dual Ellentuk meager in (s

0

;Y )

!

� (s

0

;X

0

)

!

and beause (s;X)

!

and (s

0

;X

0

)

!

� (s;X)

!

were arbitrary, the set M(R ) is dual

Ellentuk meager in eah dual Ellentuk neighborhood. Hene, the set M(R ) is

dual Ellentuk meager. a

Corollary VI.3.3. The set R [

�

(!)

!

nM

�

has the dual Ellentuk Baire property.
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Proof. Beause M is open, (!)

!

nM is losed and R [

�

(!)

!

nM

�

= (R \M) [

�

(!)

!

nM

�

= M(R ) [

�

(!)

!

nM

�

whih is the union of a meager set and a losed

set and therefore has the dual Ellentuk Baire property. a

Theorem VI.3.4. If R � (!)

!

, then we an onstrut a setB � R whih has the

dual Ellentuk Baire property and whenever C �B n R has the dual Ellentuk

Baire property, then C is dual Ellentuk meager.

Proof. LetB := R [ ((!)

!

nM) where M is as above. By Lemma VI.3.2 and

Corollary VI.3.3 we know thatB has the dual Ellentuk Baire property. Now let

C �B n R with the dual Ellentuk Baire property. If C is not dual Ellentuk

meager, then there exists a dual Ellentuk neighborhood (u;U)

!

, suh that (u;U)

!

nC

and therefore (u;U)

!

\R are dual Ellentuk meager. Hene, R is dual Ellentuk

meager in (u;U)

!

and therefore (u;U)

!

�M . Sine (u;U)

!

\C 6= ; and C \M = ;,

there is a Y 2 (u;U)

!

suh that Y 62 M , a ontradition to R is dual Ellentuk

meager in (u;U)

!

. a

Now we an prove the following.

Theorem VI.3.5. Let � < H be a ardinal number and for eah s 2 Seq(�) let

Q

s

� (!)

!

. If all the sets Q

s

are ompletely dual Ramsey, then the set

A

�

fQ

s

: s 2 Seq(�)g

is ompletely dual Ramsey, too.

Proof. Let fQ

s

: s 2 Seq(�)g be a set of ompletely dual Ramsey sets and let

A := A

�

fQ

s

: s 2 Seq(�)g. For two sequenes s and f in �

�!

we write s � f if s is

an initial segment of f . If s 2 �

<!

is a �nite sequene, then jsj denotes the length of

s. Without loss of generality we may assume that Q

s

� Q

t

whenever s � t.

For s 2 Seq(�) let

A

s

:=

[

f2�

!

s�f

\

n2!

n�jsj

Q

�

f(n)

:

In addition we have A

s

� Q

s

, A

s

=

S

�<�

A

s

_

�

and A = A

;

. By Theorem VI.3.4,

for eah s 2 Seq(�) we �nd aB

s

� A

s

whih is ompletely dual Ramsey and if

C �B

s

nA

s

has the dual Ramsey property, then C is dual Ramsey null. Beause

Q

s

� A

s

is ompletely dual Ramsey, we may assume thatB

s

� Q

s

and therefore

A =A

�

�

B

s

: s 2 Seq(�)

	

:

Let B := B

;

. Note that A =

S

�<�

A

h�i

�

S

�<�

B

h�i

, and therefore B �

S

�<�

B

h�i

. Now we show that

B nA �

[

�<�

B

h�i

�

[

f2�

!

\

n2!

B

�

f(n)

�

[

s2Seq(�)

�

B

s

n

[

�<�

B

s

_

�

�

:
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Assume x 62

S

s

�

B

s

n

S

�<�

B

s

_

�

�

. If we have for all � < �, that x 62B

h�i

, then x 62B .

And if there exists an �

0

< � suh that x 2B

h�

0

i

, beause x 62

S

s

�

B

s

n

S

�<�

B

s

_

�

�

we �nd an �

1

suh that x 2B

h�

0

;�

1

i

and �nally we �nd an f 2 �

!

suh that for all

n � !: x 2B

�

f(n)

. But this implies that x 2 A . Now, beause

B

s

n

[

�<�

B

s

_

�

�B

s

n

[

�<�

A

s

_

�

=B

s

nA

s

and beause

S

�<�

B

s

_

�

is the union of less than H ompletely dual Ramsey sets,

B

s

n

S

�<�

B

s

_

�

is ompletely dual Ramsey and as a subset ofB

s

nA

s

, it is ompletely

dual Ramsey null. Therefore,B nA as a subset of the union of less than H ompletely

dual Ramsey null sets is ompletely dual Ramsey null, and beauseB is ompletely

dual Ramsey, A is ompletely dual Ramsey too. a

Remark 7. A similar result holds also for the Ramsey property and is proved by

Matet in [47℄.

As a orollary we get a result whih was �rst proved by Carlson and Simpson

(f. [11℄).

Corollary VI.3.6. Every analyti set is ompletely dual Ramsey.

Proof. This follows from Theorem VI.3.5 and beause eah analyti set A � [!℄

!

an be written as

A = AfQ

s

: s 2 Seq(!)g

where eah Q

s

� [!℄

!

is a losed set in the Baire spae. a

Remark 8. For a similar result see [15℄ or [61℄.

4. Game-families and the foring notion P

F

Firstly we de�ne a game and the orresponding game-families. Seondly we show

that for game-families F , the foring notion P

F

has pure deision and if X is P

F

-

generi and Y 2 (X)

!

, then Y is P

F

-generi, too.

We all a family F � (!)

!

non-prinipal if for all X 2 F there is a Y 2 F

suh that Y v X and :(Y

�

= X). A family F is losed under re�nement if

X v Y and X 2 F implies that Y 2 F . Further, it is losed under �nite

hanges if for all s 2 (N) and X 2 F , s uX 2 F .

In the sequel, F is always a non-prinipal family whih is losed under re�nement

and �nite hanges.

If s 2 (N) and s v X 2 F , then we all the dual Ellentuk neighborhood

(s;X)

!

an F -dual Ellentuk neighborhood and write (s;X)

!

F

to emphasize that

X 2 F . A set O � (!)

!

is alled F -open if O an be written as the union of

F -dual Ellentuk neighborhoods.

Fix a family F � (!)

!

whih is non-prinipal and losed under re�nement and

�nite hanges. Let X 2 F and s 2 (N) be suh that s v X. We assoiate with
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(s;X)

!

F

the following game. This type of game was introdued �rst by Kastanas in

[40℄.

I hX

0

i hX

1

i hX

2

i

: : :

II ht

0

; Y

0

i ht

1

; Y

1

i ht

2

; Y

2

i

All the X

i

of player I and the Y

i

of player II must be elements of the family F .

Player I plays hX

0

i suh that X

0

2 (s;X)

!

F

, then II responds with ht

0

; Y

0

i, where Y

0

2

(s;X

0

)

!

F

, s � t

�

0

� Y

0

and jt

0

j = jsj. (Reall that for s 2 (N), s

�

= s [ ffdom(s)gg.)

For n � 1, the n

th

move of player I is hX

n

i suh that X

n

2 (t

�

n�1

;Y

n�1

)

!

F

and

then player II responds with ht

n

; Y

n

i where Y

n

2 (t

�

n�1

;X

n

)

!

F

, t

�

n�1

� t

�

n

� Y

n

and

jt

n

j = jt

n�1

j + 1. Player I wins i� the only Y with t

n

� Y (for all n) is in F . We

denote this game by G(F ) starting with hs;Xi.

A non-prinipal family F whih is losed under re�nement and �nite hanges is

a game-family if player II has no winning strategy in the game G(F ).

A family F � (!)

!

is alled a �lter if for any X; Y 2 F , also X u Y 2 F .

A �lter whih is also a game-family is alled a game-�lter. Note that (!)

!

is a

game-family but not a game-�lter. It is not known if game-�lters exist under CH, but

as we will see in Theorem VI.5.1, the existene of game-�lters is onsistent with ZFC.

Let O � (!)

!

be an F -open set. Call (s;X)

!

F

good (with respet to O ), if for

some Y 2 (s;X)

!

F

\ F , (s;Y )

!

F

� O ; otherwise all it bad. Note that if (s;X)

!

F

is

bad and Y 2 (s;X)

!

F

\F , then (s;Y )

!

F

is bad, too. We all (s;X)

!

F

ugly if (t

�

;X)

!

F

is bad for all s � t

�

v X with jtj = jsj. Note that if (s;X)

!

F

is ugly, then (s;X)

!

F

is

bad, too.

To prove the following two lemmas, we will follow in fat the proof of Lemma 19.15

in [41℄.

Lemma VI.4.1. Let F be a game-family and O � (!)

!

an F -open set. If (s;X)

!

F

is bad (with respet to O ), then there exists a Z 2 (s;X)

!

F

suh that (s;Z)

!

F

is ugly.

Proof. We begin by desribing a strategy for player II in the game G(F ) starting

with hs;Xi. Let hX

n

i be the n

th

move of player I and t

n

be suh that s � t

n

,

jt

n

j = jsj + n and t

�

n

� X

n

. Let ft

i

n

: i � mg be an enumeration of all t suh that

s � t v t

n

, jtj = jsj and dom(t) = dom(t

n

). Further let Y

�1

:= X

n

. Now hoose for

eah i � m a partition Y

i

2 F suh that Y

i

v Y

i�1

, t

�

n

� Y

i

and ((t

i

n

)

�

;Y

i

)

!

F

is bad

or ((t

i

n

)

�

;Y

i

)

!

F

� O . Finally, let Y

n

:= Y

m

and let player II play ht

n

; Y

n

i.

Beause player II has no winning strategy, player I an play so that the only Y

with t

n

� Y (for all n) belongs to F . Let S

Y

:= ft

�

v Y : s � t ^ jtj = jsjg;

then, beause of the strategy of player II, for all t 2 S

Y

we have either (t

�

;Y )

!

F

is

bad or (t

�

;Y )

!

F

� O . Now let C

0

:= ft 2 S

Y

: (t;Y )

!

F

is badg and C

1

:= ft 2

S

Y

: (t

�

;Y )

!

F

� O g = S

Y

n C

0

. By a result of [29℄ (see also [26, Setion 7℄), there

exists a partition Z 2 (s;Y )

!

F

\ F , suh that S

Z

� C

0

or S

Z

� C

1

. If we are in
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the latter ase, we have (s;Z)

!

F

� O , whih ontradits that (s;X)

!

F

is bad. So we

must have S

Z

� C

0

, whih implies that (s;Z)

!

F

is ugly and ompletes the proof of

the Lemma. a

Lemma VI.4.2. If F is a game-family and O � (!)

!

is an F -open set, then for every

F -dual Ellentuk neighborhood (s;X)

!

F

there exists a Y 2 (s;X)

!

F

\ F suh that

(s;Y )

!

F

� O or (s;Y )

!

F

\ O \ F = ;.

Proof. If (s;X)

!

F

is good, then we are done. Otherwise we onsider the game G(F )

starting with hs;Xi. Let hX

0

i be the �rst move of player I. Beause (s;X

0

)

!

F

is bad,

by Lemma VI.4.1 we an hoose Y

0

2 (s;X

0

)

!

F

\F suh that (s;Y

0

)

!

F

is ugly. Let t

0

be suh that s � t

�

0

� Y

0

and jt

0

j = jsj. Now we hoose Y

0

2 (t

�

0

;Y

0

)

!

F

\F suh that

(t

�

0

;Y

0

)

!

F

is ugly, whih is is possible beause (t

0

;Y

0

)

!

F

is ugly and therefore (t

�

0

;Y

0

)

!

F

is bad. Note that for all t with s � t v t

0

and dom(t) = dom(t

0

) we have (t

�

;Y

0

)

!

F

is

ugly. Now player II plays ht

0

; Y

0

i:

Let hX

n+1

i be the (n+1)

th

move of player I. By the strategy of player II we have

(t

�

;X

n+1

)

!

F

is ugly for all t with s � t v t

n

and dom(t) = dom(t

n

). Let t

n+1

be suh

that jt

n+1

j = jt

n

j + 1 = jsj + n and t

�

n

� t

�

n+1

� X

n+1

. Let ft

i

n+1

: i � mg be an

enumeration of all t suh that s � t v t

n+1

and dom(t) = dom(t

n+1

). Further let

Y

�1

:= X

n+1

. Now hoose for eah i � m a partition Y

i

2 F suh that Y

i

v Y

i�1

,

t

�

n+1

� Y

i

and ((t

i

n+1

)

�

;Y

i

)

!

F

is ugly. (This is possible beause we know that (t

�

;X

k

)

!

F

is ugly for all k � n and t with s � t v t

k

and dom(t) = dom(t

k

), whih implies that

((t

i

n+1

)

�

;X

n+1

)

!

F

is bad.) Finally, let Y

n+1

:= Y

m

and let player II play ht

n+1

; Y

n+1

i.

Beause player II has no winning strategy, player I an play so that the only Y

with t

n

� Y (for all n) belongs to F . We laim that (s;Y )

!

F

\ O \ F = ;: Let

Z 2 (s;Y )

!

F

\O \F . Beause O is F -open we �nd a t � Z suh that (t

�

;Z)

!

F

� O .

Beause t

�

v Y we know by the strategy of player II that (t

�

;Y )

!

F

is bad. Hene,

there is no Z 2 (t

�

;Y )

!

F

suh that (t

�

;Z)

!

F

� O . This ompletes the proof. a

Now we give two properties of the foring notion P

F

, where P

F

is de�ned as in

Setion 2 and F is a game-family. Note that for F = (!)

!

(whih is obviously a

game-family) the foring notion P

F

is the same as dual Mathias foring. First we

show that the foring notion P

F

has pure deision.

Theorem VI.4.3. Let F be a game-family and let � be a sentene of the foring

language P

F

. For any P

F

-ondition (s;X)

!

F

there exists a P

F

-ondition (s;Y )

!

F

�

(s;X)

!

F

suh that (s;Y )

!

F

P

F

� or (s;Y )

!

F

P

F

:�.

Proof. With respet to � we de�ne

O

1

:= fY : (t;Y )

!

F

P

F

� for some t � Y 2 F g

and

O

2

:= fY : (t;Y )

!

F

P

F

:� for some t � Y 2 F g :

Clearly O

1

and O

2

are both F -open and O

1

[ O

2

is even dense (with respet to the

partial order P

F

). Beause F is a game-family, by Lemma VI.4.2 we know that for
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any (s;X)

!

F

2 P

F

there exists Y 2 (s;X)

!

F

\ F suh that either (s;Y )

!

F

� O

1

or

(s;Y )

!

F

\ O

1

\ F = ;. In the former ase we have (s;Y )

!

F

P

F

� and we are done.

In the latter ase we �nd Y

0

2 (s;Y )

!

F

\ F suh that (s;Y

0

)

!

F

� O

2

. (Otherwise

we would have (s;Y

0

)

!

F

\ (O

2

[ O

1

) \ F = ;, whih is impossible by the density of

O

1

[ O

2

.) Hene, (s;Y

0

)

!

F

P

F

:�. a

Let F be a game-family. If G is P

F

-generi, then let X

G

:=

T

G. Now X

G

is an

in�nite partition and G = f(s;Z)

!

F

: s � X

G

v Zg. Therefore we an onsider the

partition X

G

2 (!)

!

as a P

F

-generi objet. Further we have G � P

F

is P

F

-generi

if and only if X

G

2

S

D for all D � P

F

whih are dense in P

F

. Note that if D is

dense in P

F

, then

S

D is F -open.

The next theorem shows in fat that if F is a game-family, then P

F

is proper.

Theorem VI.4.4. Let F � (!)

!

be a game-family. If X

0

2 (!)

!

is P

F

-generi over

V and Y

0

2 (X

0

)

!

\V[X

0

℄, then Y

0

is also P

F

-generi over V.

Proof. Take an arbitrary dense set D � P

F

, i.e., for all (s;X)

!

F

there exists a

(t;Y )

!

F

� (s;X)

!

F

suh that (t;Y )

!

F

2 D. Let D

0

be the set of all (s;Z)

!

F

suh that

(t;Z)

!

F

�

S

D for all t v s with dom(t) = dom(s).

First we show that D

0

is dense in P

F

. For this take an arbitrary (s;W )

!

F

and let

ft

i

: 0 � i � mg be an enumeration of all t 2 (N) suh that t v s and dom(t) =

dom(s). Beause D is dense in P

F

and

S

D is F -open, we �nd for every t

i

aW

0

2 F

suh that t

i

v W

0

and (t

i

;W

0

)

!

F

�

S

D. Moreover, if we de�ne W

�1

:= W , we an

hoose for every i � m a partition W

i

2 F suh that W

i

v W

i�1

, s � W

i

and

(t

i

;W

i

)

!

F

�

S

D. Now (s;W

m

)

!

F

2 D

0

and beause (s;W

m

)

!

F

� (s;W )

!

F

, D

0

is dense

in P

F

.

Sine D

0

is dense and X

0

2 (!)

!

is P

F

-generi, there exists a (s;Z)

!

F

2 D

0

suh

that s � X

0

v Z. Beause Y

0

2 (X

0

)

!

we have t � Y

0

v Z for some t v s and

beause (t;Z)

!

F

�

S

D, we get Y

0

2

S

D. Hene, Y

0

2

S

D for every dense D � P

F

,

whih ompletes the proof. a

Remark 9. Similar results are proved in [49℄ and [48℄.

5. On dual Mathias foring and game-�lters

In this setion we show that it is onsistent with ZFC that game-�lters exist.

Further we show that the dual Mathias foring M

[

is �exible and with this result we

an prove that if V is �

1

4

-M

[

-absolute, then !

V

1

is inaessible in L, where L denotes

Gödel's onstrutible universe.

In the sequel, let W be the foring notion we de�ned in setion 2.

Theorem VI.5.1. IfU is W -generi over V, thenU is a game-�lter in V[U ℄ with

respet to the game G(U ).

Proof. BeauseU is W -generi over V, we know thatU � (!)

!

is a non-prinipal

family in V[U ℄ whih is losed under re�nement and �nite hanges, and for X; Y 2U
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we also have X u Y 2U . It remains to show that player II has no winning strategy

in the game G(U ).

Let ~� be a W -name for a strategy for player II in the game G(

_

U ), where

_

U is the

anonial W -name for the W -generi objet. Let us assume that player II will follow

this strategy. We may assume that

1

W

\~� is a strategy for II in the game G(

_

U )":

If

Z

W

~�(h

~

X

0

i; h

~

t

0

;

~

Y

0

i; : : : ; h

~

X

n

i) = h

~

t

n

;

~

Y

n

i;

then for n � 1 we get

Z

W

(j

~

t

n

j = j

~

t

n�1

j+ 1 ^

~

t

�

n�1

�

~

t

�

n

�

~

Y

n

v

~

X

n

^

~

Y

n

2

_

U )

and for n = 0 we have

Z

W

(j

~

t

0

j = j~sj ^ ~s �

~

t

�

0

�

~

Y

0

v

~

X

0

v

~

X ^

~

Y

0

2

_

U ) ;

where h~s;

~

Xi is the starting point of G(

_

U ).

Now let h~s;

~

Xi (the starting point of the game G(

_

U )) be suh that (~s;

~

X)

!

is a

W -name for a dual Ellentuk neighborhood and let Z

0

2 (!)

!

\V be a W -ondition

in V suh that Z

0 W

~

X 2

_

U . Therefore, Z

0 W

\(~s;

~

X)

!

is a

_

U -dual Ellentuk

neighborhood". By Fat VI.2.3 we know that the foring notion W adds no new reals

(and therefore no new partitions) to V. So, we �nd a Z

0

0

v

�

Z

0

and a dual Ellentuk

neighborhood (s;X)

!

in V suh that

Z

0

0

W

h~s;

~

Xi = h�s;

�

Xi ;

where �s and

�

X are the anonial W -names for s and X. Beause Z

0

0

W

�

X 2

_

U ,

we must have Z

0

0

� X, whih is the same as Z

0

0

v

�

X. Finally put X

0

2 (!)

!

suh

that X

0

�

= Z

0

0

and X

0

2 (s;X)

!

. Player I plays now h

�

X

0

i. Sine player II follows the

strategy ~�, player II plays now ~�(h

�

X

0

i) =: h

~

t

0

;

~

Y

0

i. Again by Fat VI.2.3 there exists

a Z

1

v

�

X

0

and a dual Ellentuk neighborhood (t

0

;Y

0

)

!

in V suh that

Z

1 W

h

~

t

0

;

~

Y

0

i = h

�

t

0

;

�

Y

0

i :

And again by Z

1 W

�

Y

0

2

_

U we �nd X

1

�

= Z

1

suh that t

�

0

� X

1

v Y

0

. Player I plays

now h

�

X

1

i.

In general, if ~�(h

~

X

0

i; h

~

t

0

;

~

Y

0

i; : : : ; h

~

X

n

i) = h

~

t

n

;

~

Y

n

i, then player I an play

�

X

n+1

suh that X

n W

h

~

t

n

;

~

Y

n

i = h

�

t

n

;

�

Y

n

i and t

�

n

� X

n+1

v Y

n

. For n � m we also have

X

n

v X

m

. Let Y 2 (!)

!

be the suh that t

n

� Y (for all n), then

Y

W

\the only

~

Y suh that

~

t

n

�

~

Y (for all n) is in

_

U ":

Hene, the strategy ~� is not a winning strategy for player II and beause ~� was an

arbitrary strategy, player II has no winning strategy at all. a

Remark 10. A similar result is proved in [49℄ (see also [47℄).
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As a orollary we get that the foring notion P

U

, whereU is W -generi over V,

has pure deision in V[U ℄.

Corollary VI.5.2. LetU be W -generi over V. Then the foring notion P

U

has

pure deision in V[U ℄.

Proof. This follows from Theorem VI.4.3 and Theorem VI.5.1. a

Corollary VI.5.2 follows also from the fats that the dual Mathias foring has pure

deision (f. [11℄) and that it an be written as a two step iteration as in setion 2.

Remark 11. If U is U-generi over V, then P

U

has pure deision in V[U ℄ (f. [49℄).

6. More properties of M

[

Let P be a notion of foring in the model V. We say that V is �

1

n

-P-absolute if

for every �

1

n

-sentenes � with parameters in V the following holds for any G whih

is P-generi over V:

V j= � if and only if V[G℄ j= � :

Now we will show that if V is �

1

4

-M

[

-absolute, then !

V

1

is inaessible in L. For

this we �rst will translate the dual Mathias foring in a tree foring notion.

If s 2 (N), then s is a partition of some natural number n 2 ! and therefore s is

a �nite set of �nite sets of natural numbers. Let t be a �nite set of natural numbers,

then ℄t is suh that for all k 2 ! we have div(℄t; 2

k

) is odd , k 2 s. Remember that

div(n;m) := maxfk 2 ! : k �m � ng. Now, let ℄s be suh that for all k 2 !:

div(℄s; 2

k

) is odd , k = ℄t for some t 2 s :

In fat, ℄s is de�ned for any �nite set of �nite sets of natural numbers. If s 2 (N),

then jsj denotes the ardinality of s, whih is the number of bloks of s.

For s 2 (N) with jsj = k let �s be the �nite sequene hn

1

; : : : ; n

k

i where n

i

:= ℄s

i

and s

i

2 (N) is suh that js

i

j = i and s

�

i

� s

�

.

Now let p = (s;X)

!

be an M

[

-ondition. Without loss of generality we may

assume that s

�

v X. The tree T

p

� !

<!

is de�ned as follows.

� 2 T

p

, 9t 2 (N)

�

(t

�

� s

�

_ s � t) ^ t

�

v X ^ � =

�

t

�

:

Fat VI.6.1. Let p; q be two M

[

-onditions. Then T

p

is a subtree of T

q

if and only if

p � q.

Finally let T

M

[

:= fT

p

: p 2 M

[

g; then T

M

[

is a set of trees. We stipulate that

T

p

� T

q

if T

p

is a subtree of T

q

. Then (by Fat VI.6.1) foring with T

M

[

:= hT

M

[

;�i

is the same as foring with M

[

.

Now we will give the de�nition of a �exible foring notion P. But �rst we have to

give some other de�nitions.

A set T � !

<!

is alled a Laver-tree if

T is a tree and 9� 2 T 8� 2 T

�

� � � _ (� � � ^ jfn : �

_

n 2 Tgj = !)

�

:
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We all � the stem of T . For � 2 T we let su

T

(�) := fn : �

_

n 2 Tg, the

suessors of � in T , and T

%

:= f� 2 T : � � % ^ % � �g.

For a Laver-tree T , we say A � T is a front if � 6= � in A implies � 6� � and for

all f 2 [T ℄ there is an n 2 ! suh that f j

n

2 A.

The meaning of p � [[�℄℄ and p \ [[�℄℄ are U

p

� [[�℄℄ and U

p

\ [[�℄℄, respetively.

(i) We say a foring notion P is Laver-like if there is a P-name ~r for a dominating

real suh that

(i) the omplete Boolean algebra generated by the family

�

[[~r(i) = n℄℄ : i; n 2 !

	

equals r.o.(P), and

(ii) for eah ondition p 2 P there exists a Laver-tree T � !

<!

so that for all

� 2 T we have:

p(T

�

) :=

Y

n2!

X

�2T

�

�

p \ [[~rj

lg(�)

= � ℄℄ : lg(�) = n

	

2 r.o.(P) n f0g :

We express this by saying p(T ) 6= ;, where p(T ) := p(T

stem(T )

).

(ii) If ~r is a P-name that witnesses that P is Laver-like, we say that P has strong

fusion if for ountably many open dense sets D

n

� P and for p 2 P, there is a

Laver-tree T suh that p(T ) 6= ; and for eah n the set

�

� 2 T : p(T ) \ [[~rj

lg(�)

= �℄℄ 2 D

n

	

ontains a front.

(iii) A Laver-like P is losed under �nite hanges if given p 2 P and Laver trees

T and T

0

so that for all � 2 T

0

, if p(T ) 6= ; then jsu

T

(�) n su

T

0

(�)j < !, then

p(T

0

) 6= ;, too.

We all a foring notion P �exible, if P is Laver-like, has strong fusion and is

losed under �nite hanges.

With this de�nition we an show � as a further symmetry between the foring

notions M and M

[

� that dual Mathias foring M

[

is �exible.

Lemma VI.6.2. The dual Mathias foring M

[

is �exible.

Proof. Sine M

[

� T

M

[

, it is enough to prove that the foring notion T

M

[

is �exible.

Let ~r be the anonial T

M

[

-name for the T

M

[

-generi objet. By the de�nition of the

funtion �℄� and the onstrution of T

M

[

, ~r is a name for a dominating real. The rest

of the proof is similar to the proof that Mathias foring is �exible, whih is given in

[25℄. a

Let W be a submodel of V. If all �

1

n

-sets in V with parameters in V \W

have the Ramsey property R or the dual Ramsey property R

[

, then we write V j=

�

1

n

(R)

W

and V j= �

1

n

(R

[

)

W

, respetively. If V =W, then we omit the index W.

The notations for �

1

n

-sets and �

1

n

-sets are similar. Further, B stands for the Baire

property and L stands for Lebesgue measurability.

Now we an prove the following
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Theorem VI.6.3. If V is �

1

4

-M

[

-absolute, then !

V

1

is inaessible in L.

Proof. To prove the orresponding result for Mathias foring (f. [25℄), one uses

only that M is �exible and that, if V is �

1

4

-M -absolute, then V j= �

1

2

(R), whih

is the same as �

1

3

-M -absoluteness (f. [25, Theorem 4.1℄). Therefore, it is enough to

prove that �

1

3

-M

[

-absoluteness implies �

1

3

-M -absoluteness. It follows immediately

from Fat VI.2.6 that V � V

M

� V

M

[

, and sine �

1

3

-formulas are upwards absolute,

this ompletes the proof. a

7. Iteration of dual Mathias foring

In this setion we will build two models in whih every �

1

2

-set is dual Ramsey. In

the �rst model  = !

1

and in the seond model  = !

2

. With the result that dual

Mathias foring has the Laver property we further an show that �

1

2

(R

[

) implies

neither �

1

2

(L) nor �

1

2

(B), but �rst we give a result similar to Theorem 1.15 of [39℄.

Lemma VI.7.1. LetU be W -generi over V. If X

G

is P

U

-generi over V[U ℄, then

V[U ℄[X

G

℄ j= �

1

2

(R

[

)

V

.

Proof. Let

_

X

G

be the anonial name for the P

U

-generi objet X

G

over V[U ℄ and

let '(Y ) be a �

1

2

-formula with parameters in V. By Theorem VI.5.1 and Corol-

lary VI.5.2, the foring notion P

U

has pure deision. So, there exists a P

U

-ondition

p 2 V[U ℄ with empty stem, or in other words, there is a p 2 U so that V[U ℄j=

\p

P

U

'(

_

X

G

)" or V[U ℄j= \p

P

U

:'(

_

X

G

)". Assume the former ase holds. Be-

ause X

G

v

�

q for all q 2 U , there is an f 2 [!℄

<!

suh that X

G

u ffg v p.

By Theorem VI.5.1 and Theorem VI.4.4 we know that if X is P

U

-generi over V[U ℄

and X

0

2 (X)

!

\ V[U ℄[X

G

℄, then X

0

is also P

U

-generi over V[U ℄. Hene, every

X

0

G

v X

G

u ffg v p is P

U

-generi over V[U ℄ and therefore V[U ℄[X

0

G

℄ j= '(X

0

G

).

Beause �

1

2

-formulas are absolute we get V[U ℄[X

G

℄ j= '(X

0

G

). Thus, V[U ℄[X

G

℄ j=

9X 8Y 2 (X)

!

�

'(Y )

�

. The ase when V[U ℄j= \p

P

U

:'(

_

X

G

)" is similar. Hene,

we �nally have V[U ℄[X

G

℄ j= �

1

2

(R

[

)

V

. a

Remark 12. The proof of the analogous result an be found in [39℄.

Beause Gödel's onstrutible universe L has a �

1

2

-well-ordering of the reals, L

is neither a model for �

1

2

(R

[

) nor a model for �

1

2

(R). But we an build a model in

whih  = !

1

and all �

1

2

-sets are dual Ramsey.

Theorem VI.7.2. After an !

1

-iteration of dual Mathias foring with ountable sup-

port starting from L, we get a model in whih every �

1

2

-set of reals is dual Ramsey

and  = !

1

.

Proof. The proof follows immediately from Fat VI.2.5, Lemma VI.7.1 and the fat

that dual Mathias foring is proper. a

Remark 13. The proof of a similar result an be found in [38℄.
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We an build also a model in whih all �

1

2

-sets are dual Ramsey and in whih

 = !

2

.

Theorem VI.7.3. After an !

2

-iteration of dual Mathias foring with ountable sup-

port starting from L, we get a model in whih every �

1

2

-set of reals is dual Ramsey

and  = !

2

.

Proof. In Chapter V (see also [22℄) it was shown that an !

2

-iteration of dual Mathias

foring with ountable support starting from L yields a model in whih  = !

2

and the union of fewer than !

2

ompletely dual Ramsey sets is ompletely dual

Ramsey. Now beause eah �

1

2

-set an be written as the union of !

1

analyti sets,

and beause analyti sets are ompletely dual Ramsey, all �

1

2

-sets are dual Ramsey

in that model. a

Remark 14. A similar result is true beause an !

2

-iteration of Mathias foring with

ountable support starting from L yields a model in whih h = !

2

(f. [63℄), and h an

be onsidered as the additivity of the ideal of ompletely Ramsey null sets (f. [54℄).

For the next result we have to give �rst the de�nition of the Laver property: A

one

�

A is a sequene hA

k

: k 2 !i of �nite subsets of ! with jA

k

j < 2

k

. We say

that

�

A overs a funtion f 2 !

!

if for all positive k 2 ! we have f(k) 2 A

k

. For a

funtion H 2

!

!, we write �H for the set

�

f 2 !

!

: 8k > 0

�

f(k) < H(k)

�	

. Now,

a foring notion P is said to have the Laver property i� for every H 2

!

! in V,

1

P

\8f 2 �H 9

�

A 2 V(

�

A is a one overing f)":

Like Mathias foring, dual Mathias foring has the Laver property and therefore

adds no Cohen reals (f. [18℄ or [3℄).

Lemma VI.7.4. The foring notion M

[

has the Laver property.

Proof. Given f;H 2

!

! suh that for all k > 0, f(k) < H(k). Let hs;Xi be any

M

[

-ondition. Beause M

[

has pure deision and f(1) < H(1), we �nd a Y

0

2 (s;X)

!

suh that hs; Y

0

i deides f(1). Set s

0

:= s. Suppose we have already onstruted

s

n

2 (N) and Y

n

2 (!)

!

suh that s � s

n

, js

n

j = jsj + n and (s

n

;Y

n

)

!

is a dual

Ellentuk neighborhood. Choose Y

n+1

2 (s

n

;Y

n

)

!

suh that for all h 2 (N) with

s � h v s

n

and dom(h) = dom(s

n

), hh; Y

n+1

i deides f(k) for all k < 2

n+1

. Further,

let s

n+1

2 (N) be suh that s

n

� s

n+1

, js

n+1

j = js

n

j+1 = jsj+n+1 and s

n+1

� Y

n+1

.

Finally, let Y be the unique partition suh that for all n 2 !, s

n

� Y . Evidently, the

M

[

-ondition hs; Y i is stronger than the given M

[

-ondition hs;Xi (or equal). Now,

if k; n 2 ! suh that 2

n

� k < 2

n+1

, then let fh

j

: j � mg be an enumeration of all

s � h v s

n

with dom(h) = dom(s

n

). It is lear that m < 2

2

n

. Further, let

A

k

:=

�

l 2 ! : 9j � m

�

hh

j

; Y i

M

[

f(k) = l

�	

;

then jA

k

j � m < 2

2

n

, and beause 2

n

� k we have jA

k

j < 2

k

. If we de�ne A

0

:=

�

l 2

! : hs; Y i

M

[

f(0) = l

	

, then the M

[

-ondition hs; Y i fores that

�

A := hA

k

: k 2 !i

is a one for f . a
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Using these results we an prove the following

Theorem VI.7.5. �

1

2

(R

[

) implies neither �

1

2

(L) nor �

1

2

(B).

Proof. Beause a foring notion with the Laver property adds no Cohen reals and

beause the Laver property is preserved under ountable support iterations of proper

forings (with the Laver property), in the model onstruted in Theorem VI.7.2 no

real is Cohen over L. Therefore, in that model �

1

2

(B) fails, and beause �

1

2

(L)

implies �

1

2

(B) (f. [38℄), also �

1

2

(L) must fail in that model. a

Remark 15. For the analogous result see [39℄.

8. Appendix: On the dual Ramsey property of projetive sets

Although the Ramsey property and the dual Ramsey property are very similar,

one an show that the two Ramsey properties are di�erent.

Theorem VI.8.1. Using the axiom of hoie one an onstrut a set whih is Ramsey

but not dual Ramsey.

Proof. We will onstrut a set R � [!℄

!

whih is Ramsey but not dual Ramsey.

Remember that the relation \

�

= " is an equivalene-relation on (!)

!

, whereX

�

= Y

if and only if there are f; g 2 [!℄

<!

suh that X u ffg v Y and Y u fgg v X.

For X 2 (!)

!

, let fX

�

denote the equivalene lass of X. Now, hoose from eah

equivalene lass X

�

an element A

X

and for X 2 (!)

!

let

h

X

:= min

�

jf j+ jgj : f; g 2 [!℄

<!

and X u ffg v A

X

and A

X

u fgg v X

	

:

Further, de�ne a funtion F : (!)

!

! f0; 1g by stipulating

F (X) :=

�

1 if h

X

is odd,

0 otherwise.

Then the set fX 2 (!)

!

: F (X) = 1g is obviously not dual Ramsey and therefore,

the set R :=

�

x 2 [!℄

!

: 9X 2 (!)

!

�

x = p(X)^ F (X) = 1

�	

is not dual Ramsey as

well.

Now, de�ne r := f&fk; k + 1g : k 2 !g, where �&� as in Setion 2, then p(r) =

�

f!g

	

62 (!)

!

and hene, [r℄

!

\ R = ;. So, the set R is Ramsey. a

On the other hand, for projetive sets one an show that the dual Ramsey property

is stronger than the Ramsey property.

Lemma VI.8.2. If V j= �

1

n

(R

[

), then V j= �

1

n

(R).

Proof. Given a �

1

n

-formula '(x) with parameters in V. Let  (y) be de�ned as

follows:

 (y) () 9x

�

x = Min

�

p(y)

�

^ '(x)

�

:

It is easy to see that  (y) is also a �

1

n

-formula (even with the same parameters as

'). Now, if there is an X 2 (!)

!

suh that for all Y 2 (X)

!

,  

�

p(Y )

�

holds, then
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for all y 2 [x℄

!

where x = Min(X), '(y) holds. The ase where for all Y 2 (X)

!

,

: 

�

p(Y )

�

holds, is similar. a

In [11, Setion 5℄, Carlson and Simpson prove that in the Solovay model, on-

struted by ollapsing an inaessible ardinal to !

1

, every projetive set is dual

Ramsey (it is unknown whether the inaessible ardinal is neessary for that).

Another question onneted to the dual Ramsey property of projetive sets is the

following. As with the standard Ramsey property we an ask whether an appropriate

amount of determinay implies the dual Ramsey property. As usually with regularity

properties of sets of reals we would expet that Det(�

1

n

) implies the dual Ramsey

property for all �

1

n+1

sets. But a diret impliation using determinay is not as easy

as with the more prominent regularity properties (as Lebesgue measurability and

the Baire property) sine the games onneted to the dual Ramsey property (the

Banah-Mazur games in the dual Ellentuk topology) annot be played using natural

numbers.

The same problem had been enountered with the lassial Ramsey property and

had been solved by Leo Harrington and Alexander Kehris in [33℄ by making use of

the sale property and the periodiity theorems. They showed the following.

Proposition VI.8.3. If Det(�

1

2n+2

), then every �

1

2n+2

-set is Ramsey.

Using the tehniques of Harrington and Kehris, Benedikt Löwe ould strengthen

their result and prove the following (see [26, Setion 6℄).

Proposition VI.8.4. If Det(�

1

2n+2

), then every �

1

2n+2

-set is dual Ramsey.



CHAPTER VII

Ramseyan Ultra�lters and Dual Mathias Foring

In this hapter we investigate families of partitions whih are related to speial

oideals, so-alled happy families, and give a dual form of Ramsey ultra�lters in terms

of partitions. The ombinatorial properties of these partition-ultra�lters, whih we

all Ramseyan ultra�lters, are similar to those of Ramsey ultra�lters. For example

it will be shown that dual Mathias foring restrited to a Ramseyan ultra�lter has

the same features as Mathias foring restrited to a Ramsey ultra�lter. Further we

introdue an ordering on the set of partition-�lters and onsider the dual form of

some ardinal harateristis of the ontinuum.

1. Introdution

The Stone-�eh ompati�ation �! of the natural numbers, or equivalently, the

ultra�lters over !, is a well-studied spae (f. e.g. [66℄ and [14℄) whih has a lot of

interesting topologial and ombinatorial features (f. [34℄ and [64℄). In the late

1960's, a partial ordering on the non-prinipal ultra�lters �!n!, the so-alled Rudin-

Keisler ordering, was established and �small� points with respet to this ordering

were investigated rigorously (f. [8℄, [5℄, [6℄ and [45℄). The minimal points have a

nie ombinatorial haraterization whih is related to Ramsey's Theorem (f. [57,

Theorem A℄) and so, the ultra�lters whih are minimal with respet to the Rudin-

Keisler ordering are also alled Ramsey ultra�lters (for further haraterizations of

Ramsey ultra�lters see [3, Chapter 4.5℄). Families, not neessarily �lters, having sim-

ilar ombinatorial properties as Ramsey ultra�lters, are the so-alled happy families

(f. [49℄), whih are very important in the investigation of Mathias foring (f. [49℄).

In the sequel we will introdue an ordering on the set of partition-�lters whih

is similar to the Rudin-Keisler ordering on �! n ! and introdue a partition form of

Ramsey ultra�lters, so-alled Ramseyan ultra�lters. Further we will investigate dual

Mathias foring restrited to Ramseyan ultra�lters and onsider the dual form of some

ardinal harateristis of the ontinuum whih are related to Ramseyan ultra�lters.

2. An ordering on the set of partition-�lters

Following Chapter III, let PF

�

(!)

�!

�

denote the set of all partition-�lters. We

de�ne a partial ordering on PF

�

(!)

�!

�

whih has some similarities with the Rudin-

Keisler ordering on �! n !.

61
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To keep the notation short, for H � P

�

P(!)

�

and a funtion f : ! ! ! we

de�ne

f

�1

(H ) := ff

�1

(X) : X 2 H g ;

where for X 2 H we de�ne

f

�1

(X) := ff

�1

(b) : b 2 Xg ;

where for b � !, f

�1

(b) := fn : f(n) 2 bg.

Let f : ! � ! be any surjetion from ! onto ! and let X 2 (!)

�!

be any

partition. Then f(X) denotes the �nest partition suh that whenever n and m lie in

the same blok of X, then f(n) and f(m) lie in the same blok of f(X).

For any partition-�lter F 2 PF

�

(!)

�!

�

de�ne

f(F ) :=

�

Y 2 (!)

�!

: 9X 2 F

�

f(X) v Y

�	

:

We de�ne the ordering �.� on PF

�

(!)

�!

�

as follows:

F .G if and only if F = f(G ) for some surjetion f : ! � ! :

Sine the identity map is a surjetion and the omposition of two surjetions is again

a surjetion, the partial ordering �.� is re�exive and transitive.

Fat VII.2.0.1. Let F ;G 2 PF

�

(!)

�!

�

and assume f(G ) = F for some surjetion

f : ! � !. Then G � f

�1

(F ) and f

�1

(F ) 2 PF

�

(!)

�!

�

.

Proof. Let H = f

�1

(F ), where f : ! � ! is suh that f(G ) = F . Sine F is

a partition-�lter and f is a funtion, for any X

1

; X

2

2 F we have X

1

uX

2

2 F and

f

�1

(X

1

uX

2

) = f

�1

(X

1

) u f

�1

(X

2

), and therefore, H is a partition-�lter. Further,

for any Y 2G we get f(Y ) 2 F and f

�1

(f(Y )) v Y , whih implies G � H . a

The ordering �.� indues in a natural way an equivalene relation �'� on the set of

partition-�lters PF

�

(!)

�!

�

:

F 'G if and only if F .G and G .F :

So, the ordering �.� indues a partial ordering of the set of equivalene lasses of

partition-�lters. Conerning partition-ultra�lters, we get the following.

Fat VII.2.0.2. LetU ;V 2 PUF

�

(!)

�!

�

and assume thatU is prinipal or ontains

a partition, all of whose bloks are in�nite. IfU 'V , then there is a permutation

h of ! suh that h(U ) =V .

Proof. BeauseU .V andV .U , there are surjetions f and g from ! onto !

suh thatV = f(U ) andU = g(V ), and beauseU andV are both partition-

ultra�lters, by Fat VII.2.0.1 we getU = f

�1

(V ) andV = g

�1

(U ).

First assume that U is prinipal and therefore ontains a 2-blok partition X =

fb

0

; b

1

g. Beause g

�1

(X) 2V , the partition-ultra�lterV is also prinipal and we

get

V =

�

Y 2 (!)

�!

: g

�1

(X) v Y

	

;
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where

g

�1

(X) =

�

g

�1

(b

0

); g

�1

(b

1

)

	

=: f

0

; 

1

g :

Now, beauseU = f

�1

(V ), we must have f

�1

�

g

�1

(X)

�

= X, whih implies that

f

�1

�

g

�1

(b

i

)

�

2 fb

0

; b

1

g (for i 2 f0; 1g). If one of the bloks of X is �nite, say b

0

, then

f j

b

0

as well as gj

f(b

0

)

must be one-to-one, and therefore, b

0

has the same ardinality

as 

0

. Hene, no matter if one of the bloks of X is �nite or not, we an de�ne a

permutation h of ! suh that h(b

0

) = 

0

and h(b

1

) = 

1

, whih implies h(U ) =V .

Now assume thatU ontains a partition X = fb

i

: i 2 !g, all of whose bloks b

i

are

in�nite. Beause g is a surjetion, g

�1

(X), whih is a member ofV , is a partition, all

of whose bloks are in�nite. Let h be a permutation of ! suh that h(b

i

) = g

�1

(b

i

).

Take any Y 2V with Y v g

�1

(X). By the de�nition of h we have h

�1

(Y ) = g(Y )

and sineU = g(V ) there is a Z 2U suh that g(Y ) = Z, whih implies h(Z) = Y ,

hene, h(U ) =V . a

The following proposition shows that �.� is direted upward (for a similar result

onerning the Rudin-Keisler ordering see [5, p. 147℄).

Fat VII.2.0.3. For any partition-�ltersD ;E 2 PF

�

(!)

�!

�

, there is a partition-�lter

F 2 PF

�

(!)

�!

�

, suh that D .F and E .F .

Proof. Let %

1

and %

2

be two funtions from ! into ! de�ned by %

1

(n) := 2n and

%

2

(n) := 2n+1. For a partition X and i 2 f0; 1g, let %

i

(X) := f%

i

(b) : b 2 Xg, where

%

i

(b) := f%

i

(n) : n 2 bg. Now, take any two partition-�lters D ;E 2 PF

�

(!)

�!

�

and

de�ne F by

F :=

�

%

1

(X) [ %

2

(Y ) : X 2 D ^ Y 2 E

	

:

Clearly, this de�nes a partition-�lter. De�ne two surjetions f and g from ! onto !

as follows:

f(n) =

(

n

2

if n is even,

0 otherwise.

g(n) =

(

n�1

2

if n is odd,

0 otherwise.

It is easy to verify that f(F ) = D and g(F ) = E , whih implies D .F and

E .F . a

3. Ramseyan ultra�lters

3.1. Coloring segments. For the reader's onveniene, let us reall some de�ni-

tions: For n 2 !, (!)

n�

denotes the set of all u 2 (N) suh that juj = n. Further, for

n 2 ! and X 2 (!)

!

let

(X)

n�

:=

�

u 2 (N) : juj = n ^ u

�

v X

	

;
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and if s 2 (N) is suh that jsj � n and s v X, let

(s;X)

n�

:=

�

u 2 (N) : juj = n ^ s � u ^ u

�

v X

	

:

Let us state again Theorem IV.2.1:

Proposition VII.3.1.1. For any oloring of (!)

(n+1)�

with r+1 olors, where r; n 2 !,

and for any Z 2 (!)

!

, there is an in�nite partition X 2 (Z)

!

suh that (X)

(n+1)�

is

monohromati.

As we have seen in Chapter IV, this ombinatorial result �whih an also be de-

rived from [11, Theorem 1.2℄ � is the partition form of Ramsey's Theorem.

We say that a surjetion f : ! � ! respets the partition X 2 (!)

!

, if we

have f

�1

(f(X)) = X, otherwise, we say that it disregards the partition X. If

f

�1

(f(X)) = f!g, then we say that f ompletely disregards the partition X.

Lemma VII.3.1.2. For any surjetion f : ! � ! and for any Z 2 (!)

!

, there is an

X 2 (Z)

!

suh that f either respets or ompletely disregards the partition X.

Proof. For a surjetion f : ! � !, de�ne the oloring � : (!)

2�

! f0; 1g as follows.

�(s) := 0 if and only if f(s(0)) \ f(s(1)) = ;. By Proposition VII.3.1.1, there is

a partition X 2 (Z)

!

suh that (X)

2�

is monohromati with respet to �, whih

implies that f respets X in ase of �j

(X)

2�

= f0g, and f ompletely disregards X is

ase of �j

(X)

2�

= f1g. a

In the sequel we will use a slightly stronger version of Proposition VII.3.1.1, whih is

given in the following two orollaries.

Corollary VII.3.1.3. For any oloring of (!)

(n+k+1)�

with r+1 olors, where r; n; k 2

!, and for any dual Ellentuk neighborhood (s; Y )

!

, where jsj = n + 1, there is an

in�nite partition X 2 (s; Y )

!

suh that (s;X)

(n+k+1)�

is monohromati.

Proof. Let (s; Y )

!

be any dual Ellentuk neighborhood, with jsj = n + 1 � 1. Set

Y

0

:= suY , R :=

S

i<n+1

Y

0

(i) and Y

R

:= Y

0

nfY

0

(i) : i < n+1g, and take any order-

preserving bijetion f : ! nR! !. Then Z := f(Y

R

) is an in�nite partition of !. For

u 2 (Z)

n+k+1�

we de�ne �(u) 2 (s; Y )

n+k+1�

as follows. dom(�(u)) := f

�1

(dom(u))

and for i < n+ k + 1,

�(u)(i) :=

(

�

Y

0

(i) \ dom(u)

�

[ f

�1

(u(i)) for i < n+ 1,

f

�1

(u(i)) otherwise.

Let � : (!)

(n+k+1)�

! r + 1 be any oloring. De�ne � : (!)

(n+k+1)�

! r + 1 by

stipulating �(u) := �(�(u)). By Proposition VII.3.1.1 there is an in�nite partition

X

0

2 (Z)

!

suh that (X

0

)

n+k+1�

is monohromati with respet to the oloring � .

Now let X 2 (!)

!

be suh that

X(i) :=

(

Y

0

(i) [ f

�1

(X

0

(i)) for i < n+ 1

f

�1

(X

0

(i)) otherwise.
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Then, by de�nition of � and X

0

, X 2 (s; Y )

!

and (s;X)

(n+k+1)�

is monohromati

with respet to �. a

Corollary VII.3.1.4. For any oloring of

S

n2!

(!)

(n+k+1)�

with r + 1 olors, where

r; k 2 !, and for any Z 2 (!)

!

, there is an in�nite partition X 2 (Z)

!

suh that for

any n 2 ! and for any s � X with jsj = n+ 1, (s;X)

(n+k+1)�

is monohromati.

Proof. Using Corollary VII.3.1.3 repeatedly, we an onstrut the partition X 2

(!)

!

straight forward by indution on n. a

We say that a family C � (!)

!

has the segment-oloring-property, if for every

oloring of

S

n2!

(!)

(n+k+1)�

with r + 1 olors, where r; k 2 !, and for any Z 2 C ,

there is an in�nite partition X 2 (Z)

!

\ C , suh that for any n 2 ! and for any

s � X with jsj = n+ 1, (s;X)

(n+k+1)�

is monohromati.

If a partition-ultra�lterU 2 PUF

�

(!)

!

�

has the segment-oloring-property, then

it is alled a Ramseyan ultra�lter.

The next lemma shows that every partition-�lter F 2 PF

�

(!)

!

�

whih has the

segment-oloring-property is a partition-ultra�lter. A similar result we have for Ram-

sey �lters over !, sine every Ramsey �lter is an ultra�lter.

Lemma VII.3.1.5. If F � (!)

!

is a partition-�lter whih has the segment-oloring-

property, then F � (!)

!

is a partition-ultra�lter.

Proof. Take any Z 2 (!)

!

suh that for any X 2 F , Z u X 2 (!)

!

. De�ne the

oloring � : (!)

2�

! f0; 1g by stipulating �(u) = 0 if and only if u 2 (Z)

2�

. Beause

F has the segment-oloring-property, there is a partition X 2 F suh that (X)

2�

is

monohromati with respet to �, whih implies that X v Z in ase of �j

(X)

2�

= f0g,

and X u Z = f!g in ase of �j

(X)

2�

= f1g. By the hoie of Z we must have X v Z,

thus, sine F is a partition-�lter, Z 2 F . a

The following lemma gives a relation between Ramseyan and Ramsey ultra�lters.

Lemma VII.3.1.6. IfU is a Ramseyan ultra�lter, then fMin(X) n f0g : X 2U g is a

Ramsey ultra�lter over ! (to be pedanti, one should say �over ! n f0g�).

Proof. Let � : [!℄

n

! r be any oloring of the n-element subsets of ! with r olors,

where n and r are positive natural numbers. De�ne � : (!)

n�

! r by stipulating

�(s) := �(Min(s

�

) n f0g). Take X 2 U suh that (X)

n�

is monohromati with

respet to �, then, by the de�nition of �, the set [Min(X) n f0g℄

n

is monohromati

with respet to � . a

Ramsey ultra�lters over ! build the minimal points of the Rudin-Keisler ordering on

�! n!. This fat an also be expressed by saying that a non-prinipal ultra�lter U is

a Ramsey ultra�lter if and only if any funtion g : ! ! ! is either onstant or one-

to-one on some set of U . By Lemma VII.3.1.2, we get a similar result for Ramseyan

ultra�lters with respet to the ordering �.�.
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Theorem VII.3.1.7. IfU is a Ramseyan ultra�lter, then for any surjetion f : ! � !

there is an X 2U suh that f either respets or ompletely disregards X.

Proof. The proof is the same as the proof of Lemma VII.3.1.2, but restrited to the

partition-ultra�lterU . a

3.2. On the existene of Ramseyan ultra�lters. As we have seen above, every

Ramseyan ultra�lter indues a Ramsey ultra�lter over !. It is not lear if the on-

verse holds as well. However, Ramseyan ultra�lters are always foreable: Let W be

the foring notion onsisting of in�nite partitions, stipulating X � Y , X v

�

Y .

W is the natural dualization of the foring notion U = hP(!)=�n;�

�

i, whih was

de�ned in Chapter VI, and it is not hard to see that if G is W -generi over V, then

G is a Ramseyan ultra�lter in V[G ℄. Sine W is �-losed, as a onsequene we

get that Ramseyan ultra�lters exist if we assume CH. On the other hand we know

by Lemma VII.3.1.6 that Ramseyan ultra�lters annot exist if there are no Ramsey

ultra�lters. Kenneth Kunen proved (f. [36, Theorem 91℄) that it is onsistent with

ZFC that Ramsey ultra�lters don't exist. We like to mention that Saharon Shelah

showed that even p-points, whih are weaker ultra�lters than Ramsey ultra�lters,

may not exist (see [58, VI x4℄). He also proved that it is possible that � up to iso-

morphisms � there exists a unique Ramsey ultra�lter (see [58, VI x5℄).

In the following,  denotes the ardinality of the ontinuum and 2



denotes the

ardinality of its power-set.

Andreas Blass proved that MA implies the existene of 2



Ramsey ultra�lters (see

[5, Theorem 2℄). He mentions in this paper that with CH in plae of MA, this result

is due to Keisler and with 1 in plae of 2



, it is due to Booth (f. [8, Theorem 4.14℄).

Further he mentions that his proof is essentially the union of Keisler's and Booth's

proof. However, Blass' proof uses at a ruial point that MA implies that the tower

number is equal to . Suh a result we don't have for partitions, beause Timothy

Carlson proved that the dual-tower number is equal to !

1

(see [46, Proposition 4.3℄).

So, onerning the existene of Ramseyan ultra�lters under MA, we annot simply

translate the proof of Blass, and it seems that MA and sets of partitions are quite

unrelated. But as mentioned above, if one assumes CH, then Ramseyan ultra�lters

exist. Moreover, with respet to the equivalene relation �'� (de�ned in Setion 2) we

get the following (for a similar result w.r.t. the Rudin-Keisler ordering see [5, p. 149℄).

Theorem VII.3.2.1. CH implies the existene of 2



pairwise non-equivalent Ramseyan

ultra�lters.

Proof. Assume V j= CH. Let � be large enough suh that P((!)

!

) 2 H(�), i.e., the

power set of (!)

!

(inV) is hereditarily of size < �. LetN be an elementary submodel

of hH(�);2i with jNj = !

1

, ontaining all reals (or equivalently, all partitions) of V.

We onsider the foring notion W in the model N. Sine jNj = !

1

, in V there

is an enumeration fD

�

� (!)

!

: � < !

1

g of all dense sets of W whih lie in N.

For any Z 2 (!)

!

\ V, let Y

�;0

Z

; Y

�;1

Z

2 D

�

be suh that Y

�;0

Z

v

�

Z, Y

�;1

Z

v

�

Z
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and Y

�;0

Z

u Y

�;1

Z

=2 (!)

!

(sine D

�

is dense, suh partitions exist). For any funtion

� :  ! f0; 1g we an onstrut a set H

�

= fX

�

: � < !

1

g in V suh that for

all � < � < !

1

we have X

�

v

�

Y

�;�(�)

X

�

. By onstrution, for any funtion �, the

set G

�

:= fX 2 (!)

!

: X

�

v

�

X for some X

�

2 H

�

g is W -generi over N, thus, a

Ramseyan ultra�lter in N[G

�

℄, and sine W is �-losed and therefore adds no new

reals, G

�

is also a Ramseyan ultra�lter in V. Furthermore, if � 6= �

0

, then the two

Ramseyan ultra�lters G

�

and G

�

0

are di�erent (onsider the two partitionsX

�+1

2 H

�

andX

0

�+1

2 H

�

0

, where �(�) 6= �

0

(�)). Hene, inV, there are 2



Ramseyan ultra�lters.

Beause there are only  surjetions from ! onto !, no equivalene lass (w.r.t. �'�)

an ontain more than  Ramseyan ultra�lters, so, in V, there must be 2



pairwise

non-equivalent Ramseyan ultra�lters. a

4. The happy families' relatives

4.1. Relatively happy families. As we will see below, the partition-families whih

have the segment-oloring-property are related to speial oideals, so-alled happy

families, whih are introdued and rigorously investigated by Adrian Mathias in [49℄.

So, partition-families with the segment-oloring-property an be onsidered as �rela-

tives of happy families�.

Let us �rst onsider the de�nition of Mathias' happy families. Reall that [!℄

!

is

the set of all in�nite subsets of !, and that [!℄

<!

is the set of all �nite subsets of !.

A set I � P(!) is a free ideal, if I is an ideal whih ontains the Fréhet ideal

[!℄

<!

. A set F � P(!) is a free �lter, if fy : ! n y 2 Fg is an ideal ontaining the

Fréhet ideal. For a 2 [!℄

<!

, let a

�

:= maxfn + 1 : n 2 ag, in partiular, 0

�

= 0.

For x; y 2 P(!) we write y �

�

x if (y n x) 2 [!℄

<!

. For a set B � P(!), let �l(B)

be the free �lter generated by B, so, x 2 �l(B) if and only if there is a �nite set

y

0

; : : : ; y

n

2 B suh that (y

0

\ : : : \ y

n

) �

�

x.

A set x � ! is said to diagonalize the family fx

a

: a 2 [!℄

<!

g, if x � x

0

and for

all a 2 [!℄

<!

, if max(a) 2 x, then (x n a

�

) � x

a

.

The family A � P(!) is happy, if P(!) n A is a free ideal and whenever �lfx

a

:

a 2 [!℄

<!

g � A, there is an x 2 A whih diagonalizes fx

a

: a 2 [!℄

<!

g.

In terms of happy families one an de�ne Ramsey ultra�lters as follows: A Ramsey

ultra�lter is an ultra�lter that is also a happy family.

Now we turn bak to partitions. The Fréhet ideal orresponds to the set of �nite

partitions, and therefore, the notion of a free �lter orresponds to partition-�lters

ontaining only in�nite partitions, hene, to partition-�lters F � (!)

!

. For a set

B � (!)

!

, let �l(B ) be the partition-�lter generated byB , so, X 2 �l(B ) if and

only if there is a �nite set of partitions Y

0

; : : : ; Y

n

2B suh that (Y

0

u : : :uY

n

) v

�

X.

A partition X is said to diagonalize the family fX

s

: s 2 (N)g, if X v X

;

and

for all s 2 (N), if s

�

� X, then

�

S

s

�

uX

�

v X

s

.

The family A � (!)

!

is relatively happy, if whenever �lfX

s

: s 2 (N)g �

A , there is an X 2 A whih diagonalizes fX

s

: s 2 (N)g. An example of a
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relatively happy family is (!)

!

, the set of all in�nite partitions (ompare with [49,

Example 0.2℄). Another example of a muh smaller relatively happy family is given

in the following theorem (ompare with [49, p. 63℄).

Theorem VII.4.1.1. Every Ramseyan ultra�lter is relatively happy.

Proof. Let U � (!)

!

be a partition-ultra�lter whih has the segment-oloring-

property and let fX

s

: s 2 (N)g �U be any family. SineU is a partition-�lter, we

obviously have �lfX

s

: s 2 (N)g �U . For t 2 (N) with jtj � 2, let s

t

be suh that

s

�

t

� t and js

t

j = jtj�2. De�ne the oloring � :

S

n2!

(!)

(n+2)�

! f0; 1g by stipulating

�(t) :=

(

0 if

�

S

s

�

t

u t

�

�

v X

s

t

,

1 otherwise.

Let X 2 (X

;

)

!

\U be suh that for any n 2 ! and for any s

�

� X with jsj =

n, (s

�

; X)

(n+2)�

is monohromati with respet to �. Take any s

�

� X. Sine

(s

�

; X)

(jsj+2)�

is monohromati with respet to �, eah t

�

v X with s

�

� t and

jtj = jsj+2 gets the same olor. Hene, for all suh t's we have either

�

S

s

�

ut

�

�

v X

s

,

whih implies X v

�

X

s

, or

�

S

s

�

u t

�

�

6v X

s

, whih implies X u X

s

=2 (!)

!

. The

latter is impossible, sine it ontradits the assumption thatU is a partition-�lter.

So, we are always in the former ase, whih ompletes the proof. a

4.2. A game haraterization. There is a haraterization of happy ultra�lters

over !, i.e., of Ramsey ultra�lters, in terms of games (f. [3, Theorem 4.5.3℄). A

similar haraterization we get for relatively happy partition-ultra�lter.

LetU be a partition-ultra�lter. De�ne a game G(U ) played by players I and II

as follows:

I X

1

X

2

X

3

: : :

II s

1

s

2

s

3

Player I on the n-th move plays a partition X

n

2 U . Player II responds with a

segment s

n

2 (N) suh that js

n

j = n, s

�

n�1

� s

n

and for all m < n,

�

S

s

�

m

u s

�

n

�

v

X

m+1

, where s

0

:= ;. Player I wins if and only if the unique partition X with s

n

� X

(for all n) is not inU .

Theorem VII.4.2.1. Let U 2 PUF

�

(!)

!

�

, then player I has a winning strategy in

G(U ) if and only ifU is not relatively happy.

Proof. Assume �rst that the partition-ultra�lterU is relatively happy and that

fX

s

: s 2 (N)g is a strategy for player I. This means, player I begins with X

;

and

then, if s

n

is the n-th move of player II, player I plays X

s

n

. BeauseU is relatively

happy, there is a partition X 2U whih diagonalizes the family fX

s

: s 2 (N)g,

in partiular, X v X

;

. Now, by the de�nition of X and by the rules of the game

G(U ), player II an play the segments of X. More preisely, player II plays on the
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n-th move the segment s

n

, so that js

n

j = n and s

�

n

� X. Sine X 2U , the strategy

fX

s

: s 2 (N)g was not a winning strategy for player I.

Now assume that the strategy � = fX

s

: s 2 (N)g is not a winning strategy

for player I. Consider the game where player I is playing aording to the strategy

�. In this game, player II an play segments s

n

suh that the unique partition X

with s

n

� X (for all n) is inU . We have to show that X diagonalizes the family

fX

s

: s 2 (N)g. For n 2 !, let s

n

2 (N) be suh that s

�

n

� X and js

n

j = n. Fixm 2 !,

then, by the rules of the game, for any n > m we have

�

S

s

�

m

u s

�

n

�

v X

m+1

, whih

implies

�

S

s

�

m

u X

�

v X

m+1

. Sine player I follows the strategy �, X

m+1

= X

s

m

,

and beause m was arbitrary, for all m 2 ! we get

�

S

s

�

m

u X

�

v X

s

m

. Hene, X

diagonalizes the family fX

s

: s 2 (N)g. a

5. The ombinatoris of dual Mathias foring

Let us �rst reall some properties of Mathias foring and dual Mathias foring,

respetively: Mathias foring restrited to a non-prinipal ultra�lter U , denoted by

M

U

, onsists of the ordered pairs ha; xi 2 M with x 2 U . Mathias foring has a lot

of nie ombinatorial properties (some of them are mentioned below) whih also hold

for Mathias foring restrited to a Ramsey ultra�lter (see [49℄). Dual Mathias foring

restrited to a partition-ultra�lterU 2 PUF

�

(!)

!

�

, denoted by M

[

U

, onsists of the

ordered pairs hs;Xi 2 M

[

with X 2U (see e.g. [23℄ and [26℄). As we have seen

before, both, Mathias foring as well as dual Mathias foring, are proper forings.

Moreover, both have (i) a deomposition, (ii) pure deision and (iii) the homogeneity

property (see e.g. [49℄, [11℄, [23℄, or Chapter VI):

(i) Deomposition: M � U � M

_

U

, where

_

U is the anonial U-name for the U-

generi objet (U as in Setion 3.2).

M

[

� W � M

[

_

U

, where

_

U is the anonial W -name for the W -generi objet (W

as in Setion 3.2).

(ii) Pure deision: For any M -ondition ha; xi and any sentene � of the foring

language M , there is an M -ondition ha; yi � ha; xi suh that either ha; yi

M

�

or ha; yi

M

:�.

Similarly, for any M

[

-ondition hs;Xi and any sentene � of the foring language

M

[

, there is an M

[

-ondition hs; Y i � hs;Xi suh that either hs; Y i

M

[

� or

hs; Y i

M

[

:�.

(iii) Homogeneity property: If x

G

is M -generi over V and y 2 [x

G

℄

!

, then y is

also M -generi over V.

If X

G

is M

[

-generi over V and Y 2 (X

G

)

!

, then Y is also M

[

-generi over V.

In Chapter VI (see also [23℄) it was shown that if F � (!)

!

is a so-alled game-family,

then M

[

F

has pure deision and the homogeneity property (see Theorem VI.4.3 and

Theorem VI.4.4, respetively). Game-families have the segment-oloring-property

and therefore, the so-alled game-�lters, i.e., game-families whih are partition-�lters,
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are Ramseyan ultra�lters. Unlike for Ramseyan ultra�lters, it is not lear if CH im-

plies the existene of game-�lters, so, it seems that game-�lters are stronger than

Ramseyan ultra�lters. However, in the sequel we show that ifU 2 PUF

�

(!)

!

�

is a

Ramseyan ultra�lter, then M

[

U

has pure deision and the homogeneity property.

Reently, Stevo Todor£evi¢ gave an abstrat presentation of Ellentuk's theorem

by introduing the notion of a quasi ordering with approximations whih admits a

�nitization and the notion of a Ramsey spae. The Abstrat Ellentuk Theo-

rem says that a quasi ordering with approximations whih admits a �nitization and

satis�es ertain axioms is a Ramsey spae.

LetU 2 PUF

�

(!)

!

�

be a partition-ultra�lter and let �v� be the quasi ordering

onU . For eah n 2 !, let the funtion p

n

:U ! (N) be suh that p

n

(X) is the

unique s with s

�

� X and jsj = n. Let p be the sequene (p

n

)

n2!

. It is easy to verify

that the triple (U ;v; p) is a quasi ordering with approximations. For n;m 2 !

and X; Y 2U de�ne: p

n

(X) v

�n

p

m

(Y ) if and only if dom

�

p

n

(X)

�

= dom

�

p

m

(Y )

�

and p

n

(X) v p

m

(Y ). This de�nition veri�es that (U ;v; p) admits a �nitization.

If (s;X)

!

is a dual Ellentuk neighborhood and X 2U , then (s;X)

!

\U is alled

aU -dual Ellentuk neighborhood. The topology onU , indued by theU -dual

Ellentuk neighborhoods, is alled theU -dual Ellentuk topology. With respet

to theU -dual Ellentuk topology, the topologial spaeU is a Ramsey spae, if for

any subset S �U whih has the Baire property with respet to theU -dual Ellentuk

topology, and for anyU -dual Ellentuk neighborhood (s; Y )

!

\U , there is a partition

X 2 (s; Y )

!

\U suh that either (s;X)

!

\U � S or (s;X)

!

\U �U n S.

LetU 2 PUF

�

(!)

!

�

be a Ramseyan ultra�lter. Sine the triple (U ;v; p) satis�es

ertain axioms, by Todor£evi¢'s Abstrat Ellentuk Theorem, the Ramseyan

ultra�lterU with respet to theU -dual Ellentuk topology is a Ramsey spae. More-

over, we get the following two results.

Theorem VII.5.1. IfU is a Ramseyan ultra�lter, then M

[

U

has pure deision.

Proof. Let � be any sentene of the foring language M

[

U

. With respet to � we

de�ne

D

0

:= fY 2U : for some t � Y , ht; Y i

M

[

U

:�g ;

and

D

1

:= fY 2U : for some t � Y , ht; Y i

M

[

U

�g :

Clearly D

0

and D

1

are both open (w.r.t. theU -dual Ellentuk topology) and D

0

[D

1

is dense (w.r.t. the partial order in M

[

U

). Beause U is a Ramsey spae, for any

U -dual Ellentuk neighborhood (s; Y )

!

\U there is an X 2 (s; Y )

!

\U suh that

either

(s;X)

!

\U � D

0

or (s;X)

!

\U \D

0

= ; :

In the former ase we have hs;Xi

M

[

U

:� and we are done. In the latter ase we

�nd X

0

2 (s;X)

!

\U suh that (s;X

0

)

!

\U � D

1

. (Otherwise we would have
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(s;X

0

)

!

\U \ (D

0

[D

1

) = ;, whih is impossible by the density of D

0

[D

1

.) Hene,

hs;X

0

i

M

[

U

�. a

Theorem VII.5.2. IfU is a Ramseyan ultra�lter, then M

[

U

has the homogeneity

property.

Proof. For a dense set D � M

[

U

, let

[

D := fX 2 (!)

!

: X 2 (s; Y )

!

for some hs; Y i 2 Dg :

It is lear that a partition X

G

is M

[

U

-generi if and only if X

G

2

S

D for eah dense

set D � M

[

U

. Let D � M

[

U

be an arbitrary dense set and let D

0

be the set of all

hs; Zi 2 M

[

U

suh that (t; Z)

!

�

S

D for all t v s with dom(t) = dom(s).

First we show that D

0

is dense in M

[

U

. For this, take an arbitrary hs;W i 2

M

[

U

and let ft

i

: 0 � i � mg be an enumeration of all t 2 (N) suh that t v s

and dom(t) = dom(s). Beause D is dense in M

[

U

,

S

D is open (w.r.t. theU -dual

Ellentuk topology), and sineU is a Ramsey spae, for every t

i

we �nd a W

0

2U

suh that t

i

v W

0

and (t

i

;W

0

)

!

�

S

D. Moreover, if we de�ne W

�1

:= W , for

every i � m we an hoose a partition W

i

2U suh that W

i

v W

i�1

, s � W

i

and

(t

i

;W

i

)

!

�

S

D. Thus, hs;W

m

i 2 D

0

, and beause hs;W

m

i � hs;W i, D

0

is dense in

M

[

U

.

Let X

G

be M

[

U

-generi and let Y 2 (X

G

)

!

be arbitrary. Sine D

0

is dense, there is

a ondition hs; Zi 2 D

0

suh that s � X

G

v Z. Sine Y 2 (X

G

)

!

, we have t � Y v Z

for some t v s with dom(t) = dom(s), and beause (t; Z)

!

�

S

D, we get Y 2

S

D.

Hene, Y 2

S

D for eah dense set D � M

[

U

, whih ompletes the proof. a

Appendix

In this setion we are gathering some results onerning the dual form of some

ardinal harateristis of the ontinuum. For the de�nition of the lassial ardinal

harateristis, as well as for the relation between them, we refer the reader to [69℄.

First we onsider the shattering ardinal h. This ardinal was introdued in [1℄ as

the minimal height of a tree �-base of �! n!. Later it was shown by Szymon Plewik

in ([54℄) that h = add(R

0

) = ov(R

0

), where R

0

denotes the ideal of ompletely

Ramsey null sets. It is easy to see that p � h, and therefore, MA(�-entered) implies

h = .

The dual form of the lassial ardinal harateristis were introdued and in-

vestigated in [12℄ and further investigated in [22℄. Conerning the dual-shattering

ardinal H, one easily gets !

1

� H � h, and in [22℄ it is shown that H > !

1

is onsis-

tent relative to ZFC and that H = add(R

[

0

) = ov(R

[

0

), where R

[

0

denotes the ideal of

ompletely dual Ramsey null sets. After all these symmetries, one would not expet

the following: MA + ( > H) is onsistent relative to ZFC. This was proved by Jörg

Brendle in [10℄ and implies that H < p is onsistent relative to ZFC.

Conerning the reaping and the dual-reaping number r and R, respetively, the

situation looks di�erent. It is shown in [23℄ that p � R � minfr; ig, and thus
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we get MA(�-entered) implies R = . Further, it is easy to show that R � U,

where U denotes the partition-ultra�lter base number, i.e., the dual form of u, and

onsequently, MA(�-entered) implies U = .

For a Ramsey ultra�lter U , Brendle introdued in [9℄ the ideal R

0;U

, whih is the

ideal of ompletely Ramsey null sets with respet to the ultra�lter U . Conerning this

ideal R

0;U

, he showed for example that hom � non(R

0;U

), where hom is the homo-

geneity number investigated by Blass in [7, Setion 6℄. There, Blass also investigated

the so-alled partition number par and showed that par = minfb; sg. Now, replaing

the Ramsey ultra�lter U by a Ramseyan ultra�lterU , one obtains the ideal R

[

0;U

of

ompletely dual Ramsey null sets with respet toU as the dualization of the ideal

R

0;U

, and replaing the olorings of [!℄

2

� involved in the de�nition of hom and par �

by olorings of (!)

2�

, one obtains the ardinal harateristis Hom and Par and ould

begin to investigate them, but this is left for further researh.

❦
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