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Abstract

We show that in an in�nite dimensional Banach space, every Hamel base has the car-

dinality of the Banach space, which is at least the cardinality of the continuum.

1 Facts concerning Hamel bases

In this article we investigate by set theoretical methods the cardinality of Hamel bases (also
called \algebraic bases") of Banach spaces. In this text, a Banach space E is a complete
normed vector space over a �eld K � R (or K � C ), and to exclude the trivial case, we
always assume E 6= f0g. Notice, that a Banach space over R can be considered as a Banach
space over any sub�eld K�R, simply by restricting the scalars to K. Conversely, a Banach
space E over K�R can be considered as a Banach space over R. This is done by extending
the multiplication with scalars to R: If v 2 E and r 2 R, let rv := limri!r riv 2 E, where
ri 2 K. This is possible, since any sub�eld K of R contains Q and is hence dense in R. It
is readily checked that this de�nition makes E being a Banach space over R.

With the aid of the axiom of choice, one can prove that every vector space has a Hamel base
(cf. [Ha] and [Hd 1, p. 295]). Furthermore, the axiom of choice is necessary for the existence
of Hamel bases of vector spaces (cf. [La]). The proof of the existence of a Hamel base is
not constructive, but since the axiom of choice is consistent with the other axioms of set
theory (cf. [G�o]), it is consistent to assume the existence of a Hamel base in every vector
space. If the continuum hypothesis (see Section 2) holds|which is by [G�o] consistent to
assume|we have, as an easy consequence of Baire's Category Theorem, that every Hamel
base of an in�nite dimensional Banach space has at least the cardinality of the continuum.
But it is also consistent to assume that the continuum hypothesis fails (cf. [Co]), and in this
case, Baire's Category Theorem only implies that a Hamel base of an in�nite dimensional
Banach space must be uncountable (see also [Kr], [Ts] and [Li]). It is therefore a natural
question to ask what cardinality a Hamel base can have in this case (and the answer is given
in Section 3). The continuum hypothesis can also be characterized by Hamel bases; namely,
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if one considers R as a Banach space over Q, then the continuum hypothesis is equivalent to
the statement, that R can be covered by countably many Hamel bases (see [Si] and [EK]).
These examples show that properties of vector spaces are closely related to the axioms of
set theory and conversely, that set theory has implications in functional analysis on a very
fundamental level.

2 Some set theory

In this section, we summarize some set theoretical notations and de�nitions. All the nota-
tions and de�nitions are standard and are in accordance with [Je] or [Ku].

A set x is transitive if every element of x is a subset of x. A relation R well-orders a set
x, or hR; xi is a well-ordering, if hR; xi is a total ordering and every non-empty subset of
x has an R-least element. The axiom of choice is equivalent to the statement, that every
set can be well-ordered. A set x is an ordinal number, if x is transitive and well-ordered
by 2. The axiom of choice is also equivalent to the statement, that for every set x there
exists an ordinal number � and a bijection f : � ! x. The class of all ordinal numbers is
transitive and well-ordered by 2. The set of all natural numbers is equal to the set of all
�nite ordinal numbers and is denoted by !. (A natural number n is the set of all natural
numbers which are smaller than n, e.g. 0 = ;.)

For a set x, the cardinality of x, denoted by jxj is the least ordinal number � for which
there exists a bijection f : � ! x. A set x is called �nite, if jxj 2 !, otherwise it is called
in�nite. Further it is called countable, if jxj � j!j =: @0. For a set x, P(x) denotes the power
set of x. There exists a bijection between R and P(!), hence jRj= jP(!)j, and we denote
this cardinality by c. The continuum hypothesis states c = j!1j =: @1, where !1 denotes
the least ordinal number which is not countable. Finally let [x]! := fy 2 P(x) : jyj = @0g
and [x]<! := fy 2 P(x) : jyj < @0g. If x is in�nite, then j[x]<!j = jxj. We use the same
symbol for a set y 2 P(x) and for its characteristic function, i.e., we write y(z) = 1 if z 2 y

and y(z) = 0 otherwise.

In the next section, we will use an uncountable independent family over !:

Let I�[!]!; then I is called an independent family (i.f.) if and only if wheneverm;n 2 !

and x0; : : : ; xm; y0; : : : ; yn are distinct members of I, then
��x0 \ � � � \ xm \ (! n y0) \ � � � \ (! n yn)

�� = @0 :

Notice that this is equivalent to
���
\

i�m

xi n
[

j�n

yj

��� = @0 :

There is always an i.f. of cardinality c (cf. [FK], [Hd 2] or [Ku, Exercise (A6)]) which can be
constructed even without using the axiom of choice.
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3 The cardinality of Hamel bases of Banach spaces

By the axiom of choice, every vector space E over a �eld K possesses a Hamel base. A
Hamel base is hence a set H of vectors such that

(i) H spans E, i.e. E = hHi (which denotes the set of all �nite K-linear combinations of
vectors of H) and

(ii) H is �nitely linearly independent over K, i.e., �nitely many vectors in H are linearly
independent over K.

This is equivalent to saying thatH is a minimal set with property (i) or thatH is a maximal
set with property (ii).

By Baire's Category Theorem it is easy to see that a Hamel base in an in�nite dimensional
real or complex Banach space E cannot be countable. In this section, we will show that
if E is an in�nite dimensional Banach space over a �eld K, where Q�K�C , then every
Hamel base of E has the cardinality jEj, which is at least the cardinality of the continuum.
We start by recalling the well-known

Fact 3.1 If E is an in�nite dimensional vector space over a �eld K and H1 and H2 are
two Hamel bases of E, then jH1j = jH2j.

The next lemma summarizes a few simple facts which will be useful later.

Lemma 3.2 (a) If E is at the same time a vector space over a �eld K1 and over a �eld
K2�K1 and if Hi is a Hamel base of E with respect to Ki (i 2 f1; 2g), then jH1j �
jH2j.

(b) If E is a Banach space over a �eld K, then jEj � c.

(c) If E is a vector space over an in�nite �eld K and if H is a Hamel base of E, then
jEj = maxfjKj; jH jg.

(d) If K1 and K2 are two �elds with Q�K1�K2�C such that K1 is dense in K2, and if
E is a Banach space over K1, then there exists a K1-linear homeomorphism from E

to a Banach space E 0 = E over K2.

Proof: (a) Obviously, H1 can be extended to a Hamel base H � H1 with respect to K2,
and therefore, using Fact 3.1, jH2j = jH j � jH1j.

(b) This follows from the completeness of Banach spaces.
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(c) Since H is a Hamel base of E, we get jEj = j[K]<! � [H ]<!j, and because K is in�nite,
no matter if H is in�nite or �nite, we get j[K]<! � [H ]<!j = maxfjKj; jH jg.

(d) We de�ne on the set E0 := E, equipped with the same additive group and the same
norm as on E, the following multiplication:

(K2; E)! E; (�; x) 7! �x := lim
K13�i!�

�ix:

It is easy to check, that (K2; E) is a normed vector space and that (K1; E)! (K2; E); x 7! x,
is a K1-linear homeomorphism. a

Remark: The Banach spaces in Lemma 3.2(d) need not have the same dimension. A
drastic example is R, which is an in�nite-dimensional Banach space over Q, but only a
one-dimensional Banach space over itself.

The following lemma is due to Mazur (see [LT, Lemma1.a.6]):

Lemma 3.3 Let E be an in�nite dimensional Banach space over K. Let F�E be a �nite
dimensional subspace and let " > 0. Then there is an x 2 E with kxk = 1 so that kyk �
(1 + ") ky + �xk for every y 2 F and every scalar � 2 K

Proof: Confer the proof of Lemma 1.a.6 of [LT]. a

Now we are ready to prove

Lemma 3.4 If K�C is a �eld and E is a Banach space over K such that dim(E) = 1,
then every Hamel base of E has at least cardinality c.

Proof: We consider two cases. In the �rst case jKj < c, and in the second case jKj = c.
For both cases, let H = fX� : � < � < cg�E be a family (of cardinality � < c) of vectors of
E. We will show that H is not a Hamel base of E.

1. case: Assume jKj < c and that H is a Hamel base of E. By Lemma 3.2 we have
c � jEj = maxfjKj; jH jg< c, which is a contradiction.

2. case: Assume jKj = c and that H is a Hamel base of E. Lemma 3.3 is usually used in
order to construct a subspace ofE which possesses a Schauder base. Since we did not assume
that K is complete, the construction does not lead to a complete subspace, nevertheless,
the resulting sequence is suÆcient for our purposes: We start with a unit vector x0 2 E.
Then we construct iteratively the sequence fxigi2! with kxik = 1 such that

kyk � (1 + "n) ky + �xn+1k

for all y 2 hx0; : : : ; xni and all � 2 K. Here, we choose the sequence of positive numbers
f"ngn2! such that

Q1
n=0(1+"n) � 1+" for some " > 0. Now, we claim that

P1
n=0 �nxn = 0
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implies that �n = 0 for all n 2 !. If not, we �nd a �rst index i with �i 6= 0. Then we have

k�ixik � (1 + "i)


�ixi + �i+1xi+1




� (1 + "i)(1 + "i+1)



�ixi + �i+1xi+1 + �i+2xi+2




�
nY

k=i

(1 + "k)




n+1X

k=i

�kxk






Since the �rst factor is uniformly bounded in n and the second factor converges to 0 as
n!1, we obtain k�ixik = 0, which contradicts �i 6= 0.

Let I be an i.f. of cardinality c (remember that such a family always exists) and let us
consider the injective map

� : I ! E; z 7!
1X

i=0

z(i)2�ixi:

We recall the notation z(i) = 1 if i 2 z and z(i) = 0 otherwise. Notice that, by construction,
the vectors in f�(z) : z 2 Ig are �nitely linearly independent over K: In fact, if we take
distinct z0; : : : ; zm 2 I, then for any number k 2 ! and for any i � m we �nd a k0 > k such
that zi(k

0) 6= zj(k
0) for all j 6= i, hence, the vectors �(z0); : : : ; �(zm) are linearly independent

over K.

For each Y 2 E, there are �nitely many uniquely determined X�0 ; : : :, X�n(Y )
2 H , �i < �i+1

and s0; : : : ; sn(Y ) 2 K n f0g, so that Y =
Pn(Y )

k=0 skX�k . Thus, the function

' : E ! [K]<! � [H ]<!

Y 7!


hs0; : : : ; sn(Y )i; hX�0; : : : ; X�n(Y )

i
�

is a bijection and the composed function ' Æ � : I ! [K]<! � [H ]<! is injective. On the
other hand, since jIj = c and j[H ]<!j = jH j < c, we �nd by the pigeonhole principle (see [Je,
p. 321]) an in�nite set C�I such that pr2 Æ' Æ � : C ! [H ]<! is constant (pr2 denotes the
projection pr2(ha; bi) := b). So, let H0 = hpr2 Æ' Æ �(C)i denote the corresponding �nite
dimensional subspace. Since � is injective, �(C)�H0 is an in�nite set of linearly independent
vectors, which is a contradiction. a

Now we can give the main result of this section.

Theorem 3.5 If K�C is a �eld and E is a Banach space over K such that dim(E) = 1,
then every Hamel base of E has cardinality jEj.

Proof: Let E be a Banach space over K such that dim(E) = 1 and let H be a Hamel
base of E. By Lemma 3.2 we have jEj = maxfjKj; jH jg. By Lemma 3.4 we have jH j � c,
and because jKj � c, we get jEj = jH j. a
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Remark: It is worth mentioning that the previous result for F -spaces follows directly from
Martin's Axiom (the de�nition and some consequences can be found in [Ku, Ch. II]): Let
E be an F -space, i.e., a topological vector space whose topology is induced by a complete
invariant metric d. If H0�H�E with jH0j = @0, jH j < c, we may consider the countable
set A := hH0iQ, the set of all �nite rational linear combinations of vectors of H0. Let P
be the set fB1=n(ai) : ai 2 A; n 2 !g, where B1=n(ai) := fx 2 E : d(x; ai) <

1
ng. Let

P= hP;�i, then P is a partially ordered set in which every anti-chain is countable. A set
D�P is called dense, if for every p 2 P there exists a q 2 D such that q�p. For every �nite
dimensional K-linear subspace V�E, the set DV := fp 2 P : p \ V = ;g is dense. Since
jH j < c we have strictly less than c many dense sets of this form and Martin's Axion gives
a descending chain in P such that for every dense set DV we �nd an element in this chain,
which is contained in DV . Since E is a complete space, this chain converges to a point
which does not belong to any of the �nite dimensional subspaces spanned by H . Hence, H
is not a Hamel base.

As a corollary, we obtain a slightly stronger version of a theorem in [Ja, Chapter 9]:

Corollary 3.6 The set Ef of all linear functions E ! R on an in�nite dimensional
Banach space E has cardinality 2jEj.

Proof: It is easy to see that jEf j = jcH j = 2jHj, where H is a Hamel base of E, and
therefore jEf j = 2jEj. a
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