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Abstract

We show that in an infinite dimensional Banach space, every Hamel base has the car-
dinality of the Banach space, which is at least the cardinality of the continuum.

1 Facts concerning Hamel bases

In this article we investigate by set theoretical methods the cardinality of Hamel bases (also
called “algebraic bases”) of Banach spaces. In this text, a Banach space F is a complete
normed vector space over a field K C R (or K C C), and to exclude the trivial case, we
always assume E # {0}. Notice, that a Banach space over R can be considered as a Banach
space over any subfield K CR, simply by restricting the scalars to K. Conversely, a Banach
space I/ over KCR can be considered as a Banach space over R. This is done by extending
the multiplication with scalars to R: If v € I/ and r € R, let rv := lim,,_,, r;v € E, where
r; € K. This is possible, since any subfield K of R contains @Q and is hence dense in R. It
is readily checked that this definition makes F being a Banach space over R.

With the aid of the axiom of choice, one can prove that every vector space has a Hamel base
(cf.[Ha] and [Hd 1, p.295]). Furthermore, the axiom of choice is necessary for the existence
of Hamel bases of vector spaces (cf.[La]). The proof of the existence of a Hamel base is
not constructive, but since the axiom of choice is consistent with the other axioms of set
theory (cf.[G&]), it is consistent to assume the existence of a Hamel base in every vector
space. If the continuum hypothesis (see Section 2) holds—which is by [G8] consistent to
assume—we have, as an easy consequence of Baire’s Category Theorem, that every Hamel
base of an infinite dimensional Banach space has at least the cardinality of the continuum.
But it is also consistent to assume that the continuum hypothesis fails (cf. [Co]), and in this
case, Baire’s Category Theorem only implies that a Hamel base of an infinite dimensional
Banach space must be uncountable (see also [Kr], [Ts] and [Li]). It is therefore a natural
question to ask what cardinality a Hamel base can have in this case (and the answer is given
in Section 3). The continuum hypothesis can also be characterized by Hamel bases; namely,
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if one considers R as a Banach space over @Y, then the continuum hypothesis is equivalent to
the statement, that R can be covered by countably many Hamel bases (see [Si] and [EK]).
These examples show that properties of vector spaces are closely related to the axioms of
set theory and conversely, that set theory has implications in functional analysis on a very
fundamental level.

2 Some set theory

In this section, we summarize some set theoretical notations and definitions. All the nota-
tions and definitions are standard and are in accordance with [Je] or [Ku].

A set x is transitive if every element of x is a subset of x. A relation R well-orders a set
z, or (R, z) is a well-ordering, if (R, z) is a total ordering and every non-empty subset of
x has an R-least element. The axiom of choice is equivalent to the statement, that every
set can be well-ordered. A set z is an ordinal number, if ¢ is transitive and well-ordered
by €. The axiom of choice is also equivalent to the statement, that for every set z there
exists an ordinal number « and a bijection f : « — . The class of all ordinal numbers is
transitive and well-ordered by €. The set of all natural numbers is equal to the set of all
finite ordinal numbers and is denoted by w. (A natural number n is the set of all natural
numbers which are smaller than n, e.g. 0= 10.)

For a set z, the cardinality of z, denoted by |z| is the least ordinal number « for which
there exists a bijection f:a — . A set z is called finite, if |z| € w, otherwise it is called

infinite. Further it is called countable, if |z| < |w| =: Rg. For a set 2, P(z) denotes the power
set of z. There exists a bijection between R and P(w), hence |R| = |P(w)|, and we denote
this cardinality by ¢. The continuum hypothesis states ¢ = |wi| =: Ry, where w; denotes

the least ordinal number which is not countable. Finally let [2]¥ := {y € P(x) : |y| = Ro}
and [z]<¥ := {y € P(z) : |y| < No}. If z is infinite, then |[[2]<¥| = |z|. We use the same
symbol for a set y € P(x) and for its characteristic function, i.e., we write y(z) = 1if z € y
and y(z) = 0 otherwise.

In the next section, we will use an uncountable independent family over w:

Let ZC[w]¥; then 7 is called an independent family (i.f.) if and only if whenever m,n € w
and zg,...,%m, Yo, - - ., Y, are distinct members of 7, then

‘xoﬂ---ﬂxmﬂ(w\yo)ﬂ---ﬂ(w\yn)‘:NO.

Notice that this is equivalent to

=Ng.

‘ﬂxi\ij

There is always an i.f. of cardinality ¢ (cf. [FK], [Hd 2] or [Ku, Exercise (A6)]) which can be
constructed even without using the axiom of choice.



3 The cardinality of Hamel bases of Banach spaces

By the axiom of choice, every vector space F over a field K possesses a Hamel base. A
Hamel base is hence a set H of vectors such that

(i) H spans F,i.e. = (H) (which denotes the set of all finite K-linear combinations of
vectors of H) and

(ii) H is finitely linearly independent over K, i.e., finitely many vectors in H are linearly
independent over K.

This is equivalent to saying that H is a minimal set with property (i) or that H is a maximal
set with property (ii).

By Baire’s Category Theorem it is easy to see that a Hamel base in an infinite dimensional
real or complex Banach space E cannot be countable. In this section, we will show that
if £/ is an infinite dimensional Banach space over a field K, where QCKCC, then every
Hamel base of E has the cardinality |E|, which is at least the cardinality of the continuum.
We start by recalling the well-known

Fact 3.1 If F is an infinite dimensional vector space over a field K and Hy and H, are
two Hamel bases of F, then |H{| = |H;|.

The next lemma summarizes a few simple facts which will be useful later.

LEMMA 3.2 (a) If F is at the same time a vector space over a field Ky and over a field
KyCKy and if H; is a Hamel base of E with respect to K; (i € {1,2}), then |Hy| <
[ Ha|.

(b) If £ is a Banach space over a field K, then |F| > c.

(c) If E is a vector space over an infinite field K and if H is a Hamel base of F, then
| B = max{| K], [H]}.

(d) If K1 and K3 are two fields with QCK;CKyCC such that Ky is dense in Ko, and if
FE is a Banach space over Ky, then there exists a Kq-linear homeomorphism from E
to a Banach space E' = F over K.

Proor: (a) Obviously, Hy can be extended to a Hamel base H O H; with respect to K3,
and therefore, using Fact 3.1, |Hy| = |H| > |H1|.

(b) This follows from the completeness of Banach spaces.



(c) Since H is a Hamel base of I/, we get |F| = |[K]<¥ x [H]<“|, and because K is infinite,
no matter if H is infinite or finite, we get |[K]<% X [H]<¥| = max{|K|, |H|}.

(d) We define on the set E’' := F, equipped with the same additive group and the same
norm as on F, the following multiplication:

(Ko, B) = B, (Az)— Az:= lim Az,
Ki3X—=A

It is easy to check, that (K3, F') is a normed vector space and that (K1, F) — (K3, £), 2 — =z,

is a K-linear homeomorphism. =

ReEMARK: The Banach spaces in Lemma 3.2(d) need not have the same dimension. A
drastic example is R, which is an infinite-dimensional Banach space over @), but only a
one-dimensional Banach space over itself.

The following lemma is due to Mazur (see [LT, Lemma1.a.6]):

LEMMA 3.3 Let F be an infinite dimensional Banach space over K. Let FCFE be a finite
dimensional subspace and let € > 0. Then there is an x € F with ||z|| = 1 so that ||y|| <
(14¢) ||y + Az|| for every y € F and every scalar A € K

Proor: Confer the proof of Lemma1.a.6 of [LT]. -

Now we are ready to prove

LEmMA 3.4 If KCC is a field and F is a Banach space over K such that dim(F) = oo,
then every Hamel base of F has at least cardinality c.

Proor: We consider two cases. In the first case |K| < ¢, and in the second case |K| = c.
For both cases, let H ={X, 11 <k < ¢}CF be a family (of cardinality x < c) of vectors of
FE. We will show that H is not a Hamel base of F.

1. case: Assume
¢ <|F|=max{|K

K| < ¢ and that H is a Hamel base of F. By Lemma 3.2 we have
|H|} < ¢, which is a contradiction.

2. case: Assume |K| = ¢ and that H is a Hamel base of F. Lemma 3.3 is usually used in
order to construct a subspace of FY which possesses a Schauder base. Since we did not assume
that K is complete, the construction does not lead to a complete subspace, nevertheless,
the resulting sequence is sufficient for our purposes: We start with a unit vector zq € F.
Then we construct iteratively the sequence {#;};e, with ||z;|]| = 1 such that

1l < (14 2) [ly + Az ra ]

for all y € (2q,...,2,) and all A € K. Here, we choose the sequence of positive numbers
{€n}new such that [T (14¢,) < 14¢ for some e > 0. Now, we claim that >~ ;A 2z, =0



implies that A, = 0 for all n € w. If not, we find a first index ¢ with A; # 0. Then we have

IXill < (L+e) || A + Aipraiga |
< (M) (4 i) [[Aiwi + Aigr2ign + Adipaziga)|
n n+1
< H(1‘|‘5k) HZ/\kwkH
k=1 k=1

Since the first factor is uniformly bounded in n and the second factor converges to 0 as
n — 0o, we obtain ||A;z;|| = 0, which contradicts A; # 0.

Let Z be an i.f. of cardinality ¢ (remember that such a family always exists) and let us
consider the injective map

(:IT—FE, 2z~ Zz(i)?‘iwi.
=0

We recall the notation (i) = 1if ¢ € z and z(¢) = 0 otherwise. Notice that, by construction,
the vectors in {((z) : z € Z} are finitely linearly independent over K: In fact, if we take
distinct zg, ..., 2, € Z, then for any number & € w and for any i < m we find a ¥’ > k such
that z; (k') # z; (k') for all j # 4, hence, the vectors ((zg), ..., ((z,) are linearly independent
over K.

For each Y € I/, there are finitely many uniquely determined X, , ..., an(y) € H, v <ty
and sg, ..., 8,(v) € K \ {0}, so that ¥ = ZZ(:);) s;X,,. Thus, the function

0:E — [K]<¥ x[H]
Y = <<507---vSn(Y)>7<X607"'7X6n(y)>>

is a bijection and the composed function ¢ o ¢ : Z — [K]<¥ x [H]<¥ is injective. On the
other hand, since |Z| = c and |[[H]<“| = |H| < ¢, we find by the pigeonhole principle (see [Je,
p.321]) an infinite set CCZ such that pryopo( : C — [H]<¥ is constant (pr, denotes the
projection pry({a,b)) := b). So, let Hy = (pryop o ((C)) denote the corresponding finite
dimensional subspace. Since ( is injective, {(C)CHp is an infinite set of linearly independent
vectors, which is a contradiction. =

Now we can give the main result of this section.

THEOREM 3.5 If KCC is a field and E is a Banach space over K such that dim(F) = oo,
then every Hamel base of E has cardinality |E|.

Proor: Let F be a Banach space over K such that dim(£) = co and let H be a Hamel
base of £. By Lemma 3.2 we have |F| = max{|K|, |H|}. By Lemma 3.4 we have |H| > «,
and because |K| < ¢, we get |F| = |H|. -



REMARK: It is worth mentioning that the previous result for F-spaces follows directly from
Martin’s Axiom (the definition and some consequences can be found in [Ku, Ch.II]): Let
FE be an F-space, i.e., a topological vector space whose topology is induced by a complete
invariant metric d. If HCHCFE with |Hp| = Yo, |H| < ¢, we may consider the countable
set A := (Hp)g, the set of all finite rational linear combinations of vectors of Hy. Let P
be the set {By/,(a;) : a; € A;n € w}, where By/,(a;) == {z € F : d(z,q;) < 1}, Let
P = (P, C), then P is a partially ordered set in which every anti-chain is countable. A set
DCP is called dense, if for every p € P there exists a ¢ € D such that ¢Cp. For every finite
dimensional K-linear subspace VCFE, the set Dy := {p € P:pNV = 0} is dense. Since
|H| < ¢ we have strictly less than ¢ many dense sets of this form and Martin’s Axion gives
a descending chain in P such that for every dense set Dy we find an element in this chain,
which is contained in Dy . Since F is a complete space, this chain converges to a point
which does not belong to any of the finite dimensional subspaces spanned by H. Hence, H
is not a Hamel base.

As a corollary, we obtain a slightly stronger version of a theorem in [Ja, Chapter 9]:

COROLLARY 3.6 The set E/ of all linear functions E — R on an infinite dimensional
Banach space E has cardinality 2F1.

PRrROOF: It is easy to see that |Ef| = || = 217l where H is a Hamel base of F, and
therefore |F/| = 21F. -
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