Magic sets for polynomials of degree n

Lorenz Halbeisen, Norbert Hungerbühler, Salome Schumacher*

September 17, 2020

Abstract

Let \mathcal{P}_{n} be the family of all real, non-constant polynomials with degree at most n and let \mathcal{Q}_{n} be the family of all complex, non-constant polynomials with degree at most n. A set $S \subseteq \mathbb{R}$ is called a set of range uniqueness (SRU) for a family $\mathcal{F} \in\left\{\mathcal{P}_{n}, \mathcal{Q}_{n}\right\}$ if for all $f, g \in \mathcal{F}, f[S]=g[S] \Rightarrow f=g$. And S is called a magic set if for all $f, g \in \mathcal{F}$, $f[S] \subseteq g[S] \Rightarrow f=g$. In this paper we will show that there are magic sets for \mathcal{P}_{n} and \mathcal{Q}_{n} of size s for every $s \geq 2 n+1$. However, there are no SRUs of size at most $2 n$ for \mathcal{P}_{n} and \mathcal{Q}_{n}. Moreover we will show that SRUs and magic sets are not the same by giving examples of SRUs for \mathcal{P}_{2} and \mathcal{P}_{3} that are not magic.

Key words: sets of range uniqueness, polynomials, magic sets, unique range
Mathematics Subject Classification: 26C05, 11C20

1 Introduction

Let \mathcal{F} be a set of functions with a common domain X and a common range Y. A set $S \subseteq X$ is called a set of range uniqueness (SRU) for \mathcal{F} if the following holds: For all $f, g \in \mathcal{F}$

$$
f[S]=g[S] \Rightarrow f=g
$$

And S is called a magic set for \mathcal{F} if for all $f, g \in \mathcal{F}$

$$
f[S] \subseteq g[S] \Rightarrow f=g .
$$

Note that every magic set is also an SRU. The existence of magic sets and SRUs has already been studied for several families of functions:

- Berarducci and Dikranjan proved in 1 that under the continuum hypothesis (CH) there exists a magic set for the family $C^{n}(\mathbb{R})$ of all nowhere constant, continuous functions. Halbeisen, Lischka and Schumacher showed in [6] that we can weaken the requirement by replacing CH by the assumption that the union of less than continuum many meager sets is meager, i.e. $\operatorname{add}(\mathcal{M})=\mathfrak{c}$. However, the existence of a magic set for $C^{n}(\mathbb{R})$ is not provable in ZFC as Ciesielski and Shelah proved in (3).
- In [2], Burke and Ciesielski proved that SRUs always exist for the family of all Lebesgue-measurable functions on \mathbb{R}.
- In 4, Diamond, Pomerance and Rubel constructed SRUs for the family $C^{\omega}(\mathbb{C})$ of entire functions.
- In [5] the authors of this paper proved that there exist SRUs for the family \mathcal{P}_{n} of all real, non-constant polynomials of degree at most n of size $2 n+1$ but none of size $2 n$.

[^0]In this paper we consider magic sets for the family \mathcal{P}_{n} of all real, non-constant polynomials of degree at most n and for the family \mathcal{Q}_{n} of all complex, non-constant polynomials of degree at most n. We will show that there exist no SRUs, and therefore also no magic sets, of size at most $2 n$ for \mathcal{P}_{n} and \mathcal{Q}_{n}. Then we will give examples of SRUs for \mathcal{P}_{2} and \mathcal{P}_{3} that are not magic. And finally we will answer one of the open questions in [5 and show that for every $s \geq 2 n+1$ there is a magic set of size s for the families \mathcal{P}_{n} and \mathcal{Q}_{n}.

2 There are no SRUs of size at most $2 n$ for \mathcal{P}_{n}

In [5] we have already shown that there are no SRUs of size $2 n$: For points $x_{0}<x_{1}<\cdots<$ $x_{2 n}$ we constructed two functions $f, g \in \mathcal{P}_{n}$ such that $f=1-g$ and

$$
f\left(x_{2 i}\right)=g\left(x_{2 i-1}\right) \text { and } f\left(x_{2 i-1}\right)=g\left(x_{2 i}\right)
$$

for all $1 \leq i<n$. In a similar way we can prove that there are no SRUs of size $2 n-1$:
Lemma 1. There are no SRUs of size $2 n-1$.
Proof. Let $0<x_{1}<x_{2}=x_{3}<x_{4}<\cdots<x_{2 n}$. As in [5] define

$$
Y^{n}:=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n} \mid y_{i} \in\left\{x_{2 i-1}, x_{2 i}\right\} \text { for all } 1 \leq i \leq n\right\}
$$

and

$$
A_{n}=A_{n}\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=\left(\begin{array}{cccc}
x_{1}+x_{2} & x_{1}^{2}+x_{2}^{2} & \ldots & x_{1}^{n}+x_{2}^{n} \\
x_{3}+x_{4} & x_{3}^{2}+x_{4}^{2} & \ldots & x_{3}^{n}+x_{4}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{2 n-1}+x_{2 n} & x_{2 n-1}^{2}+x_{2 n}^{2} & \ldots & x_{2 n-1}^{n}+x_{2 n}^{n}
\end{array}\right)
$$

For all $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$ let

$$
V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(\begin{array}{cccc}
y_{1} & y_{1}^{2} & \ldots & y_{1}^{n} \\
y_{2} & y_{2}^{2} & \ldots & y_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n} & y_{n}^{2} & \ldots & y_{n}^{n}
\end{array}\right)
$$

By [5, Lemma 23] we have that

$$
\begin{aligned}
\operatorname{det}\left(A_{n}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{2 n}\right)\right) & =\sum_{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in Y^{n}} \operatorname{det}\left(V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \\
& =\sum_{\substack{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in Y^{n} \\
y_{1} \neq y_{2}}} \operatorname{det}\left(V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)>0
\end{aligned}
$$

because $\operatorname{det}\left(V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)>0$ whenever $\left|\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right|=n$. So, as in 5 we can conclude that there are functions $f, g \in \mathcal{P}_{n}$ with

$$
f\left(x_{2 i}\right)=g\left(x_{2 i-1}\right) \text { and } f\left(x_{2 i-1}\right)=g\left(x_{2 i}\right)
$$

and therefore, there does not exist an SRU of size $2 n-1$.
Remark 2. The polynomials f and g we constructed in [5] and in Lemma 1 have degree n. To see this, note that for all $1 \leq i \leq n$ we have that

$$
(f-g)\left(x_{2 i-1}\right)=-(f-g)\left(x_{2 i}\right)
$$

By the intermediate value theorem, $(f-g)(x)$ has at least n pairwise different zeros. Since $f-g \not \equiv 0$ and since by construction $f-g$ has degree at most n, it follows that $\operatorname{deg}(f-g)=n$. By construction $f-g=1-2 g$. Therefore, $\operatorname{deg}(f)=\operatorname{deg}(g)=n$.

Example 3. Let $S:=\left\{\frac{3}{5}, \frac{11}{10}, \frac{23}{10}, 5, \frac{26}{5}, \frac{63}{10}, 9\right\}$. In the following picture we can see two polynomials f and g of degree 4 with $f[S]=g[S]$ but $f \neq g$. These polynomials indicate that S is not an SRU for \mathcal{P}_{4}.

Proposition 4. There does not exist an SRU of size less than $2 n-1$.
Proof. Let $1 \leq s<2 n-1$. Let $x_{1}<x_{2}<\cdots<x_{s}$. We want to show that $S:=$ $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ is not an SRU for \mathcal{P}_{n}.

Case 1: s is an even number.
Choose $\left\{x_{s+1}, x_{s+2}, \ldots, x_{2 n}\right\} \subseteq \mathbb{R}$ with $x_{s}<x_{s+1}<x_{s+2}<\cdots<x_{2 n}$. By [5, Lemma 23] we can find two functions $f, g \in \mathcal{P}_{n}$ with

$$
f\left(x_{2 i}\right)=g\left(x_{2 i-1}\right) \text { and } f\left(x_{2 i-1}\right)=g\left(x_{2 i}\right)
$$

for all $1 \leq i \leq n$. Therefore we have that

$$
f[S]=g[S] \text { and } f\left[\left\{x_{s+1}, x_{s+2}, \ldots, x_{2 n}\right\}\right]=g\left[\left\{x_{s+1}, x_{s+2}, \ldots, x_{2 n}\right\}\right]
$$

So S is not an SRU for \mathcal{P}_{n}.
Case 2: s is an odd number.
Choose $\left\{x_{s+1}, x_{s+2}, \ldots, x_{2 n-1}\right\} \subseteq \mathbb{R}$ with $x_{s}<x_{s+1}<x_{s+2}<\ldots x_{2 n-1}$. By [5], Lemma 23] we can find two functions $f, g \in \mathcal{P}_{n}$ with

$$
f[S]=g[S] \text { and } f\left[\left\{x_{s+1}, x_{s+2}, \ldots, x_{2 n-1}\right\}\right]=g\left[\left\{x_{s+1}, x_{s+2}, \ldots, x_{2 n-1}\right\}\right] .
$$

So S is not an SRU for \mathcal{P}_{n}.

3 There are no SRUs of size at most $2 n$ for \mathcal{Q}_{n}

We define \mathcal{Q}_{n} to be the set of all non-constant polynomials of degree at most n with complex coefficients. Let $S:=\left\{x_{1}, x_{2}, \ldots, x_{2 n}\right\} \subseteq \mathbb{C}$ be a set of cardinality $2 n$. Our goal is to find two polynomials $f, g \in \mathcal{Q}_{n}$ with $f[S]=g[S]$ but $f \neq g$. By rotating the set S around the origin of the complex plane we can assume without loss of generality that all real parts of the points in S are pairwise different. By renaming the elements in the set, we can assume that

$$
\operatorname{Re}\left(x_{1}\right)<\operatorname{Re}\left(x_{2}\right)<\cdots<\operatorname{Re}\left(x_{2 n}\right) .
$$

Define

$$
Y^{n}:=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n} \mid y_{i} \in\left\{x_{2 i-1}, x_{2 i}\right\} \text { for all } 1 \leq i \leq n\right\}
$$

and let π_{n} be the set of all permutations of $\{1,2, \ldots, n\}$. By translating the set S to the right in the complex plane we can also assume that for all $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in Y^{n}$, all
$M_{0} \subseteq\{1,2, \ldots, n\}$ and all $M_{1} \subseteq[\{1,2, \ldots, n\}]^{2}$ (where $[\{1,2, \ldots, n\}]^{2}$ is the family of all 2-element subsets of $\{1,2, \ldots, n\}$)

$$
\begin{align*}
&\left|\prod_{k \in M_{0}} \operatorname{Im}\left(y_{k}\right) \prod_{\substack{1 \leq i<j \leq n \\
\{i, j\} \in M_{1}}}\left(\operatorname{Im}\left(y_{j}\right)-\operatorname{Im}\left(y_{i}\right)\right)\right| \leq \tag{1}\\
& \leq \frac{1}{2^{n} 2^{\binom{n}{2}}} \prod_{k \in M_{0}} \operatorname{Re}\left(y_{k}\right) \prod_{\substack{1 \leq i<j \leq n \\
\{i, j\} \in M_{1}}}\left(\operatorname{Re}\left(y_{j}\right)-\operatorname{Re}\left(y_{i}\right)\right)
\end{align*}
$$

We will show that there are $f, g \in \mathcal{Q}_{n}$ with

$$
f\left(x_{2 i}\right)=g\left(x_{2 i-1}\right) \text { and } f\left(x_{2 i-1}\right)=g\left(x_{2 i}\right)
$$

for all $1 \leq i \leq n$. The two polynomials will have the form

$$
g(x)=\sum_{j=1}^{n} b_{j} x^{j} \text { with } b_{j} \in \mathbb{C} \text { for } j=1,2, \ldots, n
$$

and

$$
f(x)=1-g(x)
$$

In order to prove that such polynomials f and g exist we have to show that the following linear equation is solvable:

$$
\underbrace{\left(\begin{array}{cccc}
x_{1}+x_{2} & x_{1}^{2}+x_{2}^{2} & \ldots & x_{1}^{n}+x_{2}^{n} \\
x_{3}+x_{4} & x_{3}^{2}+x_{4}^{2} & \ldots & x_{3}^{n}+x_{4}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{2 n-1}+x_{2 n} & x_{2 n-1}^{2}+x_{2 n}^{2} & \cdots & x_{2 n-1}^{n}+x_{2 n}^{n}
\end{array}\right)}_{=: A_{n}}\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) .
$$

To do this we have to show that $\operatorname{det}\left(A_{n}\right) \neq 0$ for every $n \in \mathbb{N}^{*}$. By [5, Lemma 23] we have that

$$
\operatorname{det}\left(A_{n}\right)=\sum_{\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}} \operatorname{det}\left(V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
$$

where

$$
V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(\begin{array}{cccc}
y_{1} & y_{1}^{2} & \ldots & y_{1}^{n} \\
y_{2} & y_{2}^{2} & \ldots & y_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n} & y_{n}^{2} & \ldots & y_{n}^{n}
\end{array}\right)
$$

Note that

$$
\operatorname{det}\left(V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\left(\prod_{k=1}^{n} y_{k}\right)\left(\prod_{1 \leq i<j \leq n}\left(y_{j}-y_{i}\right)\right)
$$

In particular we have that

$$
\operatorname{Re}\left(\operatorname{det}\left(V_{n}\left(y_{1}, \ldots, y_{n}\right)\right)\right)=\left(\prod_{k=1}^{n} \operatorname{Re}\left(y_{k}\right)\right)\left(\prod_{1 \leq i<j \leq n}\left(\operatorname{Re}\left(y_{j}\right)-\operatorname{Re}\left(y_{i}\right)\right)\right)+R
$$

where each summand in R has the form

$$
\pm \prod_{k \in M_{0}} \operatorname{Im}\left(y_{k}\right) \prod_{\substack{1 \leq i<j \leq n \\\{i, j\} \in M_{1}}}\left(\operatorname{Im}\left(y_{j}\right)-\operatorname{Im}\left(y_{i}\right)\right) \prod_{k \notin M_{0}} \operatorname{Re}\left(y_{k}\right) \prod_{\substack{1 \leq i<j \leq n \\\{i, j\} \notin M_{1}}}\left(\operatorname{Re}\left(y_{j}\right)-\operatorname{Re}\left(y_{i}\right)\right)
$$

where $M_{0} \subseteq\{1,2, \ldots, n\}$ and $M_{1} \subseteq[\{1,2, \ldots, n\}]^{2}$ are not both empty and $M_{0} \cup M_{1}$ has even cardinality. Since R contains less than $2^{n} 2^{\binom{n}{2}}$ summands and by (1) we have that

$$
\operatorname{Re}\left(\operatorname{det}\left(V_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)\right)>0
$$

for all $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$. Therefore

$$
\operatorname{det}\left(A_{n}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \neq 0
$$

This implies that there are $f, g \in \mathcal{Q}_{n}$ with $f[S]=g[S]$ but $f \neq g$.
Note that as in Section 2 we can show that there are no SRUs for \mathcal{Q}_{n} of size less than $2 n$.

4 SRUs that are not magic for \mathcal{P}_{2} and \mathcal{P}_{3}

Let \mathcal{P}_{n} be the family of all real, non-constant polynomials of degree at most n. For the family \mathcal{P}_{1} magic sets and SRUs are the same: Let $S \subseteq \mathbb{R}$ and assume that S is an SRU. If S were not magic, there were two functions $f, g \in \mathcal{P}_{1}$ with $f[S] \subseteq g[S]$ but $f \neq g$. But since f and g are both bijective, it follows that $f[S]=g[S]$ which then implies that $f=g$ because S is an SRU. But we assumed that $f \neq g$, which is a contradiction.

However, the following Lemmas show that magic sets and SRUs for \mathcal{P}_{2} and \mathcal{P}_{3} are not the same:
Lemma 5. The set $S:=\{-2,-1,2, \sqrt{8}, \sqrt{14-\sqrt{8}}\}$ is an $S R U$ for \mathcal{P}_{2} but not a magic set.

Proof. The set S is not a magic set because for $f(x):=x^{2}$ and $g(x):=2 x^{2}-x-2$ we have that

$$
f[S]=\{1,4,8,14-\sqrt{8}\} \subseteq\{1,4,8,14-\sqrt{8}, 26-4 \sqrt{2}-\sqrt{14-\sqrt{8}}\}=g[S]
$$

On the other hand, we now show that $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is an SRU for \mathcal{P}_{2}. First of all note that $f[S]=g[S]$ with $|f[S]| \leq 2$ immediately implies $f=g=$ const. Observe also that there is no polynomial $f \in \mathcal{P}_{2}$ with $|f[S]|=3$. So we only have to deal with the case that $|f[S]| \geq 4$. Assume towards a contradiction that there are

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2} \text { and } g(x)=b_{0}+b_{1} x+b_{2} x^{2}
$$

with $f[S]=g[S],|f[S]|=|g[S]| \geq 4$ and $f \neq g$. In other words, f and g satisfy a linear equation of the form

$$
\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & -1 & -x_{i_{1}} & -x_{i_{1}}^{2} \\
1 & x_{2} & x_{2}^{2} & -1 & -x_{i_{2}} & -x_{i_{2}}^{2} \\
1 & x_{3} & x_{3}^{2} & -1 & -x_{i_{3}} & -x_{i_{3}}^{2} \\
1 & x_{4} & x_{4}^{2} & -1 & -x_{i_{4}} & -x_{i_{4}}^{2} \\
1 & x_{5} & x_{5}^{2} & -1 & -x_{i_{5}} & -x_{i_{5}}^{2}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

with $\left\{i_{1}, i_{2}, \ldots, i_{5}\right\} \subseteq\{1,2,3,4,5\}$ and $\left|\left\{i_{1}, \ldots, i_{5}\right\}\right| \geq 4$. By checking all cases, one finds that the only solution of such a linear equation with $f \neq g$ is

$$
f(x)=1+\frac{1}{2} x^{2} \text { and } g(x)=-\frac{1}{2} x+x^{2}
$$

But $f[S] \neq g[S]$. So S is indeed an SRU.
Lemma 6. The set

$$
S:=\left\{1,2,4,10,31, \frac{1}{2}(3+\sqrt{68581}), \frac{1}{2}(3-\sqrt{550558+13347 \sqrt{68581}})\right\}
$$

is an $S R U$ for \mathcal{P}_{3} but not a magic set.

Proof. The set S is not a magic set for \mathcal{P}_{3} because for

$$
f(x)=18(x-1)(x-2) \text { and } g(x):=(x-1)\left(7 x^{2}+120 x-160\right)
$$

we have that $f[S] \subsetneq g[S]$. Observe also that there is no polynomial $f \in \mathcal{P}_{3}$ with $|f[S]|=3$. So we only have to deal with the case that $|f[S]| \geq 4$.
Assume towards a contradiction that there are

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \text { and } g(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}
$$

with $f[S]=g[S],|f[S]|=|g[S]| \geq 4$ and $f \neq g$. In other words, f and g satisfy a linear equation of the form

$$
\left(\begin{array}{cccccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & -1 & -x_{i_{1}} & -x_{i_{1}}^{2} & -x_{i_{1}}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & -1 & -x_{i_{2}} & -x_{i_{2}}^{2} & -x_{i_{2}}^{3_{1}} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & -1 & -x_{i_{3}} & -x_{i_{3}}^{2} & -x_{i_{3}}^{3} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3} & -1 & -x_{i_{4}} & -x_{i_{4}}^{2} & -x_{i_{4}}^{3} \\
1 & x_{5} & x_{5}^{2} & x_{5}^{3} & -1 & -x_{i_{5}} & -x_{i_{5}}^{2} & -x_{i_{5}}^{3} \\
1 & x_{6} & x_{6}^{2} & x_{6}^{3} & -1 & -x_{i_{6}} & -x_{i_{6}}^{2} & -x_{i_{6}}^{3} \\
1 & x_{7} & x_{7}^{2} & x_{7}^{3} & -1 & -x_{i_{7}} & -x_{i_{7}}^{2} & -x_{i_{7}}^{3}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

with $\left\{i_{1}, i_{2}, \ldots, i_{7}\right\} \subseteq\{1,2,3,4,5,6,7\}$ and $\left|\left\{i_{1}, \ldots, i_{7}\right\}\right| \geq 4$. By checking all cases, one finds that the only solution of such a linear equation with $f \neq g$ is

$$
f(x)=\frac{18}{7} x^{2}-\frac{54}{7} x-\frac{124}{7} \text { and } g(x)=x^{3}+\frac{113}{7} x^{2}-40 x
$$

But $f[S] \neq g[S]$. So S is indeed an SRU.
In the above Lemma, the two polynomials showing that the set S is not magic for \mathcal{P}_{3}, are of degree 2 and 3. In the next Lemma we show that there is an SRU S and two polynomials of degree 3 showing that S is not magic.

Lemma 7. The set

$$
S:=\{1,2,5,12,23,27, \alpha\}
$$

with

$$
\alpha=\frac{8}{3}-\frac{13}{3 \sqrt[3]{3197764-9 \sqrt{126243143179}}}-\frac{1}{3} \sqrt[3]{3197764-9 \sqrt{126243143179}}
$$

is an SRU for \mathcal{P}_{3} but not a magic set.
Proof. The set S is not a magic set for \mathcal{P}_{3} because for

$$
f(x)=21(x-1)(x-2)(x-5) \text { and } g(x):=(x-1)\left(-1150 x^{2}+17213 x-13656\right)
$$

we have that $f[S] \subsetneq g[S]$. Observe also that there is no polynomial $f \in \mathcal{P}_{3}$ with $|f[S]|=3$. So we only have to deal with the case that $|f[S]| \geq 4$.
Assume towards a contradiction that there are

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \text { and } g(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}
$$

with $f[S]=g[S],|f[S]|=|g[S]| \geq 4$ and $f \neq g$. In other words, f and g satisfy a linear equation of the form

$$
\left(\begin{array}{cccccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & -1 & -x_{i_{1}} & -x_{i_{1}}^{2} & -x_{i_{1}}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & -1 & -x_{i_{2}} & -x_{i_{2}}^{2} & -x_{i_{2}}^{3} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & -1 & -x_{i_{3}} & -x_{i_{3}}^{2} & -x_{i_{3}}^{3} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3} & -1 & -x_{i_{4}} & -x_{i_{4}}^{2} & -x_{i_{4}}^{3} \\
1 & x_{5} & x_{5}^{2} & x_{5}^{3} & -1 & -x_{i_{5}} & -x_{i_{5}}^{2} & -x_{i_{5}}^{4} \\
1 & x_{6} & x_{6}^{2} & x_{6}^{3} & -1 & -x_{i_{6}} & -x_{i_{6}}^{2} & -x_{i_{6}}^{3} \\
1 & x_{7} & x_{7}^{2} & x_{7}^{3} & -1 & -x_{i_{7}} & -x_{i_{7}}^{2} & -x_{i_{7}}^{3}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

with $\left\{i_{1}, i_{2}, \ldots, i_{7}\right\} \subseteq\{1,2,3,4,5,6,7\}$ and $\left|\left\{i_{1}, \ldots, i_{7}\right\}\right| \geq 4$. By checking all cases, one finds that the only solution of such a linear equation with $f \neq g$ is

$$
f(x)=\frac{6933}{575}-\frac{357}{1150} x+\frac{84}{575} x^{2}-\frac{21}{1150} x^{3} \text { and } g(x)=\frac{30869}{1150} x-\frac{18363}{1150} x^{2}+x^{3}
$$

But $f[S] \neq g[S]$. So S is indeed an SRU.

5 Magic sets for \mathcal{P}_{n}

In this section we will show that for every $s \geq 2 n+1$ there is a magic set of size s for the set \mathcal{P}_{n} of all real, non-constant polynomials of degree at most n.

Remark 8. For $n \geq 1$ the condition that \mathcal{P}_{n} does not contain any constant polynomials is necessary for the existence of a magic set. Otherwise let $M \subseteq \mathbb{R}$ be a non-empty set, $f(x) \equiv c$ for a $c \in \mathbb{R}$ and let g be a non-constant polynomial with $g(m)=c$ for an $m \in M$. Then we have that

$$
\{c\}=f[M] \subseteq g[M]
$$

but $f \neq g$.

First of all we want to give some general definitions:
Definition 9. A directed graph H is a pair (V, E), where V is a set (the vertices of H) and $E \subseteq V \times V$ (the edges of H). For every $v \in V$ we define

$$
\begin{aligned}
\operatorname{indegree}_{H}(v) & :=\left|\left\{v^{\prime} \in V \mid\left(v^{\prime}, v\right) \in E\right\}\right| \\
\operatorname{outdegree}_{H}(v) & :=\left|\left\{v^{\prime} \in V \mid\left(v, v^{\prime}\right) \in E\right\}\right| \text { and } \\
\operatorname{deg}_{H}(v) & :=\operatorname{indegree}_{H}(v)+\operatorname{outdegree}_{H}(v) .
\end{aligned}
$$

Definition 10. Let $H=(V, E)$ be a directed graph.

- A cycle is a subgraph $C=\left(V_{C}, E_{C}\right)$ of H with $V_{C}=\left\{c_{0}, c_{1}, \ldots, c_{m-1}\right\}$ and $E_{C}=$ $\left\{\left(c_{i}, c_{(i+1) \bmod m}\right) \mid i \in \mathbb{N}\right\}$ for an $m \geq 2$.
- A loop is a subgraph $L=\left(V_{L}, E_{L}\right)$ of H with $V_{L}=\{w\}$ and $E_{L}=\{(w, w)\}$.
- A solitary path is a directed path $P=\left(\left\{v_{0}, v_{1}, \ldots, v_{m}\right\},\left\{\left(v_{i}, v_{i+1}\right) \mid i=0,1, \ldots, m-\right.\right.$ $1\}$) with $\operatorname{indegree}_{H}\left(v_{0}\right)=0, \operatorname{deg}_{H}\left(v_{m}\right)>2$ and $\operatorname{deg}_{H}\left(v_{i}\right)=2$ for all $1 \leq i \leq m-1$.

Definition 11. Let $l \in \mathbb{N}$. Cycles and loops $C_{0}=\left(V_{C_{0}}, E_{C_{0}}\right), \ldots, C_{l}=\left(V_{C_{l}}, E_{C_{l}}\right)$ are called obviously different if for every $0 \leq i \leq l$ there is a

$$
y_{i} \in V_{C_{i}} \backslash\left(\bigcup_{j=0, j \neq i}^{l} V_{C_{j}}\right) .
$$

Definition 12. Let H be a directed graph and let H_{1} and H_{2} be two subgraphs of H. Then H_{1} and H_{2} are called undirected edge disjoint iff H_{1} and H_{2} do not share any edges even if we replace all edges in H_{1} and H_{2} by undirected edges.

Let $k, n \in \mathbb{N}^{*}$ with $k \geq 2 n$ and let $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}$. For all $0 \leq i \leq k$ let $v_{i}:=$ $\left(x_{i}, x_{i}^{2}, \ldots, x_{i}^{n}\right)$. The following family \mathcal{H} will play a crucial role in the construction of magic sets of size $k+1$ for the set \mathcal{P}_{n}.

Definition 13. Let \mathcal{H} be the family of all directed graphs $H=(V, E)$ with vertex set $V=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ and a set E of directed edges such that for each $v \in V$ we have that

$$
\operatorname{outdegree}_{H}(v) \geq 1
$$

We now partition the family \mathcal{H} into three parts, namely the graphs of type α_{n}, β_{n} and γ_{n}.
Definition 14. A graph $H \in \mathcal{H}$ is of type

- γ_{n} iff there are more than $n-1$ solitary paths in H.
- β_{n} iff there are more than n obviously different loops and cycles in H and H is not of type γ_{n}.
- α_{n} iff H is neither of type γ_{n} nor of type β_{n}.

In Section 5.1, we will consider graphs of type α_{n} and we will show in Corollary 23, that for every graph $H=(V, E)$ of type α_{n}, there is a $(2 n+1) \times(2 n+1)$-matrix

$$
M_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\left(\begin{array}{ccc}
1 & v_{i_{0}} & -v_{j_{0}} \\
1 & v_{i_{1}} & -v_{j_{1}} \\
\vdots & \vdots & \vdots \\
1 & v_{i_{2 n}} & -v_{j_{2 n}}
\end{array}\right)
$$

with $i_{l}, j_{l} \in\{0,1, \ldots, k\}$ (for all $\left.0 \leq l \leq 2 n\right)$ and $\left(v_{i_{l}}, v_{j_{l}}\right) \in E$ (for all $0 \leq l \leq 2 n$), such that for all open sets $U \subseteq \mathbb{R}^{k+1}$ there is an open set $U_{H} \subseteq U$ with

$$
\begin{equation*}
\operatorname{det}\left(M_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \neq 0 \tag{2}
\end{equation*}
$$

for all $\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in U_{H}$.
Concerning graphs $H=(V, E)$ of type β_{n}, let $C_{0}=\left(V_{C_{0}}, E_{C_{0}}\right), \ldots, C_{n}=\left(V_{C_{n}}, E_{C_{n}}\right)$ be $n+1$ obviously different loops and cycles. Let $x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}$ be $n+1$ vertices of H such that for each $0 \leq l \leq n$,

$$
x_{i_{l}} \in V_{C_{l}} \backslash\left(\bigcup_{m=0, m \neq l}^{n} V_{C_{m}}\right)
$$

We will show in Section 5.2 that for every open set $U \subseteq \mathbb{R}^{k+1}$ there is an open set $U_{H} \subseteq U$ such that for all $\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in U_{H}$ we have

$$
\begin{equation*}
\operatorname{det}\left(N_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \neq 0 \tag{3}
\end{equation*}
$$

where

$$
N_{H}\left(x_{0}, x_{1}, \ldots x_{k}\right)=\left(\begin{array}{ccccc}
\left|V_{C_{0}}\right| & \sum_{x \in V_{C_{0}}} x & \sum_{x \in V_{C_{0}}} x^{2} & \ldots & \sum_{x \in V_{C_{0}}} x^{n} \\
\left|V_{C_{1}}\right| & \sum_{x \in V_{C_{1}}} x & \sum_{x \in V_{C_{1}}} x^{2} & \ldots & \sum_{x \in V_{C_{1}}} x^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left|V_{C_{n}}\right| & \sum_{x \in V_{C_{n}}} x & \sum_{x \in V_{C_{n}}} x^{2} & \ldots & \sum_{x \in V_{C_{n}}} x^{n}
\end{array}\right) .
$$

In Section 5.3 we will show that for every graph H of type γ_{n} there is an $n \times n$-matrix

$$
L_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\left(\begin{array}{c}
v_{j_{0}}-v_{i_{0}} \\
v_{j_{1}}-v_{i_{1}} \\
\vdots \\
v_{j_{n-1}}-v_{i_{n-1}}
\end{array}\right)
$$

such that

- $j_{l}, i_{l} \in\{0,1, \ldots, k\}$ for all $0 \leq l \leq n-1$;
- $v_{i_{l}}$ and $v_{j_{l}}$ are different but have the same successor in H and
- for all open sets $U \subseteq \mathbb{R}^{k+1}$ there is an open set $U_{H} \subseteq U$ such that for all $\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in$ U_{H} we have that

$$
\begin{equation*}
\operatorname{det}\left(L_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \neq 0 . \tag{4}
\end{equation*}
$$

As a consequence of (22), (3) and (4) and since $|\mathcal{H}|<\infty$, we can find a point $\left(m_{0}, m_{1}, \ldots, m_{k}\right) \in$ \mathbb{R}^{k+1} such that for all $H \in \mathcal{H}$ of type α_{n}

$$
\operatorname{det}\left(M_{H}\left(m_{0}, \ldots, m_{k}\right)\right) \neq 0
$$

for all $H \in \mathcal{H}$ of type β_{n}

$$
\operatorname{det}\left(N_{H}\left(m_{0}, \ldots, m_{k}\right)\right) \neq 0,
$$

and for all $H \in \mathcal{H}$ of type γ_{n}

$$
\operatorname{det}\left(L_{H}\left(m_{0}, \ldots, m_{k}\right)\right) \neq 0
$$

This leads to the following
Theorem 15. The set $M:=\left\{m_{0}, m_{1}, \ldots, m_{k}\right\}$ is a magic set for \mathcal{P}_{n}.
Proof. Assume towards a contradiction that M is not a magic set for \mathcal{P}_{n}. So, there are two non-constant polynomials

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

and

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}
$$

such that $f[M] \subseteq g[M]$ but $f \neq g$. Let $H=(V, E)$ with

$$
V:=M \text { and } E:=\left\{\left(m_{i}, m_{j}\right) \mid f\left(m_{i}\right)=g\left(m_{j}\right)\right\} .
$$

Note that $H \in \mathcal{H}$. There are three cases:
Case 1: H is of type α_{n}.
In this case

$$
M_{H}\left(m_{0}, m_{1}, \ldots, m_{k}\right)=\left(\begin{array}{ccc}
1 & v_{i_{0}} & -v_{j_{0}} \\
1 & v_{i_{1}} & -v_{j_{1}} \\
\vdots & \vdots & \vdots \\
1 & v_{i_{2 n}} & -v_{j_{2 n}}
\end{array}\right)
$$

has non-zero determinant. Note that for all $0 \leq l \leq n$ we have that

$$
\begin{aligned}
& f\left(m_{i_{l}}\right)=g\left(m_{j_{l}}\right) \Longleftrightarrow \\
& \left(a_{0}-b_{0}\right)+\left(a_{1} m_{i_{l}}+\cdots+a_{n} m_{i_{l}}^{n}\right)-\left(b_{1} m_{j_{l}}+\cdots+b_{n} m_{j_{l}}^{n}\right)=0 .
\end{aligned}
$$

So, f and g satisfy the following system of linear equations:

$$
M_{H}\left(m_{0}, \ldots, m_{k}\right) \cdot\left(\begin{array}{c}
a_{0}-b_{0} \\
a_{1} \\
\vdots \\
a_{n} \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

Since $\operatorname{det}\left(M_{H}\left(m_{0}, \ldots, m_{k}\right)\right) \neq 0$, this equation has only the trivial solution. Therefore, $f=g$, which is a contradiction to our assumption that M is not a magic set.

Case 2: H is of type β_{n}.
In this case

$$
N_{H}\left(m_{0}, \ldots, m_{k}\right)=\left(\begin{array}{ccccc}
\left|V_{C_{0}}\right| & \sum_{x \in V_{C_{0}}} x & \sum_{x \in V_{C_{0}}} x^{2} & \ldots & \sum_{x \in V_{C_{0}}} x^{n} \\
\left|V_{C_{1}}\right| & \sum_{x \in V_{C_{1}}} x & \sum_{x \in V_{C_{1}}} x^{2} & \ldots & \sum_{x \in V_{C_{1}}} x^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left|V_{C_{n}}\right| & \sum_{x \in V_{C_{n}}} x & \sum_{x \in V_{C_{n}}} x^{2} & \ldots & \sum_{x \in V_{C_{n}}} x^{n}
\end{array}\right)
$$

with $n+1$ obviously different cycles $C_{0}=\left(V_{C_{0}}, E_{C_{0}}\right), C_{1}=\left(V_{C_{1}}, E_{C_{1}}\right), \ldots, C_{n}=\left(V_{C_{n}}, E_{C_{n}}\right)$. For all $0 \leq i \leq n$ we have that

$$
\sum_{m \in V_{C_{i}}}(f-g)(m)=0
$$

In other words, we have to solve the following system of linear equations:

$$
N_{H}\left(m_{0}, \ldots, m_{k}\right) \cdot\left(\begin{array}{c}
a_{0}-b_{0} \\
a_{1}-b_{1} \\
\vdots \\
a_{n}-b_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Since $\operatorname{det}\left(N_{H}\left(m_{0}, \ldots, m_{k}\right)\right) \neq 0$ this equation has only the trivial solution. Therefore, $f=g$, which is again a contradiction.

Case 3: H is of type γ_{n}.
In this case

$$
L_{H}\left(m_{0}, m_{1}, \ldots, m_{k}\right)=\left(\begin{array}{c}
v_{j_{0}}-v_{i_{0}} \\
v_{j_{1}}-v_{i_{1}} \\
\vdots \\
v_{j_{n-1}}-v_{i_{n-1}}
\end{array}\right)
$$

has non-zero determinant. For all $0 \leq l \leq n-1$ the points $m_{i_{l}}$ and $m_{j_{l}}$ have the same successors in H. Therefore,

$$
f\left(m_{j_{l}}\right)=f\left(m_{i_{l}}\right) \Longleftrightarrow a_{1}\left(m_{j_{l}}-m_{i_{l}}\right)+a_{2}\left(m_{j_{l}}^{2}-m_{i_{l}}^{2}\right)+\cdots+a_{n}\left(m_{j_{l}}^{n}-m_{i_{l}}^{n}\right)=0
$$

for all $0 \leq l \leq n-1$. In other words, f satisfies the following system of linear equations:

$$
L_{H}\left(m_{0}, m_{1}, \ldots, m_{k}\right) \cdot\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Since $\operatorname{det}\left(L_{H}\left(m_{0}, m_{1}, \ldots, m_{k}\right)\right) \neq 0$ this equation has only the trivial solution. Therefore, f is a constant polynomial. This is a contradiction.

5.1 Graphs and matrices of type α_{n}

Remark 16. From now on we assume that there is at least one solitary path in every graph of type α_{n}. If a graph H of type α_{n} has no solitary path, it is of type 1_{n} (i.e., it has at most n obviously different cycles and loops) and we can find a suitable matrix as in [5].

Definition 17. Let $G=(V, E)$ be a graph. Assume, that for each edge in E either the foot or the head is marked. The marked vertices are called relevant. Then $v \in V$ is called a unique vertex iff

$$
\operatorname{indegree}_{G}(v)=0, \quad \text { outdegree }{ }_{G}(v)=1
$$

and v is the relevant vertex of the edge incident with v.
Definition 18. Let $n \in \mathbb{N}^{*}$ and let $H=(V, E)$ be a graph of type α_{n} with $|V| \geq 2 n+1$. A good sequence of length $m \in \mathbb{N}$ of H is a sequence of graphs

$$
(\emptyset, \emptyset)=H_{0}=\left(V_{0}, E_{0}\right) \subseteq H_{1}=\left(V_{1}, E_{1}\right) \subseteq \cdots \subseteq H_{m}=\left(V_{m}, E_{m}\right) \subseteq H=(V, E)
$$

such that for all $0 \leq l<m$ the set $E_{l+1} \backslash E_{l}$ has one of the following forms:
(a) $E_{l+1} \backslash E_{l}=\left\{\left(v_{i}, v_{j}\right),\left(v_{j}, v_{t}\right)\right\}$ with $0 \leq i, j, t \leq k, i \neq j$ and $j \neq t$. Moreover, if v_{j} is contained in an edge in E_{l} together with a v_{s}, then v_{s} is a unique vertex of H_{l}. The relevant vertex of both edges $\left(v_{i}, v_{j}\right)$ and $\left(v_{j}, v_{t}\right)$ is v_{j}.
(b) $E_{l+1} \backslash E_{l}=\left\{\left(v_{i}, v_{j}\right),\left(v_{s}, v_{t}\right)\right\}$ with $0 \leq i, j, s, t \leq k, i \neq j, i \neq t$ and $s \neq t$. Moreover, if v_{t} or v_{i} is contained in an edge in E_{l} together with a v_{p} then v_{p} is a unique vertex of H_{l}. The relevant vertex of $\left(v_{i}, v_{j}\right)$ is v_{i} and the relevant vertex of $\left(v_{s}, v_{t}\right)$ is v_{t}.
(c) $E_{l+1} \backslash E_{l}=\left\{\left(v_{i}, v_{i}\right),\left(v_{j}, v_{t}\right)\right\}$ with $0 \leq i, j, t \leq k$ and $j \neq t$. Moreover, if v_{i} and v_{j} are contained in an edge in E_{l} together with a v_{s}, then v_{s} is a unique vertex of H_{l}. The relevant vertex of $\left(v_{i}, v_{i}\right)$ is v_{i} and the relevant vertex of $\left(v_{j}, v_{t}\right)$ is v_{j}.
(d) $E_{l+1} \backslash E_{l}=\left\{\left(v_{i}, v_{i}\right),\left(v_{t}, v_{j}\right)\right\}$ with $0 \leq i, j, t \leq k$ and $j \neq t$. Moreover, if v_{i} and v_{j} are contained in an edge in E_{l} together with a v_{s}, then v_{s} is a unique vertex of H_{l}. The relevant vertex of $\left(v_{i}, v_{i}\right)$ is v_{i} and the relevant vertex of $\left(v_{t}, v_{j}\right)$ is v_{j}.
(e) $E_{l+1} \backslash E_{l}=\left\{\left(v_{i}, v_{j}\right),\left(v_{s}, v_{t}\right)\right\}$ with $i \neq j$ and $s \neq t$. We have that indegree ${ }_{H}\left(v_{i}\right)=0$ and for all $0 \leq q \leq l$ we have that $E_{q} \backslash E_{q-1}$ contains an edge with a unique vertex of H_{l}. Moreover we assume that if there is an edge in E_{l} containing v_{t} and a v_{p} we have that either v_{p} is a unique vertex of H_{l} or $\left(v_{t}, v_{p}\right) \in E_{l}$. The relevant vertex of $\left(v_{i}, v_{j}\right)$ is v_{i} and the relevant vertex of $\left(v_{s}, v_{t}\right)$ is v_{t}.
Lemma 19. Let $n \in \mathbb{N}^{*}$. Every graph $H=\left(V_{H}, E_{H}\right)$ of type α_{n} with $\left|V_{H}\right| \geq 2 n+1$ has a good sequence

$$
(\emptyset, \emptyset)=H_{0}=\left(V_{0}, E_{0}\right) \subseteq H_{1}=\left(V_{1}, E_{1}\right) \subseteq \cdots \subseteq H_{m}=\left(V_{m}, E_{m}\right) \subseteq H
$$

of length m with $\left|E_{m}\right| \geq 2 n$ and an edge $z=\left(z_{0}, z_{1}\right) \notin E_{m}$ such that neither z_{0} nor z_{1} is a relevant vertex of any edge in E_{m}.

Proof. Let $H=\left(V_{H}, E_{H}\right)$ be a graph of type α_{n}. If there is a vertex $v \in V_{H}$ with outdegree $_{H}(v) \geq 2$ and indegree ${ }_{H}(v)=0$ remove all but one edge containing v. The resulting graph is still of type α_{n}. Let \mathcal{L} be the set of all isolated loops of H. To be more precise

$$
\mathcal{L}:=\left\{(\{v\},\{(v, v)\}) \subseteq H \mid \operatorname{deg}_{H}(v)=2\right\} .
$$

Let $\mathcal{T}=\left\{S_{0}, S_{1}, \ldots, S_{l}\right\}$ (for an $l \in \mathbb{N}$) be the set of all solitary paths in H. Let $0 \leq i \leq l$. If S_{i} ends in a vertex v in which only solitary paths end we have that $(v, v) \in E_{H}$. Add this edge to S_{i} iff this loop has not already been added to a S_{j} with $j<i$. Define $Z:=S_{0}$. Note that $|\mathcal{T}| \geq 1$ by Remark 16 Remove Z from \mathcal{T}. Let \mathcal{S} be the set of all first edges of the remaining solitary paths in \mathcal{T} that contain an odd number of edges.

Step 1: Removing isolated loops with solitary paths.
Assume that $\mathcal{S} \neq \emptyset$ and $\mathcal{L} \neq \emptyset$. Let $s=\left(s_{0}, s_{1}\right) \in \mathcal{S}$ and let $t=\left(t_{0}, t_{0}\right) \in \mathcal{L}$. Add s, t and the corresponding edges to H_{0}. Call the resulting graph H_{1}. Note that $E_{1} \backslash E_{0}$ has the form (c) and that s contains a unique vertex. Remove t from \mathcal{L} and remove s from \mathcal{S}. The relevant vertex of s is s_{0} and the relevant vertex of t is t_{0}. Redo this construction until either $\mathcal{S}=\emptyset$ or $\mathcal{L}=\emptyset$.

From now on we assume that $\mathcal{L}=\emptyset$. The construction in the other case is similar. Let

$$
(\emptyset, \emptyset)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m_{0}}
$$

with $m_{0} \in \mathbb{N}$ be the good sequence we constructed so far.
Step 2: Adding cycles.
Let $C_{0}=\left(V_{C_{0}}, E_{C_{0}}\right), C_{1}=\left(V_{C_{1}}, E_{C_{1}}\right), \ldots, C_{l_{1}}=\left(V_{C_{l_{1}}}, E_{C_{l_{1}}}\right)$ be a maximal family of pairwise disjoint cycles in H. If there is a cycle $C=C_{j}$ for a $0 \leq j \leq l_{1}$ that contains a vertex to which Z points, assume that $C=C_{l_{1}}$. This is important because we might have to add edges of the form (e). Assume that we have already added $C_{0}, C_{1}, \ldots, C_{i-1}$ for a $0 \leq i \leq l_{1}$ to $H_{m_{1}}$ and defined a good sequence

$$
(\emptyset, \emptyset)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m^{\prime}}
$$

for an $m^{\prime} \geq m_{0}$. Now we want to add C_{i}. If the solitary path Z points to a vertex in $V_{C_{i}}$ mark this vertex v_{0} with a cross.

Case 1: There is a vertex $v_{0} \in V_{C_{i}}$ that is marked with a cross.
If $\mathcal{S} \neq \emptyset$ let $\mathcal{M}_{i} \subseteq \mathcal{S}$ be maximal with $0 \leq\left|\mathcal{M}_{i}\right|+1 \leq\left|E_{C_{i}}\right|$ and such that $\left|\mathcal{M}_{i}\right|+\left|E_{C_{i}}\right|$ is even. If $\mathcal{S}=\emptyset$ let $\mathcal{M}_{i}=\emptyset$. Remove \mathcal{M}_{i} from \mathcal{S}.

Case 1.1: $\left|\mathcal{M}_{i}\right|+\left|E_{C_{i}}\right|$ is even.
There are two subcases:

- $\mathcal{M}_{i} \neq \emptyset$.

Let $e=\left(e_{0}, e_{1}\right)$ be the first edge in $E_{C_{i}}$ coming after v_{0} and let $s=\left(s_{0}, s_{1}\right) \in \mathcal{M}_{i}$. Add e, s and the corresponding vertices to $H_{m^{\prime}}$. We call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ is of the form (b). Remove e and s from $E_{C_{i}}$ and \mathcal{M}_{i}. The relevant vertex of e is e_{1} and the relevant vertex of s is s_{0}. Note that $e_{1} \neq v_{0}$ because $\left|\mathcal{M}_{i}\right|+1 \leq\left|E_{C_{i}}\right|$. In particular v_{0} is not a relevant vertex of any edge in $H_{m^{\prime}+1}$.

- $\mathcal{M}_{i}=\emptyset$.

There is a vertex $w \in V_{C_{i}} \backslash\left\{v_{0}\right\}$ such that both edges $e=\left(e_{0}, e_{1}\right)$ and $f=\left(f_{0}, f_{1}\right)$ containing w are still in $E_{C_{i}}$. We assume that w is the first vertex with this property coming after v_{0} in C_{i}. Add e, f and the corresponding vertices to $H_{m^{\prime}}$. We call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ is of the form (a). Remove e and f from $E_{C_{i}}$. The relevant vertex of e and of f is w. Note that v_{0} is not a relevant vertex of any edge in $H_{m^{\prime}+1}$.

Case 1.2: $\left|\mathcal{M}_{i}\right|+\left|E_{C_{i}}\right|$ is odd.
Note that we are only in this case when $\mathcal{M}_{i}=\emptyset$ and C_{i} is still the original cycle. Let $y=\left(y_{0}, y_{1}\right)$ be the first edge in $E_{C_{i}}$ coming after v_{0}. By the assumption in Case 1 we have in particular that $i=l_{1}$. So there is no cycle C_{i+1}. If $\left|E_{Z}\right|$ is even, add y, the third last (or if this is not possible the first) edge $f=\left(f_{0}, f_{1}\right)$ of Z and the corresponding vertices to $E_{m^{\prime}}$. We call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ has the form (b). Remove f from Z and y from $E_{C_{i}}$. The relevant vertex of y is y_{1} and the relevant vertex of f is f_{0}. If there is no cycle C_{i+1} and $\left|E_{Z}\right|$ is odd, remove y from $E_{C_{i}}$.

Case 2: There is no vertex in $V_{C_{i}}$ that is marked with a cross.
Let $\mathcal{M}_{i} \subseteq \mathcal{S}$ be maximal with $\left|\mathcal{M}_{i}\right| \leq\left|E_{C_{i}}\right|$. Remove \mathcal{M}_{i} from \mathcal{S}.
Case 2.1: $\left|\mathcal{M}_{i}\right|+\left|E_{C_{i}}\right|$ is odd.
Note that in this case $\left|\mathcal{M}_{i}\right|<\left|E_{C_{i}}\right|$ and therefore, $\mathcal{S}=\emptyset$ (we removed \mathcal{M}_{i} from \mathcal{S}). So for all $j>i$ we will have that $\mathcal{M}_{j}=\emptyset$.

- There is a $j>i$ such that $\left|E_{C_{j}}\right|=\left|E_{C_{j}}\right|+\left|\mathcal{M}_{j}\right|$ is odd.

Let $e=\left(e_{0}, e_{1}\right) \in E_{C_{i}}$ be an arbitrary edge. Note that C_{i} is still equal to the original cycle. Otherwise we would not be in this subcase. Let $f=\left(f_{0}, f_{1}\right) \in E_{C_{j}}$ be an arbitrary edge. That is, if possible, ending in a vertex that is marked with a cross. Add e, f and the corresponding edges to $H_{m^{\prime}}$. We call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ is of the form (b). Remove e from $E_{C_{i}}$ and remove f from $E_{C_{j}}$. The relevant vertex of e is e_{1} and the relevant vertex of f is f_{0}.

- There is no $j>i$ such that $\left|E_{C_{j}}\right|=\left|E_{C_{j}}\right|+\left|\mathcal{M}_{j}\right|$ is odd.

If $\left|E_{Z}\right|$ is even, let $e=\left(e_{0}, e_{1}\right) \in E_{C_{i}}$ be an arbitrary edge and let $f=\left(f_{0}, f_{1}\right)$ be the third last (or if this is not possible the first) edge in Z. Add e, f and the corresponding vertices to $H_{m^{\prime}}$. Call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ has the form (b). Remove f from Z and e from $E_{C_{j}}$.

If $\left|E_{Z}\right|$ is odd let $e=\left(e_{0}, e_{1}\right) \in E_{C_{i}}$ be an arbitrary edge. Remove e from $E_{C_{i}}$.
Case 2.2: $\quad\left|\mathcal{M}_{i}\right|+\left|E_{C_{i}}\right|$ is even.
There are two subcases:

- $\mathcal{M}_{i} \neq \emptyset$.

If $E_{C_{i}}$ does not contain all edges of the original cycle C_{i} let $e=\left(e_{0}, e_{1}\right)$ be the first edge in $E_{C_{i}}$. Otherwise let e be an arbitrary edge in $E_{C_{i}}$. Let $s=\left(s_{0}, s_{1}\right) \in \mathcal{M}_{i}$. Add e, s and the corresponding edges to $H_{m^{\prime}}$. We call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ has the form (b) or (e). Remove e and s from \mathcal{M}_{i} and $E_{C_{i}}$. The relevant variable of e is e_{1} and the relevant variable of s is s_{0}.

- $\mathcal{M}_{i}=\emptyset$.

In this case let w be the first vertex in C_{i} with $\operatorname{deg}_{C_{i}}(w)=2$ (or if C_{i} is still the original cycle choose a $w \in V_{C_{i}}$ with $\left.\operatorname{deg}_{C_{i}}(w)=2\right)$. Add the edges $e, f \in E_{C_{i}}$ that contain w to $H_{m^{\prime}}$. We call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ has the form (a). Remove e and f from $E_{C_{i}}$. The relevant vertex of e and of f is w.

Assume that we have done this construction for all cycles $C_{0}, C_{1}, \ldots, C_{l_{1}}$. Let

$$
(\emptyset, \emptyset)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m_{1}}
$$

with $m_{1} \geq m_{0}$ be the good sequence we constructed so far.
Step 3: Adding paths.
Let $P_{0}=\left(V_{P_{0}}, E_{P_{0}}\right)$ be a maximal path in H which is undirected edge disjoint from $H_{m_{1}}$. In addition we require that all vertices (except possibly the first or the last one) are disjoint from the vertices in $H_{m_{1}}$. If possible let P_{0} be a path such that Z points to a vertex v_{0} in $V_{P_{0}} \backslash V_{m_{1}}$. Let $p_{0} \in \mathbb{N}$ be the number of vertices in $V_{P_{0}}$ that are not in $V_{m_{1}}$.

Case 1: The solitary path Z points to a vertex $v_{0} \in V_{P_{0}} \backslash V_{m_{1}}$.
If $\mathcal{S} \neq \emptyset$ let $\mathcal{N}_{0} \subseteq \mathcal{S}$ be maximal with $\left|\mathcal{N}_{0}\right|+1 \leq p_{0}$ such that $\left|\mathcal{N}_{0}\right|+p_{0}$ is even. If $\mathcal{S}=\emptyset$ let $\mathcal{N}_{0}:=\emptyset$. Remove \mathcal{N}_{0} from \mathcal{S}.

Case 1.1: $\left|\mathcal{N}_{0}\right|+p_{0}$ is even.
There are two subcases:

- $\mathcal{N}_{0} \neq \emptyset$.

Let $e=\left(e_{0}, e_{1}\right)$ be the first edge in P_{0}. If it points to v_{0} remove it from P_{0} and from H. Otherwise let $s=\left(s_{0}, s_{1}\right) \in \mathcal{S}$. Add e, s and the corresponding vertices to $H_{m_{2}}$. Call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ is of the form (b), (c) or (d). The relevant vertex of e is e_{1} and the relevant vertex of s is s_{0}. Remove s and e from \mathcal{N}_{0} and from $E_{P_{0}}$.

- $\mathcal{N}_{0}=\emptyset$.

Let $w \neq v_{0}$ be the first vertex in the path that is contained in exactly two edges of P_{0}. Let e and f be the two edges containing w. Add them and the corresponding vertices to $H_{m_{1}}$ and call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ has the form (a), (c) or (d). Remove e and f from P_{0}. The relevant vertex of e and of f is w.

Repeat the procedure described in Case 1.1 until $\left|E_{P_{0}}\right| \leq 1$. Remove the remaining edge from $E_{P_{0}}$.

Case 1.2: $\left|\mathcal{N}_{0}\right|+p_{0}$ is odd.
Note that we are only in this case when $\mathcal{N}_{0}=\emptyset$.

- On the right or on the left of v_{0} there is an even number of edges.

Let $w \neq v_{0}$ be the first vertex in the path that is contained in exactly two edges of P_{0} and $w \notin\left\{z_{0}, z_{1}\right\}$ if we have already defined an edge $z=\left(z_{0}, z_{1}\right)$. Let e and f be the two edges containing w. Add e, f and the corresponding vertices to $H_{m_{1}}$ and call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ has the form (a), (c) or (d). Remove e and f from $E_{P_{0}}$ or from E_{Z}. The relevant vertex of e and of f is w.

- We are not in the first subcase and v_{0} is the first vertex in $V_{P_{0}} \backslash V_{m_{1}}$.

Let e be the first edge in P_{0}. Remove e from H and add back the original Z to H. This graph H is of type α_{n}. Redo the whole construction. Note that at one point we will never be in this case anymore.

- We are not in the first two subcases.

If P_{0} ends in a vertex of a cycle C_{i} that is relevant for an edge in $E_{m_{1}}$ mark that last vertex of P_{0} with a cross and redo the whole construction with the same cycles and paths. If necessary remove one edge s from \mathcal{M}_{i} and add it to \mathcal{N}_{0}. So we can now assume that the last vertex in P_{0} is not relevant for any edge in $E_{m_{1}}$. There are two cases we have to look at:

- If $\left|\mathcal{N}_{0}\right|=1$, let $e=\left(e_{0}, e_{1}\right)$ be the first edge in P_{0} (note that $e_{1} \neq v_{0}$) and let $s=\left(s_{0}, s_{1}\right) \in \mathcal{N}_{0}$. Add e, s and the corresponding vertices to $H_{m_{1}}$ and remove them from P_{0} and from \mathcal{N}_{0}. Call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ is of the form (b). The relevant vertex of e is e_{1} and the relevant vertex of s is s_{0}.
- If $\mathcal{N}_{0}=\emptyset$, let $e=\left(e_{0}, e_{1}\right)$ be the first edge in P_{0}. Note that by assumption $e_{1} \neq v_{0}$. Let $f=\left(f_{0}, f_{1}\right)$ be the third last (or if this is not possible the first) edge in Z. Add e, f and the corresponding vertices to $H_{m_{1}}$. Call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ is of the form (b), (c) or (d). Remove e form P_{0} and f from Z.
If now $\left|E_{Z}\right|=0$ let $z=\left(z_{0}, z_{1}\right)$ be the first edge coming after v_{0} in P_{0}. In particular we have that $z_{0}=v_{0}$. Note that neither z_{0} nor z_{1} is a relevant vertex of an edge we added to H_{0} so far. Moreover, it will never be a relevant vertex of any edge we will add in the future.

Repeat the procedure described in Case 1.2 until $\left|E_{P_{0}}\right| \leq 1$. Remove the remaining edge from P_{0}.

Case 2: The solitary path Z does not point to a vertex in P_{0}.
Let $\mathcal{N}_{0} \subseteq \mathcal{S}$ be maximal with $\left|\mathcal{N}_{0}\right| \leq p_{0}$. Remove \mathcal{N}_{0} from \mathcal{S}.
Case 2.1: $\mathcal{N}_{0} \neq \emptyset$.
Let $e=\left(e_{0}, e_{1}\right)$ be the first edge in P_{0} and let $f=\left(f_{0}, f_{1}\right) \in \mathcal{N}_{0}$. Add e, f and the corresponding vertices to $H_{m_{1}}$. Call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ is of the form (b). Remove e and f from \mathcal{N}_{0} and from $E_{P_{0}}$. The relevant vertex of e is e_{1} and the relevant vertex of f is f_{0}
Case 2.2: $\mathcal{N}_{0}=\emptyset$.
Let w be the first vertex in P_{0} that is contained in exactly two edges $e, f \in E_{P_{0}}$. Add e, f and the corresponding vertices to $H_{m_{1}}$. Call the resulting graph $H_{m_{1}+1}$. Note that $E_{m_{1}+1} \backslash E_{m_{1}}$ is of the form (a). Remove e and f from $E_{P_{0}}$. The relevant vertex of e and of f is w.
Repeat this procedure until $\left|E_{P_{0}}\right| \leq 1$. Remove the remaining edges from P_{0}.
Do the same procedure for all paths in H. Let

$$
(\emptyset, \emptyset)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m_{2}}
$$

with $m_{2} \geq m_{1}$ be the good sequence we constructed so far.
Step 4: Adding the rest of the solitary paths.
Add Z to \mathcal{T}. And if $\left|E_{Z}\right| \geq 2$ is odd, add the first edge of Z to \mathcal{S}. Define

$$
\mathcal{T}_{2}:=\left\{S \in \mathcal{T}| | E_{S} \mid \geq 2\right\}=\left\{T_{0}, T_{1}, \ldots, T_{l_{3}}\right\}
$$

for an $l_{3} \in \mathbb{N}$. Assume that $Z=T_{l_{3}}$ if $\left|E_{Z}\right| \geq 2$. Note that if Z ends in a vertex v in which only solitary paths end, Z contains the loop (v, v).
Let $F=\emptyset$. Assume that we have already added $T_{0}, T_{1}, \ldots, T_{i-1}$ for a $0 \leq i \leq l_{2}$ to $H_{m_{2}}$ and we defined a good sequence

$$
(\emptyset, \emptyset)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m^{\prime}}
$$

with a $m^{\prime} \geq m_{2}$. Now we want to add $T_{i}=\left(V_{T_{i}}, E_{T_{i}}\right)$.
Case 1: $\left|E_{T_{i}}\right|>2$ is even and $\mathcal{S} \neq \emptyset$.
Let $s=\left(s_{0}, s_{1}\right)$ be the third last edge in $E_{T_{i}}$ and let $t=\left(t_{0}, t_{1}\right) \in \mathcal{S}$. Add s, t and the corresponding vertices to $H_{m^{\prime}}$. Call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ is of the form (b). Remove t from \mathcal{S} and s from $E_{T_{i}}$. If t is contained in a $T_{j}, j>i$, remove t from $E_{T_{j}}$. The relevant vertex of s is s_{1} and the relevant vertex of t is t_{0}.

Case 2: $\left|E_{T_{i}}\right|>2$ is even and $\mathcal{S}=\emptyset$.
Let w be the first vertex in T_{i} with $\operatorname{deg}_{T_{i}}(w)=2$. Let e and f be two edges containing w. Add e, f and the corresponding vertices to $H_{m^{\prime}}$. Call the resulting graph $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ is of the form (a) or (d). Remove e and f from $E_{T_{i}}$. The relevant vertex of e and of f is w.

Case 3: $\left|E_{T_{i}}\right|>2$ is odd and $\mathcal{S} \backslash E_{T_{i}} \neq \emptyset$.
Let $e=\left(e_{0}, e_{1}\right)$ be the third last edge in $E_{T_{i}}$ and let $f=\left(f_{0}, f_{1}\right) \in \mathcal{S} \backslash\{e\}$. Add e, f and the corresponding vertices to $H_{m^{\prime}}$. The resulting graph is called $H_{m^{\prime}+1}$. Note that $E_{m^{\prime}+1} \backslash E_{m^{\prime}}$ is of the form (b). The relevant vertex of e is e_{1} and the relevant vertex of f is f_{1}. Remove e from $E_{T_{i}}$ and f from \mathcal{S}. Remove the first edge of $E_{T_{i}}$ from \mathcal{S}.

Case 4: $\left|E_{T_{i}}\right|>2$ is odd and $\mathcal{S} \backslash E_{T_{i}}=\emptyset$.
Let $z=\left(z_{0}, z_{1}\right)$ be the first edge in $E_{T_{i}}$. Remove z from $E_{T_{i}}$ and from \mathcal{S}. Note that neither z_{0} nor z_{1} will ever be a relevant vertex of an edge we add to H_{0}.

Case 5: $\left|E_{T_{i}}\right|=2$.
There are two subcases:

- $T_{i}=Z$ and we haven't defined an edge z yet.

Let $z=\left(z_{0}, z_{1}\right)$ be the last edge in $E_{T_{i}}$. Remove both edges from $E_{T_{i}}$. Note that neither z_{0} nor z_{1} are relevant vertices of any edge in $E_{m^{\prime}}$.

- We are not in the first subcase and $E_{T_{i}}$ does not contain a loop.

Add the two edges in $E_{T_{i}}$ to the set F and remove them from $E_{T_{i}}$.

- We are not in the first subcase and $E_{T_{i}}$ does contain a loop.

Do the same as in Case 2.
Repeat the procedure with all solitary paths. Let

$$
(\emptyset, \emptyset)=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{m_{3}}
$$

with $m_{3} \geq m_{2}$ be the good sequence we constructed so far.
Step 5: Adding the set F.
Let $F=\left\{\left\{e_{0}, f_{0}\right\},\left\{e_{1}, f_{1}\right\}, \ldots,\left\{e_{l_{4}}, f_{l_{4}}\right\}\right\}$ with a $l_{4} \in \mathbb{N}$. The pairs of edges are enumerated in the order we added them to F. Now add e_{0}, f_{0} and the corresponding vertices to $H_{m_{3}}$. Call the resulting graph $H_{m_{3}+1}$. Note that $E_{m_{3}+1} \backslash E_{m_{3}}$ has the form (a). The relevant vertex of e_{0} and of f_{0} is the vertex they share. Repeat the procedure with $\left\{f_{1}, e_{1}\right\},\left\{f_{2}, e_{2}\right\}$ and so on.

Example 20. In this example we will construct a good sequence for the following graph H of type α_{n} :

Figure 1: Graph $H=(V, E)$.

Figure 2: solitary path Z.

Figure 4: \mathcal{N}_{0} and path P_{0}.

Figure 6: Path P_{2}.

Figure 3: \mathcal{M}_{0} and cycle C_{0}.

Figure 5: Path P_{1}.

Figure 7: Path P_{3}.

Figure 8: Graph $H=(V, E)$. The squared vertices are relevant vertices of an edge. The numbers show the order in which the edges are added.
(end example)
Let $k \geq n$, and for all $0 \leq i, j \leq k$ and all $0 \leq s \leq n$ define

$$
v_{i-}-v_{j}:=\left(x_{i}, x_{i}^{2}, \ldots, x_{i}^{s},-x_{j},-x_{j}^{2}, \ldots,-x_{j}^{s}\right)
$$

and

$$
1_{-} v_{i-}-v_{j}:=\left(1, x_{i}, x_{i}^{2}, \ldots, x_{i}^{s},-x_{j},-x_{j}^{2}, \ldots,-x_{j}^{s}\right)
$$

For every graph $H=(V, E)$ of type α_{n} choose a good sequence

$$
(\emptyset, \emptyset)=H_{0}=\left(V_{0}, E_{0}\right) \subseteq H_{1}=\left(V_{1}, E_{1}\right) \subseteq \cdots \subseteq H_{n}=\left(V_{n}, E_{n}\right)
$$

with $\left|E_{n}\right|=2 n$ and an additional edge $z=\left(z_{0}, z_{1}\right)$ such that neither z_{0} nor z_{1} is a relevant vertex for any edge in E_{n}. For every graph H of type α_{n} and all $0 \leq l \leq n$ let $M_{H_{l}}\left(x_{0}, \ldots, x_{k}\right)$
be a square matrix with pairwise different rows $v_{i-}-v_{j}$ where $\left(v_{i}, v_{j}\right) \in E_{H_{l}}$. For all $0 \leq l \leq n$ we define

$$
\mathcal{C}_{l}:=\left\{M_{H_{l}}\left(x_{0}, \ldots, x_{k}\right) \mid H \text { is a graph of type } \alpha_{n}\right\} .
$$

Furthermore, we define M_{H} to be the square matrix with $2 n+1$ pairwise different rows $1 _v_{i-}-v_{j}$ where $\left(v_{i}, v_{j}\right) \in E_{n}$ or $\left(v_{i}, v_{j}\right)=z$.

Definition 21. Let $R_{0}:=\emptyset$ and $p_{0}\left(x_{0}, \ldots, x_{k}\right):=1$. For every $1 \leq l \leq n$ let R_{l} be the set of all relevant vertices of the edges in $E_{l} \backslash E_{l-1}$. We define

$$
p_{l}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\left(\prod_{v_{i} \in R_{l}} x_{i}^{l}\right) p_{l-1}\left(x_{0}, x_{1}, \ldots, x_{k}\right) .
$$

The polynomial p_{l} is called the relevant polynomial of $M_{H_{l}}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$.
Lemma 22. Let H be a graph of type α_{n}, let $1 \leq l \leq n$ and let $M_{H_{l}} \in \mathcal{C}_{l}$. Then we have that

$$
\operatorname{det}\left(M_{H_{l}}\right)=\overline{p_{l}}+q_{l},
$$

where $\overline{p_{l}}$ is plus or minus the relevant polynomial of H_{l} and q_{l} is a polynomial that contains no term of the form $\pm p_{l}$.

Proof. We prove the Lemma by induction on l. For $l=1$ it is clear. So assume that $2 \leq l \leq n$. By the induction hypothesis we have that

$$
\operatorname{det}\left(M_{H_{l-1}}\right)=\overline{p_{l-1}}+q_{l-1}
$$

with the properties described in the Lemma. There are five cases:
Case 1: $E_{l} \backslash E_{l-1}$ has the form (a).
There are two rows

$$
\begin{aligned}
Z_{0} & =v_{i-}-v_{j} \\
Z_{1} & =v_{j-}-v_{t}
\end{aligned}
$$

in $M_{H_{l}}$ such that v_{j} and $-v_{j}$ are only contained in these two rows and in rows that also contain a unique vertex of H_{l}. We first do a Laplace expansion of $M_{H_{l}}$ along Z_{0}. So we have that

$$
\operatorname{det}\left(M_{H_{l}}\right)=\epsilon_{0} x_{j}^{l} \operatorname{det}\left(\overline{M_{H_{l}}}\right)+\gamma,
$$

where γ is a polynomial, $\epsilon_{0} \in\{-1,1\}$ and $\overline{M_{H_{l}}}$ is the matrix we obtain from $M_{H_{l}}$ when we delete the row Z_{0} and the $2 l$-th column. Now we do a Laplace expansion along the remainders of the row Z_{1}. We get

$$
\operatorname{det}\left(\overline{M_{H_{l}}}\right)=\epsilon_{1} x_{j}^{l} \operatorname{det}\left(M_{H_{l-1}}\right)+\delta=\epsilon_{1} x_{j}^{l}\left(\overline{p_{l-1}}+q_{l-1}\right)+\delta,
$$

where δ is a polynomial and $\epsilon_{1} \in\{-1,1\}$. So we have that

$$
\operatorname{det}\left(M_{H_{l}}\right)=\epsilon_{0} \epsilon_{1} x_{j}^{2 l}\left(\overline{p_{l-1}}+q_{l-1}\right)+\epsilon_{0} x_{j}^{l} \delta+\gamma .
$$

Define

$$
\overline{p_{l}}:=\epsilon_{0} \epsilon_{1} x_{j}^{2 l} \overline{p_{l-1}} \text { and } q_{l}:=\epsilon_{0} \epsilon_{1} x_{j}^{2 l} q_{l-1}+\epsilon_{0} x_{j}^{l} \delta+\gamma .
$$

It remains to prove that q_{l} does not contain a term of the form $\pm p_{l}$. First we show that γ does not contain a term of the form $\pm p_{l}$. If γ does not contain a term containing $x_{j}^{2 l}$ we are done. So there are terms in γ containing $x_{j}^{2 l}$. But then not the whole $x_{j}^{2 l}$ comes from the rows Z_{0}, Z_{1}. Since outside of Z_{0} and Z_{1} the vertex v_{j} is only contained in rows together with unique vertices of H_{l-1}, there is a unique variable (i.e. the variable belonging to a unique vertex) which is not contained in the term with $x_{j}^{2 l}$ in it. So there are no terms in γ of the form $\pm p_{l}$.

Similarly we can show that there are no terms in $\epsilon_{0} x_{j} \delta$ of the form $\pm p_{l}$. By the properties of q_{l-1} also $\epsilon_{0} \epsilon_{1} x_{j}^{2 l} q_{l-1}$ does not contain a term of the form $\pm p_{l}$. So q_{l} has the desired properties.

Case 2: $E_{l} \backslash E_{l-1}$ has the form (b).
There are two rows

$$
\begin{aligned}
& Z_{0}=v_{i-}-v_{j} \\
& Z_{1}=v_{s-}-v_{t}
\end{aligned}
$$

in $M_{H_{l}}$ such that $v_{i},-v_{i}, v_{t}$ and $-v_{t}$ are only contained in these two rows and in rows together with a unique vertex of H_{l-1}. After doing two Laplace expansions we see that

$$
\operatorname{det}\left(M_{H_{l}}\right)=\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l}\left(\overline{p_{l-1}}+q_{l-1}\right)+\epsilon_{0} x_{i}^{l} \delta+\gamma .
$$

Define

$$
\overline{p_{l}}:=\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l} \overline{p_{l-1}} \text { and } q_{l}:=\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l} q_{l-1}+\epsilon_{0} x_{i}^{l} \delta+\gamma .
$$

If γ does not contain a term containing $x_{i}^{l} x_{t}^{l}$ we are done. Otherwise not the whole $x_{i}^{l} x_{t}^{l}$ comes from the rows Z_{0} and Z_{1}. Since outside of Z_{0} and Z_{1} the vertices v_{i} and v_{j} are only contained in rows together with unique vertices of H_{l-1}, there is a unique variable (i.e. the variable belonging to a unique vertex) which is not contained in the term with $x_{i}^{l} x_{t}^{l}$ in it. So there are no terms in γ of the form $\pm p_{l}$. Similarly we can show that $\epsilon_{0} x_{i}^{l} \delta$ does not contain terms of the form $\pm p_{l}$. By the properties of q_{l-1} the polynomial $\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l} q_{l-1}$ does not contain a term of the form $\pm p_{l}$.

Case 3: $E_{l} \backslash E_{l-1}$ has the form (c).
This case is similar to Case 2.
Case 4: $E_{l} \backslash E_{l-1}$ has the form (d).
This case is similar to Case 2.
Case 5: $E_{l} \backslash E_{l-1}$ has the form (e).
There are two rows

$$
\begin{aligned}
& Z_{0}=v_{i-}-v_{j} \\
& Z_{1}=v_{s-}-v_{t}
\end{aligned}
$$

in $M_{H_{l}}$ such that indegree ${ }_{H}\left(v_{i}\right)=0$ and such that v_{t} is only contained in rows together with a unique variable or on the left side. Moreover, for all $0 \leq l^{\prime}<l$ we have that one of the edges in $E_{l^{\prime}} \backslash E_{l^{\prime}-1}$ contains a unique vertex of H_{l-1}. After doing two Laplace expansions we see that

$$
\operatorname{det}\left(M_{H_{l}}\right)=\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l}\left(\overline{p_{l-1}}+q_{l-1}\right)+\epsilon_{0} x_{i}^{l} \delta+\gamma
$$

Define

$$
\overline{p_{l}}:=\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l} \overline{p_{l-1}} \text { and } q_{l}:=\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l} q_{l-1}+\epsilon_{0} x_{i}^{l} \delta+\gamma .
$$

Note that there is no term in γ that contains x_{i}^{l} because Z_{0} is the only row in $M_{H_{l}}$ containing x_{i}. So γ does not contain a term of the form $\pm p_{l}$.

Assume towards a contradiction that there is a term in δ containing x_{t}^{l}. But then x_{t}^{l} contains an $x_{t}^{l^{\prime}}$ with $0<l^{\prime}<l$ maximal from an other row than Z_{1}. If this $x_{t}^{l^{\prime}}$ comes from a row that also contains a unique variable, then the term containing x_{t}^{l} does not contain this unique variable. So this is not possible. Therefore, the $x_{t}^{l^{\prime}}$ comes from a row of the form

$$
v_{t-}-v_{p}
$$

for a $p \in\{0,1, \ldots, k\} \backslash\{t\}$. But then the term does not contain the the unique variable in p_{l-1} that has power l^{\prime}. This is a contradiction. So $\epsilon_{0} x_{i}^{l} \delta$ does not contain a term of the form $\pm p_{l}$. By the properties of q_{l-1} the polynomial $\epsilon_{0} \epsilon_{1} x_{i}^{l} x_{t}^{l} q_{l-1}$ does not contain a term of the form $\pm p_{l}$.

Corollary 23. Let H be a graph of type α_{n}. For every open set $U \subseteq \mathbb{R}^{k+1}$ there is an open subset $U_{H} \subseteq U$ such that for all $\left(x_{0}, x_{1}, \ldots, x_{k}\right) \in U_{H}$

$$
\operatorname{det}\left(M_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \neq 0
$$

Proof. It suffices to prove that

$$
\operatorname{det}\left(M_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \not \equiv 0
$$

By Lemma 22 we have that

$$
\operatorname{det}\left(M_{H_{n}}\right)=\overline{p_{n}}+q_{n}
$$

where $\overline{p_{n}}$ is plus or minus the relevant polynomial of H_{n} and q_{n} is a polynomial that contains no term of the form $\pm p_{n}$. Let $z=\left(v_{i}, v_{j}\right)$ be the edge in E_{H} that does not contain a relevant vertex of any edge in E_{n}. Do a Laplace expansion of M_{H} along the row

$$
1_{-} v_{i-}-v_{j} .
$$

We have that

$$
\operatorname{det}\left(M_{H}\left(x_{0}, \ldots, x_{k}\right)\right)=\operatorname{det}\left(M_{n}\right)+\gamma=\overline{p_{n}}+q_{n}+\gamma
$$

where γ is a polynomial in which each term either contains x_{i} or x_{j}. Since $\overline{p_{n}}$ does not contain terms with x_{i} or x_{j} in it, we have that

$$
\operatorname{det}\left(M_{H}\left(x_{0}, \ldots, x_{k}\right)\right) \not \equiv 0
$$

This finishes the proof.

5.2 Graphs of type β_{n}

Let $H=(V, E) \in \mathcal{H}$ be a graph of type β_{n}. So H contains at least $n+1$ obviously different loops and cycles $C_{0}=\left(V_{C_{0}}, E_{C_{0}}\right), C_{1}=\left(V_{C_{1}}, E_{C_{1}}\right), \ldots, C_{n}=\left(V_{C_{n}}, E_{C_{n}}\right)$. Without loss of generality we can assume that for all $0 \leq i \leq n$ we have that

$$
x_{i} \in V_{C_{i}} \backslash\left(\bigcup_{j=0, j \neq i}^{n} V_{C_{j}}\right) .
$$

Let

$$
N_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\left(\begin{array}{ccccc}
\left|V_{C_{0}}\right| & \sum_{x \in V_{C_{0}}} x & \sum_{x \in V_{C_{0}}} x^{2} & \ldots & \sum_{x \in V_{C_{0}}} x^{n} \\
\left|V_{C_{1}}\right| & \sum_{x \in V_{C_{1}}} x & \sum_{x \in V_{C_{1}}} x^{2} & \ldots & \sum_{x \in V_{C_{1}}} x^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\left|V_{C_{n}}\right| & \sum_{x \in V_{C_{n}}} x & \sum_{x \in V_{C_{n}}} x^{2} & \ldots & \sum_{x \in V_{C_{n}}} x^{n}
\end{array}\right)
$$

Then we have that

$$
\begin{aligned}
& \operatorname{det}\left(N_{H}\left(x_{0}, x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)\right)=\operatorname{det}\left(\begin{array}{cccc}
\left|V_{C_{0}}\right| & x_{0} & x_{0}^{2} & \ldots \\
\mid x_{0}^{n} \\
\left|V_{C_{1}}\right| & x_{1} & x_{1}^{2} & \ldots \\
\vdots & \vdots & \vdots & x_{1}^{n} \\
\left|V_{C_{n}}\right| & x_{n} & x_{n}^{2} & \ldots \\
\vdots \\
& x_{n}^{n}
\end{array}\right) \\
& =\sum_{l=0}^{n}(-1)^{l+2}\left|V_{C_{l}}\right| \operatorname{det}\left(\begin{array}{cccc}
x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{l-1} & x_{l-1}^{2} & \ldots & x_{l-1}^{n} \\
x_{l+1} & x_{l+1}^{2} & \ldots & x_{l+1}^{n} \\
x_{l+2} & x_{l+2}^{2} & \ldots & x_{l+2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right) \\
& =\sum_{l=0}^{n}(-1)^{l}\left|V_{C_{l}}\right| \prod_{\substack{0 \leq i<j \leq n \\
i, j \neq l}}\left(x_{j}-x_{i}\right) \not \equiv 0 .
\end{aligned}
$$

Therefore, $\operatorname{det}\left(N_{H}\left(x_{0}, \ldots, x_{k}\right)\right) \not \equiv 0$. So, for every open set $U \subseteq \mathbb{R}^{k+1}$ there is an open set $U_{H} \subseteq U$ such that for all $\left(x_{0}, \ldots, x_{k}\right) \in U_{H}$

$$
\operatorname{det}\left(N_{H}\left(x_{0}, \ldots, x_{k}\right)\right) \neq 0
$$

5.3 Graphs of type γ_{n}

Let $H=(V, E) \in \mathcal{H}$ be a graph of type γ_{n}. Let $V_{0} \subseteq V$ be a maximal subset such that the direct successors of the vertices in V_{0} are pairwise different. Since H contains at least n solitary paths there is a set $W_{0} \subseteq V \backslash V_{0}$ which contains at least n points. We define the matrix $L_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ belonging to H as follows:

$$
L_{H}\left(x_{0}, \ldots, x_{k}\right)=\left(\begin{array}{c}
v_{j_{0}}-v_{i_{0}} \\
v_{j_{1}}-v_{i_{1}} \\
\vdots \\
v_{j_{n-1}}-v_{i_{n-1}}
\end{array}\right)
$$

where for all $0 \leq l \leq n-1$ the vertices $v_{i_{l}} \in V_{0}$ and $v_{j_{l}} \in W_{0}$ have the same successor in H and the vertices $v_{j_{l}}, 0 \leq l \leq n-1$, are pairwise different.
Lemma 24. Let $H=(V, E) \in \mathcal{H}$ be a graph of type γ_{n} and let

$$
L_{H}\left(x_{0}, \ldots, x_{k}\right)
$$

be a matrix belonging to H. Then we have that $\operatorname{det}\left(L_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \not \equiv 0$.
Proof. Let V_{0} and W_{0} be as above. Without loss of generality we assume that $x_{j_{l}}=x_{l}$ for all $0 \leq l \leq n-1$. Since $V_{0} \cap W_{0} \neq \emptyset$ we have that $V_{0} \subseteq\left\{x_{n+1}, \ldots, x_{k}\right\}$. Let $x_{n+1}=x_{n+2}=$ $\cdots=x_{k}=0$. Then we have that

$$
L_{H}\left(x_{0}, x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)=\left(\begin{array}{cccc}
x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n}
\end{array}\right)
$$

This is a Vandermonde matrix. Its determinant is not constantly equal to zero. Therefore, $\operatorname{det}\left(L_{H}\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right) \not \equiv 0$.

6 Magic sets for \mathcal{Q}_{n}

To construct a magic set for \mathcal{Q}_{n} we could redo the construction from Section 5. However, this is not necessary:

Fact 25. Let $M \subseteq \mathbb{R}$ be a magic set for \mathcal{P}_{n} and let $f \in \mathcal{P}_{n}$. Then we have that $|f[M]| \geq$ $n+1$.

Proof. Let $M=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\} \subseteq \mathbb{R}$ be a magic set for \mathcal{P}_{n} and assume towards a contradiction that there is an $f \in \mathcal{P}_{n}$ with $|f[M]| \leq n$. Note that $k \geq 2 n+1$ by Section 2 . So, there is a non-constant polynomial $g \in \mathcal{P}_{n}$ with $g \neq f$ and $g\left[\left\{m_{1}, \ldots, m_{n}\right\}\right]=f[M]$. Therefore, $f[M] \subseteq g[M]$ but $f \neq g$ which contradicts the assumption that M is a magic set for \mathcal{P}_{n}.

Lemma 26. Every magic set for \mathcal{P}_{n} is also a magic set for \mathcal{Q}_{n}.
Proof. Let $M \subseteq \mathbb{R}$ be a magic set for \mathcal{P}_{n} and let $f, g \in \mathcal{Q}_{n}$ with $f[M] \subseteq g[M]$. Let

$$
f(x)=f_{0}(x)+i f_{1}(x) \quad \text { and } \quad g(x)=g_{0}(x)+i g_{1}(x)
$$

where f_{0}, f_{1}, g_{0} and g_{1} are polynomials of degree at most n with real coefficients. By our assumption we have that

$$
f_{0}[M] \subseteq g_{0}[M] \quad \text { and } \quad f_{1}[M] \subseteq g_{1}[M]
$$

because $f[M] \subseteq g[M]$ and M contains only real numbers. Note that f_{0} or f_{1} is not constant. Without loss of generality we assume that f_{1} is not constant. Since $f_{1}[M] \subseteq g_{1}[M], g_{1}$ is also not constant. So, we have that $f_{1}=g_{1}$ because M is a magic set for \mathcal{P}_{n}. If f_{0} is also not constant, it follows that $f_{0}=g_{0}$ and therefore $f=g$. So, assume that f_{0} is constantly equal to $c \in \mathbb{R}$. By Fact 25 there are $m_{1}, m_{2}, \ldots, m_{n+1} \in M$ such that $f_{1}\left(m_{1}\right), f_{1}\left(m_{2}\right), \ldots, f_{1}\left(m_{n+1}\right)$ are pairwise different. Since $f[M] \subseteq g[M]$ there are pairwise different $m_{i_{1}}, m_{i_{2}}, \ldots, m_{i_{n+1}} \in M$ such that for $1 \leq k \leq n+1$ we have

$$
c+i f_{1}\left(m_{k}\right)=g_{0}\left(m_{i_{k}}\right)+i g_{1}\left(m_{i_{k}}\right) \Rightarrow f_{1}\left(m_{k}\right)=g_{1}\left(m_{i_{k}}\right) \wedge c=g_{0}\left(m_{i_{k}}\right) .
$$

So, $g_{0}(x)-c$ is a polynomial of degree at most n that has at least $n+1$ zeros. This shows that g_{0} is constantly equal to c. Therefore we have $f_{0}=g_{0}$ which implies $f=g$.

Acknowledgment

We would like to thank the referee for his or her careful reading of our manuscript and the comment on the proof of Lemma 26 .

References

[1] Alessandro Berarducci and Dikran Dikranjan. Uniformly approachable functions and spaces. In Proceedings of the Eleventh International Conference of Topology (Trieste, 1993), volume 25, pages 23-55 (1994), 1993.
[2] Maxim R. Burke and Krzysztof Ciesielski. Sets on which measurable functions are determined by their range. Canad. J. Math., 49(6):1089-1116, 1997.
[3] Krzysztof Ciesielski and Saharon Shelah. A model with no magic sets. J. Symbolic Logic, 64(4):1467-1490, 1999.
[4] Harold G. Diamond, Carl Pomerance, and Lee Rubel. Sets on which an entire function is determined by its range. Math. Z., 176(3):383-398, 1981.
[5] Lorenz Halbeisen, Norbert Hungerbühler, and Salome Schumacher. Sets and multisets of range uniqueness for polynomials. Linear Algebra Appl., 589:39-61, 2020.
[6] Lorenz Halbeisen, Marc Lischka, and Salome Schumacher. Magic sets. Real Anal. Exchange, 43(1):187-204, 2018.

[^0]: *Partially supported by SNF grant 200021_178851.

