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Abstract

We investigate various kinds of bases in infinite dimensional Banach spaces.
In particular, we consider the complexity of Hamel bases in separable and
non-separable Banach spaces and show that in a separable Banach space
a Hamel basis cannot be analytic, whereas there are non-separable Hilbert
spaces which have a discrete and closed Hamel basis. Further we investi-
gate the existence of certain complete minimal systems in `∞ as well as in
separable Banach spaces.

Outline. The paper is concerned with bases in infinite dimensional Banach spaces.
The first section contains the definitions of the various kinds of bases and biorthogonal
systems and also summarizes some set-theoretic terminology and notation which will
be used throughout the paper. The second section provides a survey of known or
elementary results. The third section deals with Hamel bases and contains some
consistency results proved using the forcing technique. The fourth section is devoted
to complete minimal systems (including Φ-bases and Auerbach bases) and the last
section contains open problems.
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fully acknowledged. The workshop was supported by the Nuffield Foundation Grant NAL/00513/G
of the third author, the EPSRC Advanced Fellowship of the second author and the grant GACR
201/03/0933 of the fourth author.

1



2

1. Basics about bases

In what follows, all Banach spaces are assumed to be infinite dimensional. Except
one, all Banach spaces we consider are Banach spaces over the real field R, and the
only exception is the infinite dimensional Banach space R over the field Q.

Hamel bases. Let X be a Banach space and let {xi : i ∈ I} ⊆ X be an arbitrary
set of vectors of X. Let 〈xi : i ∈ I〉 denote the linear span of {xi : i ∈ I}. A set
{xi : i ∈ I} ⊆ X is called a Hamel basis of X if 〈xi : i ∈ I〉 = X and for every j ∈ I
we have xj /∈

〈
xi : i ∈ I \ {j}

〉
.

Hamel bases were first introduced by Georg Hamel in [Ham05] to define a discontin-
uous linear functional on the real line. In fact, he constructed by transfinite induction
an algebraic basis in the Banach space R over Q.

Complete minimal systems. Let X be a Banach space and let {xi : i ∈ I} ⊆ X
be an arbitrary set of vectors of X. Let [xi : i ∈ I] denote the closure of the linear
span of {xi : i ∈ I}. A set {xi : i ∈ I} ⊆ X is called a complete system if [xi : i ∈
I] = X, and it is called a minimal system if for every j ∈ I, xj /∈

[
xi : i ∈ I \ {j}

]
.

A complete minimal system, abbreviated c.m.s. is a complete system which is also
minimal.

Using functionals we can characterize minimal systems (and consequently complete
minimal systems) in the following way (cf. [LT77, 1.f.]):

Let X be a Banach space. A pair of sequences {xi : i ∈ I} ⊆ X and {fi : i ∈ I} ⊆
X∗ is called a biorthogonal system if fj(xi) = δij. Now, a sequence {xi : i ∈ I} ⊆ X
is minimal if and only if there is a sequence {fi : i ∈ I} ⊆ X∗, such that the pair(
{xi : i ∈ I}, {fi : i ∈ I}

)
is a biorthogonal system.

Φ-bases. In [KPP88] Vladimir Kadets, Anatolij Plichko and Mikhail Popov intro-
duced and investigated the notion of finitary bases of Banach spaces, called Φ-bases,
which are complete minimal systems of a certain type. Φ-bases are weaker than the
so-called Enflo-Rosenthal bases, which are complete minimal systems such that
every countable subsystem is a basic sequence (i.e., a Schauder basis in the closure of
its linear span) with respect to some enumeration of its elements.

If {xi : 0 ≤ i ≤ n} ⊆ X is any finite set of vectors of X, the basis constant
µ{xi : 0 ≤ i ≤ n} is the least number M ≤ ∞ for which∥∥∥ k∑

i=0

aixi

∥∥∥ ≤M ·
∥∥∥ n∑
i=0

aixi

∥∥∥
holds for any scalars ai and any integer k with 0 ≤ k ≤ n. A complete system {xi : i ∈
I} ⊆ X is called a finitary basis of X, briefly a Φ-basis, if there exists a constant
M <∞ such that for any finite set I0 ⊆ I there is an ordering I0 = {ij : 0 ≤ j ≤ n}
such that µ{xij : 0 ≤ j ≤ n} ≤M . The least such constant M is called the Φ-basis
constant of the Φ-basis {xi : i ∈ I}.
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Φ-bases are in fact just a special kind of complete minimal systems. To see this let
us recall the following result (cf. [KPP88, Proposition 1]):

Proposition 1.1. If {xi : i ∈ I} ⊆ X is a Φ-basis of some Banach space X with a Φ-
basis constant M , then the distance between any xj ∈ {xi : i ∈ I} and

[
xi : i ∈ I\{j}

]
is greater than or equal to 1

2M
· ‖xj‖.

Proof. Let {xi : i ∈ I} ⊆ X be a Φ-basis with a Φ-basis constant M . By the definition
of M it is straightforward to see that for any xj ∈ {xi : i ∈ I0}, where I0 ⊆ I is a
finite subset of I, for any set of scalars ai we have ‖ajxj‖ ≤ 2M ·

∥∥∑
i∈I0 aixi

∥∥, and

hence, 2M ·
∥∥xj −∑i∈I0\{j} aixi

∥∥ ≥ ‖xj‖. Thus, the distance between any xj and[
xi : i ∈ I \ {j}

]
is greater than or equal to 1

2M
· ‖xj‖. a

Now, assume that {xi : i ∈ I} ⊆ X is a normalized Φ-basis of some Banach space
X. By the previous fact and the Hahn-Banach Theorem, for every i ∈ I we find an
fi ∈ X∗ such that fi(xj) = δij, and moreover we can have that ‖fi‖ ≤ 2M (for all
i ∈ I). In particular {xi : i ∈ I} ⊆ X is a normalized complete minimal system.

Auerbach bases. In a finite dimensional Hilbert space one may easily check that
the vector x is orthogonal to a vector y, denoted x ⊥ y, if and only if inf{‖x− ry‖ :
r ∈ R} = ‖x‖. This can be used as a definition of orthogonality in any Banach
space. In general this gives some surprising results, such as that the relation ‘⊥’ is
not necessarily symmetric. Nevertheless one may still ask if every Banach space has
a basis consisting of orthogonal vectors, more precisely an Auerbach basis as defined
below.

Let X be a Banach space and let {xi : i ∈ I} ⊆ X. Then {xi : i ∈ I} is an
Auerbach basis of X if [xi : i ∈ I] = X, and if for every j ∈ I,

‖xj‖ = inf
{
‖xj − y‖ : y ∈

[
xi : i ∈ I \ {j}

]}
.

This notion was introduced by Herman Auerbach in his Ph.D. thesis [Au29] where
he proved that every finite dimensional normed space has an Auerbach basis, as
mentioned in Stefan Banach’s book [Ba32, p. 238]. The thesis and the proof were lost
in World War II and Auerbach himself was killed by the Gestapo at Lwów in the
summer of 1943. In 1947 Auerbach’s theorem was reproved by Malon Day in [Da47]
and Angus Taylor in [Ta47] and a very elegant proof can also be found in [LT77,
p. 16].

Using biorthogonal systems we can characterize Auerbach bases as a special kind
of complete minimal systems:

Let {xi : i ∈ I} be a normalized c.m.s. of some Banach space X and let
(
{xi : i ∈

I}, {fi : i ∈ I}
)

be the corresponding biorthogonal system. Then {xi : i ∈ I} is an
Auerbach basis of X if for every i ∈ I, ‖fi‖ = 1.

To ‘construct’ a Hamel basis in some Banach space, we just well-order the vectors
and then construct the Hamel basis by transfinite induction. So, every Banach space
has a Hamel basis. However, the construction above uses the Axiom of Choice, and
hence, we do not know how a Hamel basis looks like: For example, can a Hamel basis
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be closed, or non-meagre, or definable? We will answer some questions of that type
in Section 3.

Unlike Hamel bases, not every Banach space has a c.m.s. (see e.g., [Pl80] or [GK80]).
Moreover, even though `∞ has a c.m.s. (see [DJ73] and [Go83]), the space `∞ has a
non-separable subspace X which has complete minimal systems, but none of them
can be extended to a c.m.s. of `∞ (cf. [Go84, Theorem 3]). The existence of Φ-bases
and of Auerbach bases in certain Banach spaces will be discussed in Section 4.

Before going to the main part of the paper we need to review some basic set-theoretic
notions.

Some set theory. For the reader’s convenience we shall recall some set-theoretic
terminology and basic facts. Our set-theoretic axioms are the axioms of Zermelo
and Fraenkel including the Axiom of Choice AC, denoted ZFC. All our set-theoretic
notations and definitions are standard and can be found in textbooks such as [Je03],
[Ku83] or [BJ95]. In some parts of this paper we use the so-called forcing technique
to construct models of ZFC in which Banach spaces with certain properties exist.
Forcing is a very sophisticated tool and we don’t attempt to explain it here. So, as
far as forcing is concerned, the paper is not self-contained.

A set x is transitive if every element of x is a subset of x. A relation R well-
orders a set x, or 〈R, x〉 is a well-ordering, if 〈R, x〉 is a total ordering and every
non-empty subset of x has an R-least element. The Axiom of Choice is equivalent to
the statement that every set can be well-ordered. A set x is an ordinal number if
x is transitive and well-ordered by ∈. Ordinal numbers will be usually denoted by
Greek letters like α, β, . . . In particular, for two ordinal numbers α and β, α < β is
the same as saying α ∈ β. The Axiom of Choice is also equivalent to the statement
that for every set x there exists an ordinal number α and a bijection f : α → x.
The class of all ordinal numbers is transitive and well-ordered by ∈. The set of all
natural numbers is equal to the set of all finite ordinal numbers and is denoted by
ω. In particular, a natural number n is the set of all natural numbers which are
smaller than n, e.g., 0 = ∅. An ordinal number α is a called a successor ordinal if
α = β ∪ {β} (for some ordinal β), otherwise, α is called a limit ordinal. If α is an
infinite limit ordinal, then the cofinality of α, denoted cf(α) is the least limit ordinal
β such that there is an increasing β-sequence 〈αξ : ξ < β〉 with limξ→β αξ = α (see
e.g., [Je03, p. 31]).

For a set x the cardinality of x, denoted by |x|, is the least ordinal number α
for which there exists a bijection f : α → x; such an ordinal number α is called a
cardinal number (or just a cardinal). For example, |ω| = ω, and finite cardinal
numbers correspond to natural numbers. A set x is called finite if |x| ∈ ω, otherwise
it is called infinite. Further, it is called countable if |x| ≤ ω. For a set x the power
set of x is denoted by P(x). There exists a bijection between R and P(ω), hence
|R| = |P(ω)|, and we denote this cardinality by c. The Continuum Hypothesis CH
states that c = ω1, where ω1 denotes the least ordinal number which is not countable.

For any cardinals κ and λ, κ · λ denotes the cardinality of the product κ × λ. If
at least one of the two cardinals is infinite, then κ · λ is always equal to max{κ, λ}.
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For any cardinals κ and λ let κλ denote the cardinality of the set λκ of all functions
from λ to κ. For example 2λ = |P(λ)| which is always strictly greater than λ. For
any cardinal κ let κ+ be the least cardinal which is strictly greater than κ. The
Generalized Continuum Hypothesis GCH states that for each infinite cardinal κ we
have 2κ = κ+. An infinite cardinal κ is called regular if cf(κ) = κ. Notice that cf(κ)
is always regular. As a consequence of König’s Theorem we get the following (see
e.g., [Je03, Corollaries 5.12–14]):

Fact 1.2. Let κ and λ be infinite cardinals. Then cf(2κ) > κ, cf(κλ) > λ, and
κcf(κ) > κ.

For any set x and any cardinal κ let [x]κ := {y ∈ P(x) : |y| = κ} and [x]<κ := {y ∈
P(x) : |y| < κ}. If x is infinite, then

∣∣[x]<ω
∣∣ = |x|.

2. Cardinality issues in Banach spaces

In [HH00] (see also [Ma45]) it is shown that for any infinite dimensional Banach
space X, and for any Hamel basis H of X we have |H| = |X|, which is at least c.
(Note that the point of this result is when |X| = c.) This implies the following

Proposition 2.1. Every Banach space X over a complete field has 2|X| different
normalized Hamel bases.

Proof. Let H ⊆ X be a normalized Hamel basis of X and let h0 ∈ H. For any set
I ⊆ H \ {h0}, let BI :=

{
(h0 + h)/‖h0 + h‖ : h ∈ I} and let HI := BI ∪ (H \ I).

Now, HI is a normalized Hamel basis of X and for any two different subsets I and I ′

of H \ {h0} we have HI 6= HI′ . Since there are 2|X| such subsets, X has 2|X| different
normalized Hamel bases. a

Can we ask for more? Obviously, one cannot aim for more than 2κ different normalized
Hamel bases, but one could try to find a family of 2κ different normalized Hamel bases
such that the cardinality of the intersection of any two of them is less than κ (see
Question 4).

Proposition 2.2. The unit sphere of a real Banach space X is not the union of less
than c Hamel bases of X.

Proof. Let x and y be two different unit vectors of X and let S =
{

(rx+ty)/‖rx+ty‖ :

r, t ∈ R
}

. Then S is a subset of the unit sphere with |S| = c and every Hamel basis
of X contains at most two vectors from S. Thus S, and in particular the unit sphere,
cannot be covered by less than c Hamel bases of X. a

At this point we would like to mention that not even a weakened form of Proposi-
tion 2.2 works for the Banach space R overQ: In fact Paul Erdős and Shizuo Kakutani
showed in [EK43, Theorem 2] that CH is equivalent to the statement that R is the
union of countably many sets of rationally independent numbers.

With respect to complete minimal systems we get the following
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Proposition 2.3. The cardinality of a c.m.s. of a Banach space X is equal to the
density character of X (denoted by d(X)).

Proof. On the one hand, the set of all finite linear combinations of a c.m.s. with
rational coefficients is dense in X, and on the other hand, every c.m.s. of X is discrete
in X. a

At this point we would like to introduce the notation Bx,r for the open ball centred
at x with radius r, which will be useful throughout the paper.

As a matter of fact we would like to mention the following simple observations, as we
shall use them later:

Proposition 2.4. Let X be a Banach space.

(a) If A ⊆ X and |A| < d(X), then A is nowhere dense in X.

(b) We always have |X| ≤ d(X)ω (see also Lemma 2.8).

Proof. (a) Suppose otherwise, so let Bx,r be an open ball in which A is dense. (Clearly
this implies that A is infinite.) Then

⋃
q∈Q q(A−x) is a set of the same size as A and

is dense in X.

(b) If D is a dense subset of X then every element of X is a limit point of a countable
sequence from D. a

The following is a well-known fact about metric spaces.

Fact 2.5. For every infinite or finite dimensional Banach space X we have d(X) =
w(X) (where w(X) denotes the weight of the space X).

Corollary 2.6. The number of open (and hence of closed) subsets of a Banach space
X is at most 2d(X). In particular, |X| ≤ 2d(X) (which also follows from Lemma 2.8
below).

Proof. Every open set is the union of some family of basic open sets and every point
in a Banach space is a closed set. a

Using these facts we can prove the following:

Theorem 2.7. For any Banach space X we have cf(|X|) > ω.

In order to prove this theorem we need the following

Lemma 2.8 (Juhász-Szentmiklóssy). For any Banach space X we have d(X)ω ≤ |X|.
Consequently, using Proposition 2.4.(b), |X| = d(X)ω.

Proof. Let X be an infinite dimensional Banach space with d(X) = λ, which, by
Fact 2.5, is the same as w(X). First note that by the Bing Metrization Theorem
(cf. [Bi51]), every metric space of weight λ contains λ pairwise disjoint open sets.
Consequently, since every open set of X has the same weight as X itself, every open
set of X contains λ pairwise disjoint open sets. Now start with λ pairwise disjoint
open balls, inside of each take λ pairwise disjoint open balls and so on. The tree we



7

get in this way is a tree of height ω which contains λω different branches, and since
the diameters of the open sets converge to 0, every branch yields a Cauchy sequence.
Hence, by the completeness of X we have λω ≤ |X|. a

Now we are ready to prove the theorem.

Proof of Theorem 2.7. Let X be an infinite dimensional Banach space of cardinality
κ with d(X) = λ. By Lemma 2.8 and by Proposition 2.4.(b), λω = κ, and hence, by
Fact 1.2, cf(κ) > ω. a

3. The Complexity of Hamel Bases

3.1. The general case. Many arguments about Banach spaces involve the Baire
Category Theorem the content of which we recall briefly. Let X be a Banach space.
Since X is a complete metric space X is a so-called Baire space, i.e., a space in which
non-empty open sets are non-meagre. Equivalently each intersection of countably
many open dense sets in X is dense in X. A subset A of X has the Baire property
if there is an open set O such that O∆A is meagre (i.e., of first category), where
O∆A = (O \ A) ∪ (A \ O).

Recalling some standard notation, the ideal of meagre sets in a space X will be
denoted byMX . Its cofinality cof(MX) is the smallest size of a subfamily F ofMX

such that every meagre set is contained in an element of F . Noticing that Fσ meagre
sets are cofinal in MX we may redefine cof(MX) as the smallest size of a subfamily
of Fσ meagre sets that is cofinal for the Fσ meagre sets.

Let us first prove the following two results:

Proposition 3.1. Suppose that X is any Banach space and that H is a Hamel basis
of X. If H has the Baire property, then H is meagre.

Proof. Let H be a Hamel basis of X and assume that it has the Baire property but
is non-meagre. Then there is a non-empty open set O such that O∆H is meagre.
Let h ∈ (H ∩ O) and let xi (i < ω) be a sequence of vectors converging to h such
that each xi needs at least four vectors from H to represent it in the basis H. Such
a sequence exists, since we can just take any converging sequence and then add some
small linear combinations of H to it. Now, since the xi’s converge to h and O is
open, there is some j < ω such that (h+O) ∩ (xj +O) 6= ∅, in particular it is open.
Further, since h ∈ (H ∩ O), (h+H) ∩ (xj +H) 6= ∅, and by the property of xj, this
contradicts the fact that H is a Hamel basis. a

Proposition 3.2. Every Banach space over a complete field contains a Hamel basis
which is nowhere dense and one which is dense and meagre.

Proof. Let X be a Banach space over some complete field, let {Bα : α < λ} be its
open base, where λ is the weight of X.

By transfinite induction we can construct a linearly independent set H ′ = {hα : α <
λ} in X such that for every α < λ we have hα ∈ Bα and ‖hα‖ ∈ Q. Why? Assume
we already have constructed a linearly independent set Hβ = {hα : α < β} for some
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β < λ. Let 〈Hβ〉 denote the linear span of Hβ. Since β < λ, Bβ * 〈Hβ〉, and we
therefore can find a vector h ∈ Bβ \ 〈Hβ〉. Pick q ∈ (‖h‖ − ε, ‖h‖ + ε) ∩ Q, where
ε > 0 is such that Bh,ε ⊂ Bβ. Let hβ = q · h

‖h‖ , then hβ ∈ Bβ and ‖hβ‖ ∈ Q.

Now extend H ′ by unit vectors to a Hamel basis H of X. By construction, H is a
Hamel basis of X which is dense in X. Moreover, for every positive rational q the set
{h ∈ H : ‖h‖ = q} is nowhere dense because it is contained in a sphere. This implies
that H, as the union of countably many nowhere dense sets is meagre.

To get a nowhere dense Hamel basis define H∼ = {h/‖h‖ : h ∈ H}. Then H∼ is a
Hamel basis of X which is nowhere dense. a

By a transfinite induction one can show that every separable Banach space contains
a Hamel basis which is non-meagre (see [GMP83]). In fact, we can prove a slightly
more general result:

Theorem 3.3. Let X be a Banach space satisfying cof(MX) ≤ |X|. Then X has a
non-meagre Hamel basis.

Proof. Let X be a Banach space satisfying the assumptions and let {Bα : α < κ} be
an enumeration of a cofinal family of meagre Fσ sets of the least possible cardinality.
Hence |X| ≥ κ by the assumptions. First we construct by induction on α a non-
meagre set H ′ = {hα : α < κ} of linearly independent vectors. Assume we have
already chosen the set H ′α = {hβ : β < α} for some α < κ. Now, there is an hα such
that hα /∈ 〈H ′α〉∪Bα. Why? Since |X| ≥ κ the set H ′α cannot be a Hamel basis of X,
and therefore 〈H ′α〉 is a proper subset of X. We choose a (non-zero) x′ ∈ X \ 〈H ′α〉. If
〈H ′α〉 ∪ Bα = X, then the set A = X \ Bα is contained in 〈H ′α〉 and is hence disjoint
from x′+ 〈H ′α〉 and in particular from x′+A. However since Bα is meagre Fσ, both A
and x′+A are countable intersections of open dense sets and hence the Baire Category
Theorem implies that the intersection of A and x′+A must be dense, a contradiction.
Hence, 〈H ′α〉 ∪Bα 6= X and we can choose a (non-zero) hα ∈ X \ (〈H ′α〉 ∪Bα).

Finally, let H ′ =
⋃
α<κH

′
α and let H be a Hamel basis of X containing H ′. Then, by

construction the set H is not contained in any meagre set and therefore cannot be
meagre. a

Corollary 3.4. If X is a Banach space satisfying 2d(X) ≤ |X|, then X contains
a non-meagre Hamel basis. In particular, every separable Banach space has a non-
meagre Hamel basis.

Proof. Since every nowhere dense set is contained in some closed set whose comple-
ment is open dense, and since d(X) = w(X), there are at most 2d(X) different open
dense sets in X. This implies that cof(MX) ≤

(
2d(X)

)ω
= 2d(X)·ω = 2d(X), hence,

by Theorem 3.3, X contains a non-meagre Hamel basis. In particular, for separa-
ble spaces X we have d(X) = ω, which implies cof(MX) ≤ 2d(X) = c ≤ |X|, and
therefore, every separable Banach space has a non-meagre Hamel basis. a

The problem whether every Banach space contains a non-meagre Hamel basis will be
discussed again in Section 3.4.



9

The following theorem was proved in [Hal01] and we shall use it on several occasions.
Before we state the theorem let us recall that a subset S of a Banach space X is
called linearly Baire if for every positive integer n the set of all linear combinations
involving exactly n vectors of S has the Baire property.

Theorem 3.5. If X is a Banach space over any field F and H is a Hamel basis of X,
then H is not linearly Baire.

To keep the notation short, let us introduce the following definition:

Let X be a Banach space over the field F and let H ⊆ X. For a positive integer n,
let [H]n be the set of all n-element subsets of H and let

Hn :=

{ n∑
i=1

αihi : α1, . . . , αn ∈ F \ {0} and {h1, . . . , hn} ∈ [H]n
}
.

A reformulation of Theorem 3.5 that we shall use below is

Corollary 3.6. Let X be a Banach space over the field F and let Γ be a family of
subsets of X such that every set in Γ has the property of Baire and such that for
every natural number n and H ∈ Γ, the set Hn is in Γ. Then no set in Γ is a Hamel
basis for X.

Another consequence of this result is

Theorem 3.7. No Banach space X has a Hamel basis that is σ-compact.

Proof. Let X be a Banach space. To better illustrate the method of the proof let
us first show that X cannot have a compact Hamel basis. So suppose towards a
contradiction that H were such. Hence for every a ≤ b in R the set [a, b] · H is
compact and so is any finite sum of such sets since for any compact K we have
that K + K is compact. In this way we obtain that H1 =

⋃∞
n=1[−n, n] · H \ {0},

H1∪H2 =
⋃∞
n=1

{
[−n, n] ·H+[−n, n] ·H

}
\{0} etc. are all Borel and so H is linearly

Baire, in contradiction with Theorem 3.5.

The proof for σ-compactness is the same, noticing that if H =
⋃
n<ωKn then for

example H + H =
⋃
n<ω,m<ωKn + Km, and the other sets involved in checking that

H is linearly Baire have similar definitions. a

As opposed to compact sets, closed sets C do not necessarily satisfy that C + C is
closed and in fact in Section 3.2 we shall see an example of a Banach space that has a
closed Hamel basis. This space is non-separable and by Theorem 3.10 this assumption
is necessary.

3.2. The non-separable case.

Theorem 3.8. There are non-separable Banach spaces which have a closed Hamel
basis. Moreover, there are Hilbert spaces of arbitrarily large cardinality which have
a discrete and closed Hamel basis.
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Proof. Let κ be an arbitrarily large cardinal satisfying κω = κ (for example for any λ
we may let κ = λω). Further, let `2(κ) be the Hilbert space of all functions f : κ→ R
with

‖f‖ :=

√∑
β<κ

f(β)2 <∞ .

Notice that every f ∈ `2(κ) must have countable (or finite) support, i.e., the set
{β < κ : f(β) 6= 0} is at most countable.

We shall see that `2(κ) has a discrete and closed Hamel basis. Note that |`2(κ)| = κ
since κω = κ.

Let X be the direct sum of ω1 copies of `2(κ) with the `2-norm. By the definition of
κ it is easy to see that |`2(κ)| = |X| = κ and that X and `2(κ) are essentially the
same spaces, thus, X is a Hilbert space of cardinality κ. For α < ω1, let Yα be the
α’s copy of `2(κ) (with respect to the direct sum X) and let Eα = {eαι : ι < κ} be
the canonical orthonormal vectors of Yα, i.e., eαι (β) = διβ (for all β < κ). Further, for
α < ω1 let

Xα = ⊕η≤αYη ,
thus, X =

⋃
α<ω1

Xα.

Let H0 = {x0ι : ι < κ} be a Hamel basis for X0 and let

B1 = {x0ι + e1ι : ι < κ} ∪ {e1ι : ι < κ} .

Then B1 is a linearly independent set of vectors which is closed in X1 – since it does
not contain any converging sequence – and whose linear span contains Y0 ⊆ X1, as
x0ι = x0ι + e1ι − e1ι . However, B1 is not a Hamel basis for X1. Let H1 be a Hamel basis
of Y1 extending E1 and let {x1ι : ι < κ} = H1 \ E1.

We proceed now by transfinite induction. For successor ordinals α+ 1 < ω1 we define

• Bα+1 := Bα ∪ {xαι + eα+1
ι : ι < κ} ∪ {eα+1

ι : ι < κ},
• Hα+1 is a Hamel basis of Yα+1 extending Eα+1 and
• {xα+1

ι : ι < κ} = Hα+1 \ Eα+1.

By induction, Bα+1 is a set of linearly independent vectors whose linear span contains
Xα. Further, for limit ordinals γ < ω1 we define

• Bγ =
⋃
α<γ Bα,

• Hγ is a Hamel basis of Xγ extending Bγ, and
• {xγι : ι < κ} = Hγ \Bγ.

For α < β ≤ γ we have Bα ⊆ Bβ ⊆ Bγ, and since, by induction, Bα and Bβ are sets of
linearly independent vectors, also Bγ is a set of linearly independent vectors. Further
note that Hγ \ Bγ is non-empty. Moreover, |Hγ \ Bγ| = κ because taking a cofinal
sequence 〈γn : n < ω〉 in γ, no vector of the form

∑
n<ω 2−nxγnι(n) where ι(n) < κ is in

〈Bγ〉. Finally, let

H =
⋃
α<ω1

Bα ,
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then, by construction, H is discrete and closed in X, and since every vector in X has
countable support, H is a Hamel basis of the Hilbert space X. a

3.3. The separable case. It may be conjectured from Corollary 3.4 that separable
Banach spaces behave with respect to the Hamel bases similarly to the space R
considered as a vector space over Q. We shall give some further remarks which seem
to support this statement. Let us first show that a Hamel basis in a separable Banach
space over R cannot be a Borel or an analytic set. In order to do so, we have to first
recall a basic property of Σ1

n sets (see also [Ke95, Chapter V]):

For each n ≥ 1 we define the projective classes Σ1
n and Π1

n of sets in a Polish
space X as follows: Σ1

1 is the collection of all analytic sets (i.e., projections of closed
sets in X× ωω) and Π1

1 is the collection of the complements of analytic sets. Further,
Σ1
n+1 is the collection of projections of Π1

n sets in X × ωω, and Π1
n+1 is the collection

of the complements of Σ1
n+1 sets. Finally, a subset S of X is called a projective set

of X if there is a positive integer n such that S belongs to Σ1
n.

Now, the classes Σ1
n are closed under images and preimages of continuous functions

between Polish spaces (cf. [Ke95, Proposition 37.1]).

Lemma 3.9. Suppose that X is a separable Banach space. Then for every Σ1
n set H

and every positive integer m,
⋃
i≤mHi is a Σ1

n set.

Proof. Let H ⊆ X be a Σ1
n set in X. Since R is a Polish space, H×

(
R\{0}

)
⊆ X×R

is a Σ1
n set in X×R. Define the function f : X×R→ X by stipulating f(x, r) := rx.

Then f is continuous and by the previous facts we get f
[
H ×

(
R \ {0}

)]
=
{
rh : r ∈

R \ {0}, h ∈ H
}

is a Σ1
n set in X, which shows that H1 is a Σ1

n set in X. Further, if

H ′ and H
′′

are both Σ1
n sets, then H ′ +H

′′
, as the image of the continuous function

X ×X → X +X, is again a Σ1
n set. a

Since all analytic sets have the Baire property, by Lemma 3.9 and the proof of
Proposition 3.1 we get the following: If an analytic set H is a Hamel basis of a sepa-
rable Banach space, and if H1 has the Baire property, then H1 is meagre. However,
the next result shows that a Hamel basis of such a Banach space can never be an
analytic set.

Theorem 3.10. If X is a separable Banach space and H is a Hamel basis of X, then
H is not an analytic set.

Proof. Suppose H ⊆ X is an analytic Hamel basis of X. By Lemma 3.9, for every
natural number n the set

⋃
i≤nHi is analytic. Now, by Theorem 3.5 it follows that

there is an n0 for which Hn0 does not have the Baire property. But Hn0 =
⋃
i≤n0

Hi \⋃
i<n0

Hi, and therefore, as the difference of two sets having the Baire property, Hn0

must have the Baire property as well – a contradiction. a

It is (relatively) consistent with ZFC that all projective sets in R have the property
of Baire, by a theorem of Saharon Shelah in [Sh84]. We shall use this in Section 3.5
to see that it is consistent that no separable Banach space over R has a Hamel basis
that is a projective set.
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3.4. Consistency results. In modern set theory, one usually gets consistency results
by a forcing construction. Forcing was invented by Paul Cohen in the early 1960s to
show that AC as well as CH are not provable in Zermelo-Fraenkel Set Theory ZF. In
fact he showed that ¬AC is relatively consistent with ZF and that ¬CH is relatively
consistent with ZFC. (Apart from this paragraph, we use the common set-theoretic
shorthand where ’consistent’ stands for ’relatively consistent’). Forcing is a technique
to extend models of set theory in such a way that certain statements become true
in the extension, no matter if they were true or false in the ground model. In other
words, forcing adds new sets to some ground model and by choosing the right forcing
notion we can make sure that the new sets have some desired properties. For a short
introduction to forcing we refer the reader to [Je86]. To get consistency results with
respect to Hamel bases we first have to define a notion of forcing, i.e., a partial order,
which adds new Hamel bases with certain properties to the ground model. So, let us
first introduce a forcing notion which does the job:

In the following, let X be an arbitrary but fixed real Banach space of cardinality
κ and let λ be a cardinal less than or equal to κ. With respect to the space X, let
Bλ = 〈Bλ,≤ 〉 be the following partially ordered set. A so-called condition p ∈ Bλ

consists of less than λ linearly independent vectors of X and for p, q ∈ Bλ let p ≤ q
if and only if p ⊆ q.

Our goal is to show that, for λ = cf(κ) > ω, forcing with Bλ adds a Hamel basis
of X which is non-meagre. For this we have to make sure that the Banach space X
in the extension is very much the same as in the ground model, i.e., we would not
like to add new vectors to X, but how can we do this? We may consider a Banach
space X as a set of vectors belonging to some universe V. This set is denoted by XV.
Now, if we extend V, then the set XV still exists in the extension but may have some
other properties than in the ground model V. For example the norm on XV in the
extension might no longer be complete or the definition of XV might have changed
in the extension. However, in most of the cases the ‘definition’ or ‘construction’ of
the Banach space X is the same in V as in the extension, so, forcing with Bλ does
not change the space in some sense and we will call such spaces conservative.

Before we give can give some examples of conservative spaces we have to know more
about the forcing notion Bλ.

Let λ be an infinite cardinal. A forcing notion P = 〈P,≤ 〉 is called λ-closed if for
any increasing sequence p0 ≤ . . . ≤ pα ≤ . . . in P of length γ < λ there is a q ∈ P
such that for all α < γ, q ≥ pα. A forcing notion P which is λ-closed does not add
new bounded subsets to λ and does not collapse any cardinals less than or equal to
λ. In particular, if λ > ω then a λ-closed forcing notion does not add new reals.

Let us turn back to the forcing notion Bλ: Let X be a Banach space and let
λ = cf(κ), where κ = |X|. Then λ is a regular uncountable cardinal, which implies
that any increasing sequence p0 ≤ . . . pα ≤ . . . of conditions of Bλ of length less than
λ has an upper bound, thus Bλ is λ-closed. This tells us that forcing with Bλ does
not collapse any cardinals less than or equal to λ. Moreover, since λ > ω, forcing
with Bλ does not add any new reals.
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Let us now give some examples of conservative spaces: For 1 ≤ p ≤ ∞, all `p and
Lp spaces, as well as all `p(c) spaces (and for regular λ even all `p(λ) spaces) are
conservative. All these spaces are present in every universe of ZFC. As an illustration
let us demonstrate that `∞(c) is conservative: First notice that every vector x in
`∞(c) is a sequence of real numbers of length c, thus, x is an element of cR which
implies κ = |`∞(c)| = 2c > c. By Fact 1.2 we get cf(κ) = cf(2c) > c > ω. Now,
since x ∈ cR = cc, it can be encoded as a subset of c × c of cardinality c, and since
|c × c| = c, every x ∈ `∞(c) can be encoded as a subset of c (which is a subset of κ)
of cardinality c, where c is strictly less than cf(κ). Since this encoding is done in an
absolute way (i.e., not depending on the underlying universe of ZFC) the space will
not change unless we add bounded subsets to cf(κ).

Now let us prove the following

Theorem 3.11. Let X be a Banach space in some universe V of ZFC in which X has
cardinality κ and in which θ < cf(κ) implies θω < κ. Then there exists a cf(κ)-closed
forcing extension of V in which XV has a non-meagre Hamel basis.

Proof. Let X be a Banach space in V of size κ. We shall show that the forcing
extension by Bλ, where λ = cf(κ) adds a non-meagre Hamel basis to XV, even
though it does not add bounded subsets to λ. Note that by Theorem 2.7 we have
cf(κ) > ω, thus Bλ does not add new reals to the ground model. Also, note that for
any θ < λ we have θω < κ by our assumptions, so no subset of X of cardinality < λ
is dense in X. Let us define

H :=
⋃

G , where G is the generic of Bλ .

Since G is a filter it follows that H is a set of linearly independent vectors. Further,
for any x ∈ X, the set Dx =

{
p ∈ Bλ : x ∈ 〈p〉

}
is dense in Bλ. This implies that H

is actually a Hamel basis of XV in the extension.

Let us suppose for contradiction that H is meagre in the extension. Thus, there exists
a condition q, a name C˜ for a dense Gδ set and names O˜ n for dense open sets such
that

q C˜ =
⋂
n<ω

O˜ n is dense Gδ and H˜ ∩ C˜ = ∅ .

So, there exist x
˜

and a rational r
˜

such that q Bx
˜
,r
˜
⊆ O˜ 0. Since the cardinality of

q is less than λ we can find q0 ≥ q and x0, r0 such that

q0 B̄x0,r0 ⊆ Bx
˜
,r
˜

and B̄x0,r0 ∩ 〈q〉 = ∅ ,

and by induction we find qn, xn, and rn (for n < ω) such that qn+1 ≥ qn and

qn+1 B̄xn,rn ⊆ Bxn−1,rn−1 ∩O˜ n and B̄xn,rn ∩ 〈qn〉 = ∅ .

At the end let p =
⋃
n<ω qn and let h ∈

⋂
B̄xn,rn . Hence h /∈

〈⋃
n<ω qn

〉
=
⋃
n<ω 〈qn〉.

In particular p h ∈ C˜ , so

p ∪ {h} h ∈ C˜ ∩H˜ ,
which is a contradiction with p ∪ {h} ≥ q. a
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3.5. An independence result. So far we have seen that in the non-separable case
a Hamel basis can be closed, and that in the separable case a Hamel basis cannot
even be analytic but we did not answer the question how complex a Hamel basis of
a separable Banach space might be. For example, can a Hamel basis be a projective
set? (Recall that a projective set is a set that one gets after successively applying the
projection-operator and the complement-operator to a Borel set.) In the following we
shall see that the above question is not decidable within ZFC.

Theorem 3.12. It is consistent with ZFC that no separable Banach space contains a
Hamel basis which is a projective set.

The theorem follows from the following

Lemma 3.13. Suppose that X and Y are Polish spaces, i.e., complete separable metric
spaces without isolated points. Then there exists a Borel homeomorphism f : X → Y
such that A ⊆ X is meagre if and only if f [A] is meagre.

Proof. Let BOREL(X) and BOREL(Y ) denote the set of Borel sets in X and Y re-
spectively, and let MX and MY denote their respective ideals of meagre sets. Since
the algebras BOREL(X)/MX and BOREL(Y )/MY are complete and have both
countable atomless dense subalgebras, both algebras are isomorphic to the Cohen alge-
bra. In particular, they are isomorphic via the isomorphism Φ : BOREL(X)/MX →
BOREL(Y )/MY . By [Ke95, Theorem 15.10], the isomorphism is determined by a
Borel homeomorphism g : Y → X such that Φ

(
[A]
)

=
[
g−1(A)

]
. So, if A is a meagre

Borel set in X, then g−1(A) is meagre in Y . a

Proof of Theorem 3.12. Let X and Y be Polish spaces. Then, by Lemma 3.13, all
projective sets have the Baire property in Y if and only if the same happens in X.
In [Sh84] it is proved that if there is a model for ZFC, then there is also one in which
all projective sets of reals have the Baire property. Let X be any separable Banach
space in this model. Then all projective sets of the separable Banach space X have
the Baire property, hence, by Lemma 3.9 and Corollary 3.6, no projective set is a
Hamel basis of X. a

As we have seen in Section 3.3, no separable Banach space has a Hamel basis that
is an analytic set. However, it is a well-known result of Arnold Miller in [Mi89,
Theorem 9.26] that in Gödel’s constructible universe the separable Banach space R
over Q has a co-analytic Hamel basis. So although Hamel bases in separable Banach
spaces cannot be as simple as being analytic, there still can consistently exist a Hamel
basis in such a space that is almost as simple, namely co-analytic. Using Miller’s
technique one can prove a similar statement for all classical Banach sequence spaces,
but since both the exact statement and the proof of this result are rather technical in
the sense of the set theory involved, we decided not to elaborate on this point here.
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4. On complete minimal systems

4.1. Complete minimal systems versus Hamel bases. As we have mentioned
above, not every Banach space has a c.m.s., while every Banach space has a Hamel
basis. Thus, not every Hamel basis is a c.m.s., in fact, a Hamel basis is never a c.m.s.:

Proposition 4.1. No Hamel basis of a Banach space is a complete minimal system.

Proof. Let H = {hι : ι < κ} be a Hamel basis of some Banach space X. Consider the
vector

x =
∑
i<ω

2−i
hi
‖hi‖

.

Since x ∈ X, there are hι0 , . . . , hιn ∈ H and scalars a0, . . . , an such that x =∑n
j=0 ajhιj . Let k < ω be such that hk /∈

{
hι0 , . . . , hιn

}
, then hk belongs to the

closure of the linear span of H \ {hk}, and therefore H is not a c.m.s. of X. a

We also have seen (cf. Proposition 3.2) that every Banach space over a complete field
has a dense Hamel basis. To the contrary a c.m.s. can never be dense, in fact we get
the following

Fact 4.2. A complete minimal system is always nowhere dense.

Proof. Recall that a c.m.s. must be discrete. Let S ⊆ X be a c.m.s. of X. For every
x ∈ S, let Bx,rx be such that Bx,rx ∩ S = {x}. Let O be a non-empty open set in
X. If O ∩Bx,rx = ∅ for all x ∈ S, then clearly O contains a non-empty open set that
misses S. Otherwise suppose that x ∈ S is such that O ∩ Bx,rx 6= ∅. Then the open
set Bx,r \ {x} ∩ O is a non-empty open subset of O that misses S. a

Since a c.m.s. consists of linearly independent vectors, every c.m.s. can be extended
to a Hamel basis of the whole space. However not every Hamel basis contains a subset
which is a c.m.s. (since there are Banach spaces which do not have a c.m.s.).

Thus Hamel bases behave very differently than complete minimal systems.

4.2. On Φ-bases. Let us first characterize Φ-bases as linearly ordered sets. The
following result was proved in [KPP88]:

Theorem 4.3. A complete minimal system {xa : a ∈ A} of a Banach space X is a
Φ-basis of X if and only if there exists a linear ordering ‘≺’ on A, which we will call
uniform, such that sup

{
µ{xak : ak ∈ A, 0 ≤ k ≤ n}

}
<∞, where the sup is taken

over the set of all finite increasing sequences a0 ≺ . . . ≺ an in A. In addition the order
‘≺’ on A can be assumed to satisfy sup

{
µ{xak : 0 ≤ k ≤ n} : a0 ≺ . . . ≺ an

}
= M ,

where M is a Φ-basis constant of the Φ-basis {xa : a ∈ A}.

Notice that if a linear ordering on A is uniform (with constant M), then the inverse
ordering is uniform as well (with constant at most 1 +M).

As a consequence of Theorem 4.3 we get the following (cf. [KPP88, Corollary 2]):
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Corollary 4.4. If {xn : n < ω} is a Φ-basis in the space X which is not a Schauder
basis for any permutation of the indices, then X is representable as the direct sum of
two infinite dimensional subspaces.

Proof. Let A = ω be the uniformly ordered set. It is enough to show that A can
be decomposed into two disjoint infinite subsets A = A0 ∪ A1 such that a′ ≺ a′′ for
all a′ ∈ A0 and a′′ ∈ A1, for then, X = X0 ⊕ X1 where X0 = [xa : a ∈ A0] and
X1 = [xa : a ∈ A1]. Indeed, for any r ∈ A let Dr := {a ∈ A : a ≺ r}. If there is
an r ∈ A such that both Dr and A \ Dr are infinite, then we are done. So, assume
that for each r ∈ A, Dr is either finite or co-finite. Without loss of generality we may
assume that the set I = {r ∈ A : Dr is finite} is infinite. Since A is linearly ordered,
I is linearly ordered as well and, by definition of I, the order type of I is ω. If I = A,
then {xn : n < ω} would be a Schauder basis of X which contradicts the premiss of
the corollary. Further, for any a ∈ A \ I and any r ∈ I, by definition of I we have
r ≺ a. If A \ I is finite, then a permutation of the indices would give us a Schauder
basis of X, which again contradicts the premiss of the corollary, thus, A \ I is infinite
and we can just put A0 = I and A1 = A \ I. a

The name ‘Φ-basis’ is just an abbreviation for ‘finitary basis’, but since the main
feature of Φ-bases is the linear ordering on the index set given by Theorem 4.3, we
could call Φ-bases also linearly ordered bases.

Let us now present some examples of Φ-bases:

1. ([KPP88]). Let X be the space of left continuous functions, defined on [0, 1],
which have discontinuities of the first kind only at rational points, with the
supremum norm. The characteristic functions xq(t) of segments [0, q] (for
q ∈ Q ∩ [0, 1]) form a (countable) Φ-basis in X which is not a Markushevich
basis, where a Markushevich basis is a c.m.s. with the additional property
that the dual system is total, i.e., fi(x) = 0 for all i implies x = 0.

The next example is well known in non-separable Banach space theory (see e.g.,
[Co61, Example 2]).

2. Let X be a (non-separable) Banach space which is constructed as in Exam-
ple 1, but any scalar of [0, 1] can be a point of discontinuity. Then the functions
xa(t) (for a ∈ [0, 1]) form a Φ-basis in X.

3. (cf. [PP90, § 7]). Let Bp (1 < p < ∞) be the space of Besicovitch almost
periodic functions. The trigonometric functions eiλt (for λ ∈ R) form a Φ-basis
in Bp, with the natural order generated by the real line. This system forms
a Markushevich basis and has good approximation properties. In addition it
forms an (uncountable) orthogonal basis in B2. Related to this example are
questions 5 and 6.

4. Let us consider the space X = C[0, ω1]. The characteristic functions of seg-
ments [0, α] form a transfinite (hence, a Φ-) basis of X, but X does not have a
norming Markushevich basis ([AP∞]). Because every Enflo-Rosenthal basis is
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norming ([Pl84]), X has no Enflo-Rosenthal basis. (A definition of transfinite
bases can be found in [KPP88] or in [Si81].)

5. The natural unit vectors form a Schauder basis in the well-known James space
J , but J has no unconditional basis (cf. [LT77, p. 25]). The natural unit
vectors form a transfinite (hence, a Φ-) basis in the Long James space X =
Long J (see also Question 7).

6. We can construct the James type spaces J(Q) and J(R) exactly in the same
way as J is constructed by N or Long J by [0, ω1]. Obviously, the natural
unit vectors form again a Φ-basis in these spaces (but see Question 8).

There are Banach spaces having complete minimal systems which are not linearly or-
dered, but partially ordered by other sets, for example by trees (see [Ja74] or [Hay99]).
So we can introduce the following definition: Let A be a partially ordered set. We say
that a complete minimal system {xa : a ∈ A} forms an A-ordered basis in a Banach
space X if the projections of X onto [xb : b > a], along [xb : b ≯ a], are uniformly
bounded on A.

Now we give an answer to the first two questions posed in [KPP88] and discuss the
third. The questions are the following:

• Does there exist a Φ-basis in `∞ ?
• Does each separable Banach space have a Φ-basis?
• Is the existence of a Φ-basis in a Banach space related to its approximation

properties?

Theorem 4.5. Not every separable Banach spaces has a Φ-basis.

Proof. In [AKP99] it is shown that there exists a separable Banach space which has
neither a Schauder basis nor a decomposition into a direct sum of infinite dimensional
closed subspaces. This result in combination with Corollary 4.4 gives the proof of the
theorem. a

Before answering the first question let us recall some definitions. A sequence of
closed subspaces {Xn : n < ω} forms a Schauder decomposition of a Banach space
X if

[⋃
n<ωXn

]
= X and the projections Pn : X →

[⋃
m≤nXm

]
along

[⋃
m<nXm

]
are uniformly bounded, which is equivalent to saying that the projections I − Pn
are uniformly bounded. Obviously, we can enumerate the Schauder decomposition
by 1 ≤ n ≤ ω, moving 0 to ω and shifting n + 1 → n. A Banach space X is called
Grothendieck if weak∗ and weak convergence of sequences in X∗ coincide. A Banach
space X has the Dunford-Pettis property if every weakly compact operator T of
X into any Banach space Y maps weakly convergent sequences into norm convergent
sequences.

All spaces C(K), where K is a compact extremely disconnected space, (hence also
their complemented subspaces) are Grothendieck and have the Dunford-Pettis prop-
erty. In particular, `∞ has these properties (cf. [Si81, p. 497]).

Theorem 4.6. Let X be a Grothendieck space with the Dunford-Pettis property.
Then X has no Φ-basis.
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Proof. Suppose towards a contradiction that X has a Φ-basis {xa : a ∈ A} and that
A is linearly ordered by ‘≺’. Obviously, each infinite subset of A contains either an
increasing or decreasing infinite sequence. If {xa : a ∈ A} is a Φ-basis with respect to
the order “≺”, then it is also a Φ-basis with respect to the opposite order “�”. So,
without loss of generality let us assume that {an : n < ω} is such that for all n < ω,
an ≺ an+1. Put X0 = [xa : a � a0], for n > 0 let Xn = [xa : an−1 ≺ a � an], and let
Xω =

[
xa : ∀n < ω(an ≺ a)

]
. Obviously, {Xn : n ≤ ω} is a Schauder decomposition

of X. But X has no such decomposition (see [De67] or [Si81, p. 497]). a

Now let us discuss the connection of Φ-bases with the approximation property. A
Banach space X has the approximation property if for every ε > 0 and every
compact set K ⊆ X there is a bounded linear finite dimensional operator T : X → X
such that

‖Tx− x‖ < ε for every x ∈ K .

Haskell Rosenthal has proved in [Ro85] that a space with a transfinite basis always
has the approximation property.

The first step in the Rosenthal’s proof is the following

Lemma. Suppose that X1, X2, . . . is a Schauder decomposition of a Banach space
X and that for every n ∈ ω, Xn has the approximation property. Then X has the
approximation property.

The second step is a remark that in order to prove that a space has the approximation
property it is sufficient to consider only separable Banach spaces (and hence, only
countable transfinite bases).

Finally the third step is just transfinite induction.

This leads to the following:

(a) Can we use Rosenthal’s proof to show that a space with a Φ-basis has the
approximation property? How can we describe linearly ordered countable sets
which allow the transfinite induction? For example, the union of an increasing
and a decreasing sequences, without ‘overlapping’, is good.

(b) On the other hand, there exists a (separable) Banach space which has the
approximation property but which does not have the bounded approximation
property (cf. [LT77, p. 42]), hence, does not have a finite dimensional Schauder
decomposition. Is there a Φ-basis in that space?

(c) Let X be a Banach space with a c.m.s. which is tree ordered. Does X have
the approximation property?

4.3. On Auerbach bases in `∞. As we have mentioned above, every finite dimen-
sional Banach space has an Auerbach basis. Further it is well-known that every sepa-
rable Banach space has a Markushevich basis (hence, a c.m.s.), but it is still unknown
whether every separable Banach space has an Auerbach basis (see also Question 12).
On the other hand, a non-separable Banach space even with a c.m.s. may not have
an Auerbach basis (cf. [Go85, Theorem 2]), and there exists an Auerbach basis of c0
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which is not a Markushevich basis (cf. [Go85, p. 223]). Moreover, every non-separable
Banach space X with a separable norming subspace in X∗ admits an equivalent norm
|||·||| such that

(
X, |||·|||

)
does not have an Auerbach basis (cf. [GLT93]). Thus Auerbach

bases are much stronger than ordinary complete minimal systems.

In the following we always assume that the Auerbach basis is normalized. For a set
A ⊆ R, we say that {xi : i ∈ I} ⊆ `∞ is an A-Auerbach basis of `∞ if {xi : i ∈ I} is
a normalized Auerbach basis of `∞ and for all i ∈ I and all n < ω we have xi(n) ∈ A.

We can prove the following

Proposition 4.7. For ε > 0, the space `∞ does not have a [−1+ε, 1]-Auerbach basis.

Proof. Assume towards a contradiction that {xi : i ∈ I} ⊆ `∞ is a [−1+ε, 1]-Auerbach
basis of `∞, and let {fi : i ∈ I} be the corresponding biorthogonal functionals. Let
1 = (1, 1, 1, . . .) and let I1 be a countable subset of I such that 1 ∈ [xi : i ∈ I1].
There is a finite set I0 ⊆ I1 and a vector y ∈ 〈xi : i ∈ I0〉 such that ‖ ε

2
1 − y‖ < ε

4
,

which implies that for any j ∈ I \ I1 we have ‖xj − y‖ < 1. Now, since by definition
fj(xi) = 0 for every i ∈ I0, we get fj(xj − y) = fj(xj) − fj(y) = 1 − 0 = 1, which
contradicts ‖fj‖ = 1. a

5. What we would like to know

While writing this paper we came across some problems we could not solve. We
think that some of them are quite interesting and working on them could probably give
a better understanding of the geometry of Banach spaces, especially of non-separable
Banach spaces.

5.1. Questions on Hamel bases. In Section 3 we have seen that every Banach
space X in which cof(MX) is less than or equal to |X| contains a non-meagre Hamel
basis. In particular, every separable Banach contains a non-meagre Hamel basis. This
leads to the following questions:

Question 1. Does there exist a Banach space in which every Hamel basis is meagre?
Or is it at least consistent with ZFC that such a Banach space exists?

A related question is whether there exists a Banach space X such that cof(MX) >
|X|. Now, if topological spaces X and Y are homeomorphic, then both |X| = |Y |
and cof(MX) = cof(MY ). Moreover, it is well-known that any two Banach spaces of
the same weight are homeomorphic (cf. [To81]), and in particular, any Banach space
of weight λ is homeomorphic to `2(λ). Thus, the question above is in fact just a
question on the existence or non-existence of a certain cardinal:

Question 2. Is there a cardinal λ such that cof(M`2(λ)) > λω ? (Notice that λω =
|`2(λ)|.) Or is it at least consistent with ZFC that such a cardinal exists?

Remember that every Banach space over a complete field contains a Hamel basis
which is nowhere dense and one which is dense and meagre. Further we have seen
that for all classical Banach spaces it is consistent with ZFC that they contain a
non-meagre Hamel basis.
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In Proposition 2.2 we have seen that the unit sphere of a real Banach space X is
not the union of less than c Hamel bases of X. This suggests the following

Question 3. Let X be a real Banach space. Can the unit sphere of X be the union
of less than |X| Hamel bases of X ? Or is it at least consistent with ZFC that there
is a Banach space in which this can be done?

The following question was recently investigated in [Hal∞], where it is shown that
the question is not decidable within ZFC.

Question 4. Does every real Banach space of cardinality κ admit a family of 2κ

different normalized Hamel bases such that the cardinality of the intersection of any
two of them is less than κ?

5.2. Questions on complete minimal systems.

Question 5. As we have seen, the trigonometric functions eiλt (for λ ∈ R) form a
Φ-basis in Bp (where 1 < p <∞), with the natural order generated by the real line.
Does this system also form an Enflo-Rosenthal basis in Bp ? In particular, does there
exist a linear ordering of Q such that eiλt (for λ ∈ Q) is a basic sequence?

Probably not, and probably it is a purely combinatorial question.

The next question is a well known question by Enflo and Rosenthal (see e.g., [Si81,
Problem 17.1]):

Question 6. Does a non-separable space L1(µ), where µ is a finite measure, has an
Enflo-Rosenthal basis? Or slightly weaker: Does this space have a Φ-basis?

This question was one of the reasons to introduce and investigate in [KPP88] the
notion of Φ-bases.

Question 7. Let X = Long J . Do the natural unit vectors form an Enflo-Rosenthal
basis of X ? Does X have an Enflo-Rosenthal basis?

Question 8. What can we say about geometric properties of the spaces J(Q) and
J(R) respectively? Are the natural unit vectors Markushevich bases in these spaces?

The main question about Auerbach bases is

Question 9. Does `∞ have an Auerbach basis?

Probably easier to answer than Question 9 is

Question 10. Does `∞ have a {−1, 1}-Auerbach basis, or at least a {−1, 0, 1}-
Auerbach basis?

It is known (cf. [Hal03]) that `∞ has a quotient which is isomorphic to `2(c) and
which has a {−1, 1}-Auerbach basis. However, it seems that one cannot extend this
Auerbach system to an Auerbach basis of the whole space.

Related to Question 10 is
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Question 11. Does `∞ have a {0, 1}-c.m.s. (which is a c.m.s. whose vectors consist
of 0’s and 1’s), or at least a {−1, 1}-c.m.s. or a {−1, 0, 1}-c.m.s.?

Still open is also the following question by Pe lczynski:

Question 12. Does every separable Banach space have an Auerbach basis?
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