Generalized Pencils of Conics derived from Cubics

Lorenz Halbeisen
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
lorenz.halbeisen@math.ethz.ch
Norbert Hungerbühler
Department of Mathematics, ETH Zentrum, Rämistrasse 101, 8092 Zürich, Switzerland
norbert.hungerbuehler@math.ethz.ch

key-words: pencils, conics, polars, polar conics of cubics
2010 Mathematics Subject Classification: 51A05 51A20

Abstract

Given a cubic K. Then for each point P there is a conic C_{P} associated to P. The conic C_{P} is called the polar conic of K with respect to the pole P. We investigate the situation when two conics C_{0} and C_{1} are polar conics of K with respect to some poles P_{0} and P_{1}, respectively. First we show that for any point Q on the line $P_{0} P_{1}$, the polar conic C_{Q} of K with respect to Q belongs to the linear pencil of C_{0} and C_{1}, and vice versa. Then we show that two given conics C_{0} and C_{1} can always be considered as polar conics of some cubic K with respect to some poles P_{0} and P_{1}. Moreover, we show that P_{1} is determined by P_{0}, but neither the cubic nor the point P_{0} is determined by the conics C_{0} and C_{1}.

1 Terminology

We will work in the real projective plane $\mathbb{R P}^{2}=\mathbb{R}^{3} \backslash\{0\} / \sim$, where $X \sim Y \in \mathbb{R}^{3} \backslash\{0\}$ are equivalent, if $X=\lambda Y$ for some $\lambda \in \mathbb{R}$. Points $X=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3} \backslash\{0\}$ will be denoted by capital letters, the components with the corresponding small letter, and the equivalence class by $[X]$. However, since we mostly work with representatives, we often omit the square brackets in the notation.
Let f be a non-constant homogeneous polynomial in the variables x_{1}, x_{2}, x_{3} of degree n. Then f defines a projective algebraic curve

$$
C_{f}:=\left\{[X] \in \mathbb{R P}^{2} \mid f(X)=0\right\}
$$

of degree n. For a point $P \in \mathbb{R P}^{2}$,

$$
P f(X):=\langle P, \nabla f(X)\rangle
$$

is also a homogeneous polynomial in the variables x_{1}, x_{2}, x_{3}. If the homogeneous polynomial f is of degree n, then $C_{P f}$ is an algebraic curve of degree $n-1$. The curve $C_{P f}$ is called the polar curve of C_{f} with respect to the pole P; sometimes we call it the polar curve of P with respect to C_{f}. In particular, when C_{f} is a cubic curve (i.e., f is a homogeneous polynomial of degree 3), then $C_{P f}$ is a conic, which we call the polar conic of C_{f} with respect to the pole P, and when C_{f} is a conic, then $C_{P f}$ is a line, which we call the polar line of C_{f} with respect to the pole P (see, for example, Wieleitner [16]). By construction, the intersections of a curve C_{f} and its polar curve $C_{P f}$ with respect to a point P give the points of contact of the tangents from P to C_{f}, as well as points on C_{f} where $\nabla f=0$ (see Examples 3 and 4). The geometric interpretation of poles and polar lines (or polar surface in higher dimensions) goes back to Monge, who introduced them in 1795 (see [15, §3]). The names pole and polar curve (or polar surface) were coined by Bobillier (see [1-5]) who also iterated the construction and considered higher polar curves (polar curves of polar curves). Grassmann then developed the theory of the poles using cutting methods (see [9-11], and Cremona [7, p. 61]). However, the analytical method generally used today which we follow here - is due to Joachimsthal (see [14, p. 373]). Note that $C_{P f}$ is defined and can be a regular curve even if C_{f} is singular or reducible. We will therefore not impose any further conditions on f in the following.
A regular, symmetric matrix

$$
A:=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)
$$

with eigenvalues of both signs defines a bilinear form $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R},(X, Y) \mapsto$ $\langle Y, A X\rangle$. The corresponding quadratic form $f(X)=\langle X, A X\rangle$ is homogeneous of degree 2 , and it is convenient to identify the matrix A or its projective equivalence class with the conic C_{f}. Then, a point $[X]$ is on the polar line of C_{f} with respect to the pole $[Y]$ if and only if $\langle Y, A X\rangle=0$. It follows immediately that a point $[X]$ is on the polar line of C_{f} with respect to $[Y]$, if and only if $[Y]$ is on the polar line of C_{f} with respect to $[X]$. Moreover, a line $[g]$ given by the equation $\langle g, Y\rangle=0$ is the polar line of C_{f} with respect to the pole $[X]=\left[A^{-1} g\right]$.
For a conic C_{0} represented by a matrix A_{0}, the map $\varphi_{C_{0}}: \mathbb{R P}^{2} \rightarrow \mathbb{R P}^{2},[X] \mapsto\left[A_{0} X\right]$, which associates the pole $[X]$ to its polar line $\left[A_{0} X\right]$, is called a polarity. Vice versa, for a conic C_{1} represented by a matrix A_{1}, the map $\varphi_{C_{1}}:[Y] \mapsto\left[A_{1}^{-1} Y\right]$, which associates to the polar line $[Y]$ its pole $\left[A_{1}^{-1} Y\right]$, is also called a polarity. The composition of the two polarities $\varphi_{C_{1} C_{0}}:[X] \mapsto\left[A_{1}^{-1} A_{0} X\right]$ is a projective map associated to the pair C_{0}, C_{1} of conics. More generally, a cubic f defines a polarity $\mathbb{R P}^{2} \rightarrow \mathbb{R P}^{5}$ by associating the point $P \in \mathbb{R P}^{2}$ to $C_{P f}$ interpreted as an element of the projective space $\mathbb{R} \mathbb{P}^{5}$ of conics in $\mathbb{R} \mathbb{P}^{2}$. This point of view can be considered as a guiding concept in the following. It may also open the door to further research questions. For example, one may ask which projective maps from $\mathbb{R P}^{2}$ to $\mathbb{R P}^{5}$ can
be realized in this way.
Let now f be a homogeneous polynomial of degree $n>2$, and let $C_{P f}$ be the polar curve of C_{f} with respect to a point P. Moreover, let $C_{Q P f}$ be the polar curve of $C_{P f}$ with respect to a point Q. Then we have

$$
C_{Q P f}=\{[X] \mid\langle P, H f(X) Q\rangle=0\},
$$

where $H f:=\left(\frac{\partial f^{2}}{\partial x_{i} \partial x_{j}}\right)_{i j}$ is the Hessian of f. If $C_{Q f}$ denotes the polar curve of C_{f} with respect to Q and $C_{P Q f}$ is the polar curve of $C_{Q f}$ with respect to P, then, obviously,

$$
\begin{equation*}
C_{P Q f}=C_{Q P f} . \tag{1}
\end{equation*}
$$

For two given conics C_{0} and C_{1}, represented as matrices A_{0} and A_{1} as indicated above, the linear pencil of C_{0} and C_{1} is defined as the set of conics represented by the linear pencil of matrices

$$
A_{\lambda, \mu}=\lambda A_{0}+\mu A_{1} \quad \text { where } \lambda, \mu \in \mathbb{R},(\lambda, \mu) \neq(0,0)
$$

In the next section we will find for a fixed pair of conics C_{0}, C_{1} points P_{0}, P_{1} and a cubic E such that C_{i} is the polar conic of E with respect to P_{i}, and each conic in the linear pencil of C_{0}, C_{1} is the polar conic of E with respect to a point on the line through P_{0} and P_{1}.

2 Conics as Polar Conics of Cubics

We investigate now the situation when two conics $C_{P f}$ and $C_{Q f}$ are polar conics of some cubic C_{f} with respect to some poles P and Q, respectively. First we show that for any point R on the line $P Q$, the polar conic $C_{R f}$ of C_{f} with respect to R belongs to the linear pencil of $C_{P f}$ and $C_{Q f}$, and vice versa (see Fact 1). A necessary condition for $C_{0}=C_{P f}$ and $C_{1}=C_{Q f}$ is, as we have seen in (1), that the polar line of C_{0} with respect to Q coincides with the polar line of C_{1} with respect to P. A general solution to this problem is given in Proposition 3. Finally, we show how to construct a cubic C_{f} and two points P and Q, such that C_{0} and C_{1} are the polar conics of C_{f} with respect to P and Q, respectively (see Theorem 5).
Fact 1. Let C_{f} be a cubic, and let P and Q be two distinct points. Furthermore, let $C_{P f}$ and $C_{Q f}$ be the polar conics of C_{f} with respect to P and Q, respectively. Then every conic in the linear pencil of $C_{P f}$ and $C_{Q f}$ is the polar conic of C_{f} with a pole on $P Q$; and vice versa, for every point R on $P Q$, the polar conic of C_{f} with respect to R is a conic in the linear pencil of $C_{P f}$ and $C_{Q f}$.

Proof. Note that for any R on the line $P Q$, there exist $\lambda, \mu \in \mathbb{R}$ such that $R=$ $\lambda P+\mu Q$. Hence, $C_{R f}$ is given by the equation

$$
\langle R, \nabla f(X)\rangle=\lambda\langle P, \nabla f(X)\rangle+\mu\langle Q, \nabla f(X)\rangle=0,
$$

which shows that $C_{R f}$ belongs to the linear pencil of $C_{P f}$ and $C_{Q f}$. On the other hand, the conic in the linear pencil of $C_{P f}$ and $C_{Q f}$ with this equation is the polar conic of C_{f} with respect to the pole $R=\lambda P+\mu Q$ on the line $P Q$. q.e.d.

So, in the case when two given conics C_{0}, C_{1} are polar conics of a cubic C_{f} with respect to two points P, Q, we can interpret the linear pencil of C_{0}, C_{1} in a new way: Namely as the polar conics of C_{f} with respect to points on the straight line joining P, Q. We will see in Theorem 5 , that it is indeed always possible to interpret two conics C_{0}, C_{1} as polar conics of a cubic C_{f} with respect to two points P, Q. Therefore, by Fact 1, we can generalize the notion of the pencil of two conics C_{0}, C_{1} in the following way:

Definition 2. Let C_{f} be a cubic, let P and Q be two distinct points, and let $C_{P f}$ and $C_{Q f}$ be the polar conics of C_{f} with respect to P and Q, respectively. Furthermore, let Γ be a curve which contains P and Q. Then the set of conics

$$
\left\{C_{R f}: R \in \Gamma\right\}
$$

is the Г-pencil of $C_{P f}$ and $C_{Q f}$ with respect to C_{f}.
Hence, by Fact 1, if Γ is the straight line joining P and Q, then the Γ-pencil coincides with the linear pencil. However, if Γ is not a straight line, then the Γ-pencil shows, depending on the curve Γ, a very rich geometry which can be quite different from that of the linear pencil. Below, two examples of Γ-pencils are given where Γ is not a straight line.
Example 1. Figure 1 shows the Γ-pencil of the two hyperbolas $3 x^{2}-y^{2}-2 y+3=0$ and $3 x^{2}-y^{2}+2 y+3=0$ with respect to the cubic

$$
x^{3}+3 x^{2}-y^{2}+1=0,
$$

where $P_{0}=(0,1), P_{1}=(0,-1)$, and Γ is the circle $x^{2}+y^{2}=1$.
Example 2. Figure 2 shows the Γ-pencil of the two circles $x^{2}+y^{2}=1$ and $x^{2}-$ $4 x+y^{2}=\frac{561}{100}$ with respect to the cubic

$$
\frac{461 x^{3}}{600}+x^{2}+y^{2}+\frac{461 x y^{2}}{200}-\frac{1}{3}=0
$$

where $P_{0}=(0,0), P_{1}=\left(-\frac{200}{561}, 0\right)$, and Γ is the ellipse

$$
\frac{314721 x^{2}}{10000}+\frac{561 x}{50}+\frac{314721 y^{2}}{6400}=0
$$

Remark 1. There is also another type of pencils of conics, called exponential pencils (introduced and investigated in [12]). It would be interesting to study the relation between Γ-pencils and exponential pencils.

Figure 1: The Γ-pencil (thin black lines) of the black hyperbolas with respect to the red cubic curve. Γ is the blue circle joining $P_{0}=(0,1)$ and $P_{1}=(0,-1)$.

The next result shows how we can find points P and Q on a given line g, such that for given conics C_{0} and C_{1}, the polar line of P with respect to C_{1} is the same as the polar line of Q with respect to C_{0}.

Proposition 3. Given two conics C_{0} and C_{1} and a line g. Then we are in one of the following cases:
(a) There is exactly one pair of points P_{0} and P_{1} on g, such that the polar line of P_{0} with respect to C_{0} is the same as the polar line of P_{1} with respect to C_{1}.
(b) For any $P_{0} \in g$, there exists a unique P_{1} on g such that the polar lines of C_{0} with respect to P_{0} and of C_{1} with respect to P_{1} coincide.

In both cases, $P_{1}=\varphi_{C_{1} C_{0}}\left(P_{0}\right)$ is the image of P_{0} under the composition of the polarities associated to C_{0} and C_{1}.

Proof. Let A_{0} and A_{1} be the matrices corresponding to the conics C_{0} and C_{1}. Let P_{0} be a point on the given line g, i.e., $\left\langle P_{0}, g\right\rangle=0$. The polar line of C_{0} with respect to P_{0} is given by $\left\langle X, A_{0} P_{0}\right\rangle=0$. The pole of this line with respect to C_{1} is $A_{1}^{-1} A_{0} P_{0}$. We consider the projective map $\varphi_{C_{1} C_{0}}: P_{0} \mapsto A_{1}^{-1} A_{0} P_{0}$ which is the composition of the two polarities induced by the conics C_{0} and C_{1}. The image of g under $\varphi_{C_{1} C_{0}}$ is the line $\left\langle X, A_{1} A_{0}^{-1} g\right\rangle=0$.

Figure 2: The Γ-pencil (thin black lines) of the black circles with respect to the red cubic curve. Γ is the blue ellips joining $P_{0}=(0,0)$ and $P_{1}=\left(-\frac{200}{561}, 0\right)$.

Suppose first that g is not an eigenvector of $A_{1} A_{0}^{-1}$. We want to show that points P_{0} and P_{1} exist on g such that $P_{1}=\varphi_{C_{1} C_{0}} P_{0}$. Necessarily, P_{1} is the intersection of g and $\varphi_{C_{1} C_{0}}(g)$, i.e., $P_{1}=g \times A_{1} A_{0}^{-1} g \neq 0$, and then $P_{0}=A_{0}^{-1} A_{1} P_{1}=g \times A_{0} A_{1}^{-1} g$. The second case occurs if g is an eigenvector of $A_{1} A_{0}^{-1}$, i.e., if the poles of g with respect to C_{0} and C_{1} coincide: Then, g and $\varphi_{C_{1} C_{0}}(g)$ coincide. Hence one can choose any point P_{0} on g, and $P_{1}=A_{1}^{-1} A_{0} P_{0}$ is the corresponding point on g such that the polar lines of C_{0} with respect to P_{0} and of C_{1} with respect P_{1} agree. q.e.d.

Remark 2. In the previous proposition we could also fix the line g together with a projective map $\psi: \mathbb{R} \mathbb{P}^{2} \rightarrow \mathbb{R} \mathbb{P}^{2}$ and ask the following question: Are there two conics C_{0}, C_{1} and two points $P_{0}, P_{1} \in g$ with $P_{1}=\psi\left(P_{0}\right)$ such that the polar lines of P_{i} with respect to C_{i} coincide? This is indeed the case, since every projective map ψ can be written as the composition of two polarities (see, e.g., [8, Theorem 1.1.9]).

To motivate the main result of this section (which is Theorem 5), let us consider the following problem: Take two lines g_{0}, g_{1} and two points P_{0}, P_{1} in the projective plane. Is there a conic C such that g_{i} is the polar line of P_{i} with respect to C ? Recall that by von Staudt's Theorem any pair of Desargues triangles are polar triangles in a certain polarity (see, e.g., [6, Section 5.7]). Hence, there must be many solutions in
case of only two prescribed points and two prescribed lines. The interesting feature is, that these solutions form a pencil:

Proposition 4. Let P_{0}, P_{1} be two different points and g_{0}, g_{1} two different lines in $\mathbb{R P}^{2}$, both points not incident with the lines. Then there is a linear pencil of real symmetric 3×3 matrices $A_{0}+\lambda A_{1}, \lambda \in \mathbb{R}$, such that the corresponding conics C_{λ} and only those, have the property that g_{i} is the polar line of P_{i} with respect to C_{λ}. Moreover, if P is a point on the line through P_{0}, P_{1}, then there is a line g in the linear pencil of g_{0}, g_{1}, such that for all λ, the polar line of P with respect to C_{λ} is g.

Proof. By a suitable projective map we may assume without loss of generality that $P_{0}=(1,0,0)^{T}$ and $P_{1}=(0,0,1)^{T}$. Then, $g_{0}=\left(g_{01}, g_{02}, 1\right)^{T}$ and $g_{01} \neq 0$ since P_{0} is not incident with g_{0} and g_{1}, and $g_{1}=\left(1, g_{12}, g_{13}\right)^{T}$ and $g_{13} \neq 0$ since P_{1} is not incident with g_{0} and g_{1}. The matrix A of a conic C with the property that g_{i} is the polar line of P_{i} with respect to C must then satisfy $A P_{0}=g_{0}$ and $A P_{1}=\mu g_{1}$ for some $\mu \neq 0$. Hence

$$
A_{\lambda}=\left(\begin{array}{ccc}
g_{01} & g_{02} & 1 \\
g_{02} & 0 & g_{12} \\
1 & g_{12} & g_{13}
\end{array}\right)+\lambda\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$\operatorname{det}\left(A_{\lambda}\right)$ cannot vanish identically in λ since g_{0} and g_{1} are not the same line, therefore $\operatorname{det}\left(A_{\lambda}\right)=0$ for at most one value $\lambda=\lambda_{0}$. With the criterion of Hurwitz it follows that A_{λ} has eigenvalues of both signs for $g_{01} \lambda<g_{02}^{2}$ and is regular for $\lambda \neq \lambda_{0}$. Hence A_{λ} corresponds to a real, nondegenerate conic C_{λ}. The fact that the polar line of a point P on $P_{0} P_{1}$ with respect to C_{λ} is independent of λ follows now by a simple calculation.

It is now natural to ask whether two conics can always be considered as polar conics of a cubic with respect to two poles, and if so, to what extent the cubic and the poles are determined by the conics. The following theorem gives a complete answer to these questions.

Theorem 5. Let C_{0} and C_{1} be any two different conics given by matrices A_{0} and A_{1}, respectively. Then there are infinitely many pairs of points P_{0}, P_{1}, where $P_{1}=$ $\varphi_{C_{1} C_{0}}\left(P_{0}\right)$ is the image of P_{0} under the composition of the polarities associated to C_{0}, C_{1}, and there is a linear pencil of cubics given by $F_{\lambda}(x, y, z)=f_{1}(x, y, z)+$ $\lambda f_{2}(x, y, z), \lambda \in \mathbb{R}$, such that C_{i} are the polar conics of $C_{F_{\lambda}}$ with respect to P_{i}.

Proof. Given two conics C_{0} and C_{1}. We have to find a cubic C_{F} and two points P_{0} and P_{1}, such that C_{0} and C_{1} are the polar conics of C_{F} with respect to P_{0} and P_{1}, respectively. It is convenient to consider the embedding of the affine plane \mathbb{R}^{2} in $\mathbb{R} \mathbb{P}^{2}$ given by

$$
\binom{x_{1}}{x_{2}} \mapsto\left[\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)\right]
$$

Depending on the position of C_{0} and C_{1} we may apply a suitable projective transformation, such that a standard situation results (see [13]):

Case A : Suppose that C_{0} and C_{1} have one of the following properties:

- four intersections
- no common point or two intersections
- two intersections and one first order contact
- one first order contact
- two first order contacts
- one third order contact

In these cases, we may assume that C_{0} is the unit circle given by the matrix

$$
A_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

and that C_{1} is given by

$$
A_{1}=\left(\begin{array}{ccc}
1 & 0 & \alpha \\
0 & \beta & 0 \\
\alpha & 0 & \gamma
\end{array}\right)
$$

As we have seen in the introduction, the polar line of C_{0} with respect to P_{1} and the polar line of C_{1} with respect to P_{0} must agree. Hence $\left[A_{0} P_{1}\right]=\left[A_{1} P_{0}\right]$, or equivalently $\left[P_{1}\right]=\left[A_{0}^{-1} A_{1} P_{0}\right]$. Let us first consider the case where P_{0} is on the symmetry axis of C_{0} and C_{1}, i.e., $P_{0}=\left(x_{0}, 0,1\right)$. In this case we obtain $P_{1}=$ $\left(x_{0}+\alpha, 0,-x_{0} \alpha-\gamma\right)$.

It is from now on a bit more convenient to write x, y, z instead of x_{1}, x_{2}, x_{3}. The cubic curve C_{F} we are looking for is given by a homogeneous polynonial F of degree 3:

$$
\begin{align*}
& F(x, y, z)=a_{1} x^{3}+a_{2} y^{3}+a_{3} z^{3}+a_{4} x^{2} y+a_{5} x^{2} z+ \\
& \tag{2}\\
& a_{6} x y^{2}+a_{7} y^{2} z+a_{8} x z^{2}+a_{9} y z^{2}+a_{10} x y z .
\end{align*}
$$

We need that $C_{P_{0} F}=A_{0}$ and $C_{P_{1} F}=A_{1}$, where $P_{0} F(X)=\left\langle P_{0}, \nabla F(X)\right\rangle$, and $P_{1} F(X)=\left\langle P_{1}, \nabla F(X)\right\rangle$. The quadratic forms of $P_{0} F(X)$ and $P_{1} F(X)$ are given by

$$
\left(\begin{array}{ccc}
3 a_{1} x_{0}+a_{5} & a_{4} x_{0}+\frac{a_{10}}{2} & a_{5} x_{0}+a_{8} \\
a_{4} x_{0}+\frac{a_{10}}{2} & a_{6} x_{0}+a_{7} & a_{9}+\frac{a_{10} x_{0}}{2} \\
a_{5} x_{0}+a_{8} & a_{9}+\frac{a_{10} x_{0}}{2} & 3 a_{3}+a_{8} x_{0}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
3 a_{1} p+a_{5} q & a_{4} p+\frac{1}{2} a_{10} q & a_{5} p+a_{8} q \\
a_{4} p+\frac{1}{2} a_{10} q & a_{6} p+a_{7} q & a_{9} q+\frac{1}{2} a_{10} p \\
a_{5} p+a_{8} q & a_{9} q+\frac{1}{2} a_{10} p & 3 a_{3} q+a_{8} p
\end{array}\right)
$$

where $p:=x_{0}+\alpha$ and $q:=-\alpha x_{0}-\gamma$. The first of these two matrices has to be a multiple of A_{0}, the second a multiple of A_{1}. If we solve the resulting linear system of equations, we find: If $\alpha\left(1+x_{0}^{2}\right)+x_{0}(1+\gamma) \neq 0$ then

$$
F(x, y, z)=f_{1}(x, y, z)+\lambda f_{2}(x, y, z)
$$

is the linear pencil spanned by

$$
\begin{aligned}
f_{1}(x, y, z)= & \left(1+x_{0} \alpha+\gamma\right) x^{3}-\left(\alpha+x_{0}(1+\gamma)\right) z^{3}+3 \alpha x^{2} z+ \\
& +3\left(\beta+\gamma+x_{0} \alpha\right) x y^{2}+3\left(x_{0}+\alpha-x_{0} \beta\right) y^{2} z-3 x_{0} \alpha x z^{2} \\
f_{2}(x, y, z)= & y^{3} .
\end{aligned}
$$

Observe, that if $\alpha\left(1+x_{0}^{2}\right)+x_{0}(1+\gamma)=0$ then the Hessian of F vanishes identically, and hence, the cubic curve C_{F} is reducible, which is precisely the case when $P_{0}=P_{1}$.

Now we consider a general point $P_{0}=\left(x_{0}, y_{0}, 1\right)$ with $y_{0} \neq 0$. In this case, we obtain $P_{1}=\left(x_{0}+\alpha, y_{0} \beta,-x_{0} \alpha-\gamma\right)$. The matrix of the quadratic form $P_{0} F(X)$ is given by

$$
\left(\begin{array}{ccc}
3 a_{1} x_{0}+a_{4} y_{0}+a_{5} & a_{4} x_{0}+a_{6} y_{0}+\frac{1}{2} a_{10} & a_{5} x_{0}+a_{8}+\frac{1}{2} a_{10} y_{0} \\
a_{4} x_{0}+a_{6} y_{0}+\frac{1}{2} a_{10} & 3 a_{2} y_{0}+a_{6} x_{0}+a_{7} & a_{7} y_{0}+a_{9}+\frac{1}{2} a_{10} x_{0} \\
a_{5} x_{0}+a_{8}+\frac{1}{2} a_{10} y_{0} & a_{7} y_{0}+a_{9}+\frac{1}{2} a_{10} x_{0} & 3 a_{3}+a_{8} x_{0}+a_{9} y_{0}
\end{array}\right)
$$

and the matrix for $P_{1} F(X)$ can now be written as

$$
\left(\begin{array}{ccc}
3 a_{1} p+a_{4} r+a_{5} q & a_{4} p+a_{6} r+\frac{1}{2} a_{10} q & a_{5} p+a_{8} q+\frac{1}{2} a_{10} r \\
a_{4} p+a_{6} r+\frac{1}{2} a_{10} q & 3 a_{2} r+a_{6} p+a_{7} q & a_{7} r+a_{9} q+\frac{1}{2} a_{10} p \\
a_{5} p+a_{8} q+\frac{1}{2} a_{10} r & a_{7} r+a_{9} q+\frac{1}{2} a_{10} p & 3 a_{3} q+a_{8} p+a_{9} r
\end{array}\right)
$$

with $p:=x_{0}+\alpha, q:=-x_{0} \alpha-\gamma$, as above, and $r:=y_{0} \beta$. If $\alpha\left(1+x_{0}^{2}\right)+x_{0}(1+\gamma) \neq 0$, we find the following solution of the resulting linear system:

$$
F(x, y, z)=f_{1}(x, y, z)+\lambda f_{2}(x, y, z)
$$

where

$$
\begin{aligned}
& f_{1}(x, y, z)=\left(1+\alpha x_{0}+\gamma\right) x^{3}+\frac{1}{y_{0}}(\alpha(1+\left.\left.x_{0}^{2}\right)+x_{0}(1+\gamma)\right) y^{3} \\
& \quad-\left(x_{0}(1+\gamma)+\alpha\right) z^{3}+3 \alpha x^{2} z-3 \alpha x_{0} x z^{2} \\
& f_{2}(x, y, z)=\left(x_{0} y_{0}(\alpha x+(1-\beta) z)+y_{0}(\beta+\gamma) x-\left(\alpha\left(1+x_{0}^{2}\right)+(\gamma+1) x_{0}\right) y+\alpha y_{0} z\right)^{3} .
\end{aligned}
$$

Case B: Suppose that C_{0} and C_{1} have one second order contact and one intersection. In this case we may assume that C_{0} is again the unit circle, given by the matrix A_{0} above, and that C_{1} is given by the matrix

$$
A_{1}=\left(\begin{array}{ccc}
1 & -\nu & 0 \\
-\nu & 1 & \nu \\
0 & \nu & -1
\end{array}\right)
$$

with $\nu \neq 0$ (see [13]). Let $P_{0}=\left(x_{0}, y_{0}, 1\right)$. Then we get this time $P_{1}=A_{0}^{-1} A_{1} P_{0}=$ $\left(x_{0}-y_{0} \nu, y_{0}+\nu\left(1-x_{0}\right), 1-y_{0} \nu\right)$. We make the same general Ansatz for F as above in (2). Then, the quadratic forms $P_{0} F(X)$ and $P_{1} F(X)$ are

$$
\left(\begin{array}{lll}
3 a_{1} x_{0}+a_{4} y_{0}+a_{5} & a_{4} x_{0}+a_{6} y_{0}+\frac{a_{10}}{2} & a_{5} x_{0}+a_{8}+\frac{a_{10}}{2} y_{0} \\
a_{4} x_{0}+a_{6} y_{0}+\frac{a_{10}}{2} & 3 a_{2} y_{0}+a_{6} x_{0}+a_{7} & a_{7} y_{0}+a_{9}+\frac{a_{10}}{2} x_{0} \\
a_{5} x_{0}+a_{8}+\frac{a_{10}}{2} y_{0} & a_{7} y_{0}+a_{9}+\frac{a_{10}}{2} x_{0} & 3 a_{3}+a_{8} x_{0}+a_{9} y_{0}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
3 a_{1} p+a_{4} r+a_{5} q & a_{4} p+a_{6} r+\frac{1}{2} a_{10} q & a_{5} p+a_{8} q+\frac{1}{2} a_{10} r \\
a_{4} p+a_{6} r+\frac{1}{2} a_{10} q & 3 a_{2} r+a_{6} p+a_{7} q & a_{7} r+a_{9} q+\frac{1}{2} a_{10} p \\
a_{5} p+a_{8} q+\frac{1}{2} a_{10} r & a_{7} r+a_{9} q+\frac{1}{2} a_{10} p & 3 a_{3} q+a_{8} p+a_{9} r
\end{array}\right)
$$

where $p=x_{0}-y_{0} \nu, q=1-y_{0} \nu$, and $r=y_{0}+\nu\left(1-x_{0}\right)$. The first of these two matrices has to be a multiple of A_{0}, the second a multiple of A_{1}. Solving the linear system of equations yields the following:

If $y_{0}=0$ and $x_{0} \neq 1$, then the cubic function F is the linear pencil $F(x, y, z)=$ $f_{1}(x, y, z)+\lambda f_{2}(x, y, z)$, spanned by

$$
\begin{aligned}
& f_{1}(x, y, z)=\left(x_{0}-1\right) x^{2} z-y^{2} z+x y^{2}-\left(x_{0}-1\right) x_{0} x z^{2}+\frac{1}{3}\left(x_{0}-1\right)^{2}\left(x_{0}+1\right) z^{3} \\
& f_{2}(x, y, z)=\left(x-x_{0} z\right)^{3}
\end{aligned}
$$

If $y_{0} \neq 0$ and $x_{0}=1$, then $F(x, y, z)=f_{1}(x, y, z)+\lambda f_{2}(x, y, z)$, with

$$
\begin{aligned}
& f_{1}(x, y, z)=y\left(y_{0} x^{2}-x y+\frac{1}{3} y_{0} y^{2}+y z-y_{0} z^{2}\right) \\
& f_{2}(x, y, z)=(x-z)^{3}
\end{aligned}
$$

If $y_{0} \neq 0$ and $x_{0}=1+y_{0}^{2}$, then $F(x, y, z)=f_{1}(x, y, z)+\lambda f_{2}(x, y, z)$, with

$$
\begin{aligned}
& f_{1}(x, y, z)=(x-z)\left(y_{0} x^{2}-3 x y+3 y_{0} y^{2}+3 y z+y_{0} x z-2 y_{0} z^{2}\right) \\
& f_{2}(x, y, z)=\left(y-y_{0} z\right)^{3} .
\end{aligned}
$$

Finally, if $y_{0} \neq 0$ and $x_{0} \neq 1$ and $x_{0} \neq 1+y_{0}^{2}$, then $F(x, y, z)=f_{1}(x, y, z)+$ $\lambda f_{2}(x, y, z)$, with

$$
\begin{aligned}
f_{1}(x, y, z)= & u\left(1+x_{0}\left(y_{0}^{2}-1\right)\right) x^{3}+v^{2} y_{0}^{3} y^{3}+ \\
& +\left(v\left(3 x_{0}^{2}-x_{0}-v\right) y_{0}^{2}-v^{2} x_{0}^{3}-x_{0} y_{0}^{4}\right) z^{3} \\
& -3 u v y_{0} x^{2} y-3 x_{0} u^{2} x^{2} z-3 v^{3} y_{0}^{2} y^{2} z+3 x_{0} u\left(y_{0}^{2}-v x_{0}\right) z^{2} x \\
& +3 v y_{0}\left(x_{0}^{2} v-y_{0}^{2}\left(v+x_{0}\right)\right) z^{2} y+6 u v x_{0} y_{0} x y z \\
f_{2}(x, y, z)= & \left(u x-y_{0} v y-w z\right)^{3}
\end{aligned}
$$

where $u=1-x_{0}+y_{0}^{2}, v=x_{0}-1$, and $w=x_{0}\left(1-x_{0}\right)+y_{0}^{2}$.
q.e.d.

It is remarkable that in Case B, the pencil of cubics does not depend on ν.
Observe, that the situation in Proposition 4 and in Theorem 5 is somewhat different in that the point P_{1} cannot be chosen independently of P_{0} in Theorem 5. However, we have the following common feature:

Proposition 6. For each point P on the line through P_{0} and P_{1} in Theorem 5, the polar conic of P with respect to the pencil $C_{F_{\lambda}}$ does not depend on λ.

Proof. For P_{0}, P_{1} we have that the polar conic $\left\langle P_{i}, \nabla F_{\lambda}(X)\right\rangle=0$ is independent of λ. This equation written out in full is

$$
\left\langle P_{i}, \nabla f_{1}(X)\right\rangle+\lambda\left\langle P_{i}, \nabla f_{2}(X)\right\rangle=0
$$

Direct inspection of all cases in the proof of Theorem 5 shows that $\left\langle P_{i}, \nabla f_{2}(X)\right\rangle$ vanishes identically in X, and the claim follows.
q.e.d.

Remark 3. In order to obtain a cubic with respect to two given conics and a pole, we had to solve an over-constrained system of linear equations. Thus, it is somewhat surprising that this system is not just solvable, but has infinitely many solutions, and that the solutions lead to a linear pencil of cubics with only "few" singular or reducible cubics (see also Examples 3 and 4).

We conclude this paper by providing two linear pencils of cubics which belong to two given conics C_{0} and C_{1} and a point P_{0} (see Theorem 5).

Example 3. Figure 3 shows the linear pencil of cubics which belong to the conics

$$
C_{0}: x^{2}+y^{2}=1 \quad \text { and } \quad C_{1}: x^{2}+4 x+5 y^{2}+2=0
$$

and the points $P_{0}=(0,0), P_{1}=(-1,0)$: Tangents to the red cubics in points of C_{0} meet in P_{0}, and tangents to the red cubics in points of C_{1} meet in P_{1}. At the intersections of C_{0} and C_{1} the gradient of the corresponding cubic vanishes. This examples belongs to Case A in the proof of Theorem 5 since C_{0} and C_{1} have two intersections.

Example 4. Figure 4 shows the linear pencil of cubics which belong to the conics

$$
C_{0}: x^{2}+y^{2}=1 \quad \text { and } \quad C_{1}: x^{2}-4 x y+4 y+y^{2}=1
$$

and the points $P_{0}=(1,-2), P_{1}=\left(1,-\frac{2}{5}\right)$: Tangents to the red cubics in points of C_{0} meet in P_{0}, and tangents to the red cubics in points of C_{1} meet in P_{1}. At the intersections of C_{0} and C_{1} the gradient of the corresponding cubic vanishes. This examples belongs to Case B in the proof of Theorem 5 since C_{0} and C_{1} have one second order contact and one intersection.

Acknowledgment

We would like to thank the referee for his or her comments and suggestions, which helped to improve the quality of the article.

Figure 3: The linear pencil of cubics (thin red lines) which belongs to the two conics (thick black lines), and the points $P_{0}=(0,0), P_{1}=(-1,0)$ (small black circles). In this example, all members of the linear pencil given by Theorem 5 are irreducible cubic curves, and only two curves of the pencil have a singular point, namely a double point at the intersections of C_{0} and C_{1}.

References

[1] Étienne Bobillier. Géométrie de situation. Démonstration de quelques théorèmes sur les lignes et surfaces algébriques de tous les ordres. Annales de mathématiques pures et appliquées, 18:89-98, 1827-1828.
[2] Étienne Bobillier. Géométrie de situation. Recherche sur les lois générales qui régissent les lignes et surfaces algébriques. Annales de mathématiques pures et appliquées, 18:253-269, 1827-1828.
[3] Étienne Bobillier. Géométrie de situation. Recherches sur les lignes et surfaces algébriques de tous les ordres. Annales de mathématiques pures et appliquées, 18:157-166, 1827-1828.
[4] Étienne Bobillier. Géométrie de situation. Recherches sur les lois générales qui régissent les courbes algébriques. Annales de mathématiques pures et appliquées, 19:106-114, 1828-1829.
[5] Étienne Bobillier. Géométrie de situation. Théorèmes sur les polaires successives. Annales de mathématiques pures et appliquées, 19:302-307, 1828-1829.
[6] H. S. M. Coxeter. The real projective plane. Springer-Verlag, New York, third edition, 1993. With an appendix by George Beck, With 1 Macintosh floppy disk (3.5 inch; DD).

Figure 4: The linear pencil of cubics (thin red lines) which belongs to the two conics (thick black lines), and the points $P_{0}=(1,-2), P_{1}=\left(1,-\frac{2}{5}\right)$ (small black circles). In this example, all cubics in the pencil have a singular point in $(1,0)$. One cubic of the pencil is reducible and decomposes into the line and an ellipse trough the two intersections of C_{0} and C_{1}.
[7] Luigi Cremona. Preliminari di una teoria geometrica delle superficie. Tipi Gamberini e Parmeggiani, 1866.
[8] Igor V. Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge, 2012. A modern view.
[9] Hermann Grassmann. Theorie der Centralen. J. Reine Angew. Math., 24:262282, 1842.
[10] Hermann Grassmann. Theorie der Centralen. J. Reine Angew. Math., 24:372380, 1842.
[11] Hermann Grassmann. Theorie der Centralen. J. Reine Angew. Math., 25:57-73, 1843.
[12] Lorenz Halbeisen and Norbert Hungerbühler. The exponential pencil of conics. Beitr. Algebra Geom., 59(3):549-571, 2018.
[13] Lorenz Halbeisen and Hungerbühler Norbert. Closed chains of conics carrying poncelet triangles. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 58:277-302, 2017.
[14] Ferdinand Joachimsthal. Remarques sur la condition de l'egalité de deux racines d'une équation algébrique; et sur quelques théorèmes de Géometrie, qui en suivent. J. Reine Angew. Math., 33:371-376, 1846.
[15] Gaspard Monge. Application de l'analyse à la géométrie. Paris: Mad. Ve. Bernard, Libraire de l'Ecole Impériale Polytechnique, quatrième edition, 1809.
[16] Heinrich Wieleitner. Algebraische Kurven. II. Allgemeine Eigenschaften. Sammlung Göschen Band 436. Walter de Gruyter, Berlin, 1939.

