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Abstract

Given a cubic K. Then for each point P there is a conic CP associated to P .
The conic CP is called the polar conic of K with respect to the pole P . We
investigate the situation when two conics C0 and C1 are polar conics of K
with respect to some poles P0 and P1, respectively. First we show that for
any point Q on the line P0P1, the polar conic CQ of K with respect to Q
belongs to the linear pencil of C0 and C1, and vice versa. Then we show that
two given conics C0 and C1 can always be considered as polar conics of some
cubic K with respect to some poles P0 and P1. Moreover, we show that P1

is determined by P0, but neither the cubic nor the point P0 is determined by
the conics C0 and C1.

1 Terminology

We will work in the real projective planeRP2 = R3\{0}/ ∼, whereX ∼ Y ∈ R3\{0}
are equivalent, if X = λY for some λ ∈ R. PointsX = (x1, x2, x3)

T ∈ R3\{0} will be
denoted by capital letters, the components with the corresponding small letter, and
the equivalence class by [X]. However, since we mostly work with representatives,
we often omit the square brackets in the notation.

Let f be a non-constant homogeneous polynomial in the variables x1, x2, x3 of degree
n. Then f defines a projective algebraic curve

Cf := {[X] ∈ RP2 | f(X) = 0}

of degree n. For a point P ∈ RP2,

Pf(X) := 〈P,∇f(X)〉
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is also a homogeneous polynomial in the variables x1, x2, x3. If the homogeneous
polynomial f is of degree n, then CPf is an algebraic curve of degree n − 1. The
curve CPf is called the polar curve of Cf with respect to the pole P ; sometimes we
call it the polar curve of P with respect to Cf . In particular, when Cf is a cubic curve
(i.e., f is a homogeneous polynomial of degree 3), then CPf is a conic, which we call
the polar conic of Cf with respect to the pole P , and when Cf is a conic, then CPf is
a line, which we call the polar line of Cf with respect to the pole P (see, for example,
Wieleitner [16]). By construction, the intersections of a curve Cf and its polar curve
CPf with respect to a point P give the points of contact of the tangents from P to
Cf , as well as points on Cf where ∇f = 0 (see Examples 3 and 4). The geometric
interpretation of poles and polar lines (or polar surface in higher dimensions) goes
back to Monge, who introduced them in 1795 (see [15, §3]). The names pole and
polar curve (or polar surface) were coined by Bobillier (see [1–5]) who also iterated
the construction and considered higher polar curves (polar curves of polar curves).
Grassmann then developed the theory of the poles using cutting methods (see [9–11],
and Cremona [7, p. 61]). However, the analytical method generally used today —
which we follow here — is due to Joachimsthal (see [14, p. 373]). Note that CPf
is defined and can be a regular curve even if Cf is singular or reducible. We will
therefore not impose any further conditions on f in the following.

A regular, symmetric matrix

A :=

a11 a12 a13

a12 a22 a23

a13 a23 a33


with eigenvalues of both signs defines a bilinear form R3 × R3 → R, (X, Y ) 7→
〈Y,AX〉. The corresponding quadratic form f(X) = 〈X,AX〉 is homogeneous of
degree 2, and it is convenient to identify the matrix A or its projective equivalence
class with the conic Cf . Then, a point [X] is on the polar line of Cf with respect
to the pole [Y ] if and only if 〈Y,AX〉 = 0. It follows immediately that a point [X]
is on the polar line of Cf with respect to [Y ], if and only if [Y ] is on the polar line
of Cf with respect to [X]. Moreover, a line [g] given by the equation 〈g, Y 〉 = 0 is
the polar line of Cf with respect to the pole [X] = [A−1g].

For a conic C0 represented by a matrixA0, the map ϕC0 : RP2 → RP2, [X] 7→ [A0X],
which associates the pole [X] to its polar line [A0X], is called a polarity. Vice
versa, for a conic C1 represented by a matrix A1, the map ϕC1 : [Y ] 7→ [A−1

1 Y ],
which associates to the polar line [Y ] its pole [A−1

1 Y ], is also called a polarity. The
composition of the two polarities ϕC1C0 : [X] 7→ [A−1

1 A0X] is a projective map
associated to the pair C0, C1 of conics. More generally, a cubic f defines a polarity
RP2 → RP5 by associating the point P ∈ RP2 to CPf interpreted as an element
of the projective space RP5 of conics in RP2. This point of view can be considered
as a guiding concept in the following. It may also open the door to further research
questions. For example, one may ask which projective maps from RP2 to RP5 can
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be realized in this way.

Let now f be a homogeneous polynomial of degree n > 2, and let CPf be the polar
curve of Cf with respect to a point P . Moreover, let CQPf be the polar curve of
CPf with respect to a point Q. Then we have

CQPf =
{

[X] | 〈P,Hf(X)Q〉 = 0
}
,

where Hf :=
(

∂f2

∂xi∂xj

)
ij

is the Hessian of f . If CQf denotes the polar curve of Cf
with respect to Q and CPQf is the polar curve of CQf with respect to P , then,
obviously,

CPQf = CQPf . (1)

For two given conics C0 and C1, represented as matrices A0 and A1 as indicated
above, the linear pencil of C0 and C1 is defined as the set of conics represented by
the linear pencil of matrices

Aλ,µ = λA0 + µA1 where λ, µ ∈ R, (λ, µ) 6= (0, 0).

In the next section we will find for a fixed pair of conics C0, C1 points P0, P1 and a
cubic E such that Ci is the polar conic of E with respect to Pi, and each conic in
the linear pencil of C0, C1 is the polar conic of E with respect to a point on the line
through P0 and P1.

2 Conics as Polar Conics of Cubics

We investigate now the situation when two conics CPf and CQf are polar conics of
some cubic Cf with respect to some poles P and Q, respectively. First we show
that for any point R on the line PQ, the polar conic CRf of Cf with respect to R
belongs to the linear pencil of CPf and CQf , and vice versa (see Fact 1). A necessary
condition for C0 = CPf and C1 = CQf is, as we have seen in (1), that the polar line
of C0 with respect to Q coincides with the polar line of C1 with respect to P . A
general solution to this problem is given in Proposition 3. Finally, we show how to
construct a cubic Cf and two points P and Q, such that C0 and C1 are the polar
conics of Cf with respect to P and Q, respectively (see Theorem 5).

Fact 1. Let Cf be a cubic, and let P and Q be two distinct points. Furthermore, let
CPf and CQf be the polar conics of Cf with respect to P and Q, respectively. Then
every conic in the linear pencil of CPf and CQf is the polar conic of Cf with a pole
on PQ; and vice versa, for every point R on PQ, the polar conic of Cf with respect
to R is a conic in the linear pencil of CPf and CQf .

Proof. Note that for any R on the line PQ, there exist λ, µ ∈ R such that R =
λP + µQ. Hence, CRf is given by the equation

〈R,∇f(X)〉 = λ〈P,∇f(X)〉+ µ〈Q,∇f(X)〉 = 0,
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which shows that CRf belongs to the linear pencil of CPf and CQf . On the other
hand, the conic in the linear pencil of CPf and CQf with this equation is the polar
conic of Cf with respect to the pole R = λP + µQ on the line PQ. q.e.d.

So, in the case when two given conics C0, C1 are polar conics of a cubic Cf with
respect to two points P,Q, we can interpret the linear pencil of C0, C1 in a new
way: Namely as the polar conics of Cf with respect to points on the straight line
joining P,Q. We will see in Theorem 5, that it is indeed always possible to interpret
two conics C0, C1 as polar conics of a cubic Cf with respect to two points P,Q.
Therefore, by Fact 1, we can generalize the notion of the pencil of two conics C0, C1

in the following way:

Definition 2. Let Cf be a cubic, let P and Q be two distinct points, and let CPf and
CQf be the polar conics of Cf with respect to P and Q, respectively. Furthermore,
let Γ be a curve which contains P and Q. Then the set of conics{

CRf : R ∈ Γ
}

is the Γ-pencil of CPf and CQf with respect to Cf .

Hence, by Fact 1, if Γ is the straight line joining P and Q, then the Γ-pencil coincides
with the linear pencil. However, if Γ is not a straight line, then the Γ-pencil shows,
depending on the curve Γ, a very rich geometry which can be quite different from
that of the linear pencil. Below, two examples of Γ-pencils are given where Γ is not
a straight line.

Example 1. Figure 1 shows the Γ-pencil of the two hyperbolas 3x2−y2−2y+3 = 0
and 3x2 − y2 + 2y + 3 = 0 with respect to the cubic

x3 + 3x2 − y2 + 1 = 0 ,

where P0 = (0, 1), P1 = (0,−1), and Γ is the circle x2 + y2 = 1.

Example 2. Figure 2 shows the Γ-pencil of the two circles x2 + y2 = 1 and x2 −
4x+ y2 = 561

100
with respect to the cubic

461x3

600
+ x2 + y2 +

461xy2

200
− 1

3
= 0 ,

where P0 = (0, 0), P1 = (−200
561
, 0), and Γ is the ellipse

314721x2

10000
+

561x

50
+

314721 y2

6400
= 0 .

Remark 1. There is also another type of pencils of conics, called exponential pencils
(introduced and investigated in [12]). It would be interesting to study the relation
between Γ-pencils and exponential pencils.
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Figure 1: The Γ-pencil (thin black lines) of the black hyperbolas with respect to the
red cubic curve. Γ is the blue circle joining P0 = (0, 1) and P1 = (0,−1).

The next result shows how we can find points P and Q on a given line g, such that
for given conics C0 and C1, the polar line of P with respect to C1 is the same as the
polar line of Q with respect to C0.

Proposition 3. Given two conics C0 and C1 and a line g. Then we are in one of
the following cases:

(a) There is exactly one pair of points P0 and P1 on g, such that the polar line of
P0 with respect to C0 is the same as the polar line of P1 with respect to C1.

(b) For any P0 ∈ g, there exists a unique P1 on g such that the polar lines of C0

with respect to P0 and of C1 with respect to P1 coincide.

In both cases, P1 = ϕC1C0(P0) is the image of P0 under the composition of the
polarities associated to C0 and C1.

Proof. Let A0 and A1 be the matrices corresponding to the conics C0 and C1. Let
P0 be a point on the given line g, i.e., 〈P0, g〉 = 0. The polar line of C0 with respect
to P0 is given by 〈X,A0P0〉 = 0. The pole of this line with respect to C1 is A−1

1 A0P0.
We consider the projective map ϕC1C0 : P0 7→ A−1

1 A0P0 which is the composition of
the two polarities induced by the conics C0 and C1. The image of g under ϕC1C0 is
the line 〈X,A1A

−1
0 g〉 = 0.
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Figure 2: The Γ-pencil (thin black lines) of the black circles with respect to the red
cubic curve. Γ is the blue ellips joining P0 = (0, 0) and P1 = (−200

561
, 0).

Suppose first that g is not an eigenvector of A1A
−1
0 . We want to show that points

P0 and P1 exist on g such that P1 = ϕC1C0P0. Necessarily, P1 is the intersection of
g and ϕC1C0(g), i.e., P1 = g ×A1A

−1
0 g 6= 0, and then P0 = A−1

0 A1P1 = g ×A0A
−1
1 g.

The second case occurs if g is an eigenvector of A1A
−1
0 , i.e., if the poles of g with

respect to C0 and C1 coincide: Then, g and ϕC1C0(g) coincide. Hence one can choose
any point P0 on g, and P1 = A−1

1 A0P0 is the corresponding point on g such that the
polar lines of C0 with respect to P0 and of C1 with respect P1 agree. q.e.d.

Remark 2. In the previous proposition we could also fix the line g together with
a projective map ψ : RP2 → RP2 and ask the following question: Are there two
conics C0, C1 and two points P0, P1 ∈ g with P1 = ψ(P0) such that the polar lines of
Pi with respect to Ci coincide? This is indeed the case, since every projective map
ψ can be written as the composition of two polarities (see, e.g., [8, Theorem 1.1.9]).

To motivate the main result of this section (which is Theorem 5), let us consider
the following problem: Take two lines g0, g1 and two points P0, P1 in the projective
plane. Is there a conic C such that gi is the polar line of Pi with respect to C? Recall
that by von Staudt’s Theorem any pair of Desargues triangles are polar triangles in
a certain polarity (see, e.g., [6, Section 5.7]). Hence, there must be many solutions in
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case of only two prescribed points and two prescribed lines. The interesting feature
is, that these solutions form a pencil:

Proposition 4. Let P0, P1 be two different points and g0, g1 two different lines in
RP2, both points not incident with the lines. Then there is a linear pencil of real
symmetric 3× 3 matrices A0 + λA1, λ ∈ R, such that the corresponding conics Cλ
and only those, have the property that gi is the polar line of Pi with respect to Cλ.
Moreover, if P is a point on the line through P0, P1, then there is a line g in the
linear pencil of g0, g1, such that for all λ, the polar line of P with respect to Cλ is g.

Proof. By a suitable projective map we may assume without loss of generality that
P0 = (1, 0, 0)T and P1 = (0, 0, 1)T . Then, g0 = (g01, g02, 1)T and g01 6= 0 since P0

is not incident with g0 and g1, and g1 = (1, g12, g13)
T and g13 6= 0 since P1 is not

incident with g0 and g1. The matrix A of a conic C with the property that gi is the
polar line of Pi with respect to C must then satisfy AP0 = g0 and AP1 = µg1 for
some µ 6= 0. Hence

Aλ =

g01 g02 1
g02 0 g12
1 g12 g13

+ λ

0 0 0
0 1 0
0 0 0

 .

det(Aλ) cannot vanish identically in λ since g0 and g1 are not the same line, therefore
det(Aλ) = 0 for at most one value λ = λ0. With the criterion of Hurwitz it follows
that Aλ has eigenvalues of both signs for g01λ < g202 and is regular for λ 6= λ0. Hence
Aλ corresponds to a real, nondegenerate conic Cλ. The fact that the polar line of
a point P on P0P1 with respect to Cλ is independent of λ follows now by a simple
calculation. q.e.d.

It is now natural to ask whether two conics can always be considered as polar conics
of a cubic with respect to two poles, and if so, to what extent the cubic and the
poles are determined by the conics. The following theorem gives a complete answer
to these questions.

Theorem 5. Let C0 and C1 be any two different conics given by matrices A0 and
A1, respectively. Then there are infinitely many pairs of points P0, P1, where P1 =
ϕC1C0(P0) is the image of P0 under the composition of the polarities associated to
C0, C1, and there is a linear pencil of cubics given by Fλ(x, y, z) = f1(x, y, z) +
λf2(x, y, z), λ ∈ R, such that Ci are the polar conics of CFλ with respect to Pi.

Proof. Given two conics C0 and C1. We have to find a cubic CF and two points P0

and P1, such that C0 and C1 are the polar conics of CF with respect to P0 and P1,
respectively. It is convenient to consider the embedding of the affine plane R2 in
RP2 given by (

x1
x2

)
7→

x1x2
1

 .
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Depending on the position of C0 and C1 we may apply a suitable projective trans-
formation, such that a standard situation results (see [13]):

Case A: Suppose that C0 and C1 have one of the following properties:

• four intersections

• no common point or two intersections

• two intersections and one first order contact

• one first order contact

• two first order contacts

• one third order contact

In these cases, we may assume that C0 is the unit circle given by the matrix

A0 =

1 0 0

0 1 0

0 0 −1


and that C1 is given by

A1 =

1 0 α

0 β 0

α 0 γ

 .

As we have seen in the introduction, the polar line of C0 with respect to P1 and
the polar line of C1 with respect to P0 must agree. Hence [A0 P1] = [A1 P0], or
equivalently [P1] = [A−1

0 A1 P0]. Let us first consider the case where P0 is on the
symmetry axis of C0 and C1, i.e., P0 = (x0, 0, 1). In this case we obtain P1 =
(x0 + α, 0,−x0α− γ).

It is from now on a bit more convenient to write x, y, z instead of x1, x2, x3. The cubic
curve CF we are looking for is given by a homogeneous polynonial F of degree 3:

F (x, y, z) = a1 x
3 + a2 y

3 + a3 z
3 + a4 x

2y + a5 x
2z+

a6 xy
2 + a7 y

2z + a8 xz
2 + a9 yz

2 + a10 xyz. (2)

We need that CP0F = A0 and CP1F = A1, where P0F (X) = 〈P0,∇F (X)〉, and
P1F (X) = 〈P1,∇F (X)〉. The quadratic forms of P0F (X) and P1F (X) are given by3a1x0 + a5 a4x0 + a10

2
a5x0 + a8

a4x0 + a10
2

a6x0 + a7 a9 + a10x0
2

a5x0 + a8 a9 + a10x0
2

3a3 + a8x0
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and  3a1p+ a5q a4p+ 1
2
a10q a5p+ a8q

a4p+ 1
2
a10q a6p+ a7q a9q + 1

2
a10p

a5p+ a8q a9q + 1
2
a10p 3a3q + a8p


where p := x0 + α and q := −αx0 − γ. The first of these two matrices has to be a
multiple of A0, the second a multiple of A1. If we solve the resulting linear system
of equations, we find: If α(1 + x20) + x0(1 + γ) 6= 0 then

F (x, y, z) = f1(x, y, z) + λf2(x, y, z)

is the linear pencil spanned by

f1(x, y, z) = (1 + x0α + γ)x3 − (α + x0(1 + γ))z3 + 3αx2z +

+ 3(β + γ + x0α)xy2 + 3(x0 + α− x0β)y2z − 3x0αxz
2

f2(x, y, z) = y3.

Observe, that if α(1+x20)+x0(1+γ) = 0 then the Hessian of F vanishes identically,
and hence, the cubic curve CF is reducible, which is precisely the case when P0 = P1.

Now we consider a general point P0 = (x0, y0, 1) with y0 6= 0. In this case, we obtain
P1 = (x0 +α, y0β,−x0α−γ). The matrix of the quadratic form P0F (X) is given by 3a1x0 + a4y0 + a5 a4x0 + a6y0 + 1

2
a10 a5x0 + a8 + 1

2
a10y0

a4x0 + a6y0 + 1
2
a10 3a2y0 + a6x0 + a7 a7y0 + a9 + 1

2
a10x0

a5x0 + a8 + 1
2
a10y0 a7y0 + a9 + 1

2
a10x0 3a3 + a8x0 + a9y0


and the matrix for P1F (X) can now be written as 3a1p+ a4r + a5q a4p+ a6r + 1

2
a10q a5p+ a8q + 1

2
a10r

a4p+ a6r + 1
2
a10q 3a2r + a6p+ a7q a7r + a9q + 1

2
a10p

a5p+ a8q + 1
2
a10r a7r + a9q + 1

2
a10p 3a3q + a8p+ a9r


with p := x0+α, q := −x0α−γ, as above, and r := y0β. If α(1+x20)+x0(1+γ) 6= 0,
we find the following solution of the resulting linear system:

F (x, y, z) = f1(x, y, z) + λf2(x, y, z)

where

f1(x, y, z) = (1 + αx0 + γ)x3 + 1
y0

(α(1 + x20) + x0(1 + γ))y3

− (x0(1 + γ) + α)z3 + 3αx2z − 3αx0xz
2

f2(x, y, z) =
(
x0y0(αx+ (1− β)z) + y0(β + γ)x− (α(1 + x20) + (γ + 1)x0)y + αy0z

)3
.

Case B: Suppose that C0 and C1 have one second order contact and one intersection.
In this case we may assume that C0 is again the unit circle, given by the matrix A0

above, and that C1 is given by the matrix

A1 =

 1 −ν 0
−ν 1 ν
0 ν −1
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with ν 6= 0 (see [13]). Let P0 = (x0, y0, 1). Then we get this time P1 = A−1
0 A1P0 =

(x0− y0ν, y0 + ν(1−x0), 1− y0ν). We make the same general Ansatz for F as above
in (2). Then, the quadratic forms P0F (X) and P1F (X) are3a1x0 + a4y0 + a5 a4x0 + a6y0 + a10

2
a5x0 + a8 + a10

2
y0

a4x0 + a6y0 + a10
2

3a2y0 + a6x0 + a7 a7y0 + a9 + a10
2
x0

a5x0 + a8 + a10
2
y0 a7y0 + a9 + a10

2
x0 3a3 + a8x0 + a9y0


and  3a1p+ a4r + a5q a4p+ a6r + 1

2
a10q a5p+ a8q + 1

2
a10r

a4p+ a6r + 1
2
a10q 3a2r + a6p+ a7q a7r + a9q + 1

2
a10p

a5p+ a8q + 1
2
a10r a7r + a9q + 1

2
a10p 3a3q + a8p+ a9r


where p = x0 − y0ν, q = 1 − y0ν, and r = y0 + ν(1 − x0). The first of these two
matrices has to be a multiple of A0, the second a multiple of A1. Solving the linear
system of equations yields the following:

If y0 = 0 and x0 6= 1, then the cubic function F is the linear pencil F (x, y, z) =
f1(x, y, z) + λf2(x, y, z), spanned by

f1(x, y, z) = (x0 − 1)x2z − y2z + xy2 − (x0 − 1)x0xz
2 + 1

3
(x0 − 1)2(x0 + 1)z3

f2(x, y, z) = (x− x0z)3.

If y0 6= 0 and x0 = 1, then F (x, y, z) = f1(x, y, z) + λf2(x, y, z), with

f1(x, y, z) = y(y0x
2 − xy + 1

3
y0y

2 + yz − y0z2)
f2(x, y, z) = (x− z)3.

If y0 6= 0 and x0 = 1 + y20, then F (x, y, z) = f1(x, y, z) + λf2(x, y, z), with

f1(x, y, z) = (x− z)(y0x
2 − 3xy + 3y0y

2 + 3yz + y0xz − 2y0z
2)

f2(x, y, z) = (y − y0z)3.

Finally, if y0 6= 0 and x0 6= 1 and x0 6= 1 + y20, then F (x, y, z) = f1(x, y, z) +
λf2(x, y, z), with

f1(x, y, z) = u(1 + x0(y
2
0 − 1))x3 + v2y30y

3 +

+ (v(3x20 − x0 − v)y20 − v2x30 − x0y40)z3

− 3uvy0x
2y − 3x0u

2x2z − 3v3y20y
2z + 3x0u(y20 − vx0)z2x

+ 3vy0(x
2
0v − y20(v + x0))z

2y + 6uvx0y0xyz

f2(x, y, z) = (ux− y0vy − wz)3

where u = 1− x0 + y20, v = x0 − 1, and w = x0(1− x0) + y20. q.e.d.

It is remarkable that in Case B, the pencil of cubics does not depend on ν.

Observe, that the situation in Proposition 4 and in Theorem 5 is somewhat different
in that the point P1 cannot be chosen independently of P0 in Theorem 5. However,
we have the following common feature:
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Proposition 6. For each point P on the line through P0 and P1 in Theorem 5, the
polar conic of P with respect to the pencil CFλ does not depend on λ.

Proof. For P0, P1 we have that the polar conic 〈Pi,∇Fλ(X)〉 = 0 is independent of
λ. This equation written out in full is

〈Pi,∇f1(X)〉+ λ〈Pi,∇f2(X)〉 = 0.

Direct inspection of all cases in the proof of Theorem 5 shows that 〈Pi,∇f2(X)〉
vanishes identically in X, and the claim follows. q.e.d.

Remark 3. In order to obtain a cubic with respect to two given conics and a pole,
we had to solve an over-constrained system of linear equations. Thus, it is somewhat
surprising that this system is not just solvable, but has infinitely many solutions,
and that the solutions lead to a linear pencil of cubics with only “few” singular or
reducible cubics (see also Examples 3 and 4).

We conclude this paper by providing two linear pencils of cubics which belong to
two given conics C0 and C1 and a point P0 (see Theorem 5).

Example 3. Figure 3 shows the linear pencil of cubics which belong to the conics

C0 : x2 + y2 = 1 and C1 : x2 + 4x+ 5y2 + 2 = 0

and the points P0 = (0, 0), P1 = (−1, 0): Tangents to the red cubics in points of
C0 meet in P0, and tangents to the red cubics in points of C1 meet in P1. At the
intersections of C0 and C1 the gradient of the corresponding cubic vanishes. This
examples belongs to Case A in the proof of Theorem 5 since C0 and C1 have two
intersections.

Example 4. Figure 4 shows the linear pencil of cubics which belong to the conics

C0 : x2 + y2 = 1 and C1 : x2 − 4xy + 4y + y2 = 1

and the points P0 = (1,−2), P1 = (1,−2
5
): Tangents to the red cubics in points of

C0 meet in P0, and tangents to the red cubics in points of C1 meet in P1. At the
intersections of C0 and C1 the gradient of the corresponding cubic vanishes. This
examples belongs to Case B in the proof of Theorem 5 since C0 and C1 have one
second order contact and one intersection.
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Figure 3: The linear pencil of cubics (thin red lines) which belongs to the two conics
(thick black lines), and the points P0 = (0, 0), P1 = (−1, 0) (small black circles). In
this example, all members of the linear pencil given by Theorem 5 are irreducible
cubic curves, and only two curves of the pencil have a singular point, namely a
double point at the intersections of C0 and C1.
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suivent. J. Reine Angew. Math., 33:371–376, 1846.

[15] Gaspard Monge. Application de l’analyse à la géométrie. Paris: Mad. Ve.
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