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Abstract

We give an algebraic proof of the Pentagon Theorem. The proof works in all
Miquelian Möbius planes obtained from a separable quadratic field extension.
In particular, the theorem holds in every finite Miquelian plane. The argu-
ments also reveal that the five concyclic points in the Pentagon Theorem are
either pairwise distinct or identical to one single point. In addition we identify
five additional quintuples of points in the pentagon configuration which are
concyclic.

1 Introduction

The classical version of Miquel’s Pentagon Theorem on the Riemann sphere can be for-
mulated as follows:

Theorem 1. Let h1, . . . , h5 be five different Möbius circles which intersect each other at
a point I and such that any three of them only meet in I. Then, for i ∈ {1, . . . , 5}, hi−1

and hi+1 meet in I and a second point Qi, and hi−2 and hi+2 meet in I and a second point
Si (indices read cyclically). Let ki be the Möbius circle through Si, Qi−1, Qi+1. Then, for
i ∈ {1, . . . , 5}, ki−1 and ki+1 meet in Qi and a second point Pi. Then the points P1, . . . , P5

all lie on one common Möbius circle c.
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The situation is shown in Figure 1. Miquel’s original proof can be found in [5, Théorème
III]. It is based on classical angle theorems. An algebraic proof was believed to be
remarkably difficult. So far, only one computer assisted algebraic proof, based on null
bracket algebra, has been published in [4]. In the present article we want to present a
simple algebraic proof which is based on the cross ratio. This proof works not only for
the classical Möbius plane, but for all Miquelian Möbius planes obtained from a separable
quadratic field extension for which arguments with angles are not available.

The assumption that the circles hi intersect (not touch) each other in I implies that the
points Qi and Si are different from I. In addition, since we assume that any three of the
circles hi only meet in I, we have that the 10 points Qi, Si are pairwise distinct. The fact
that Pi 6= Qi will follow below from Lemma 3. The assumptions can be relaxed if one is
interested in degenerate cases of the configuration.

The article is organized as follows: In Section 2 we briefly present the theory of Miquelian
Möbius planes. Section 3 contains the actual algebraic proof of the Pentagon Theorem in
Miquelian Möbius planes obtained from a separable quadratic field extension. The reader
who is only interested in the classical case can skip Section 2 and directly read Section 3
by simply ignoring the general framework. The proof will also reveal that the points Qi,
Pi−2, Pi+2, Si−2, Si+2 lie on a Möbius circle ci for all i ∈ {1, . . . , 5}. In Section 4 we show
how the approach can be used to compute the points Si and Pi in terms of the points Qi,
which culminates in a second algebraic proof of the Pentagon Theorem. In addition, we
will see that the points Pi are either pairwise distinct or all identical.
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Figure 1: The classical Pentagon Theorem.

2 Miquelian Möbius planes

We first briefly summarize the necessary general concepts and terminology. A Möbius
plane is an incidence structure consisting of a set of points P and a set of blocks B which
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satisfies the following axioms (see, e.g., [3, Chapter 6] or [1]):

(M1) For any three points P,Q,R, P 6= Q, P 6= R and Q 6= R, there exists a unique block
C which is incident with P,Q and R.

(M2) For any block C, and points P,Q with P incident with C and Q not incident with
C, there exists a unique block D which is incident with P and Q but such that P
is the only point incident with both, C and D.

(M3) There are four points P1, P2, P3, P4 which are not all incident with one block C.
Moreover, every block C is incident with at least one point.

The “blocks” generalize the lines and circles of the classical Möbius plane. Blocks which
have only one point in common are called parallel. In this case we also say that the blocks
touch each other.

A Möbius plane is called Miquelian if in addition the Six Circles Theorem of Miquel [5,
Théorème I] holds:

Theorem 2 (Miquel). If one can assign 8 points P1, . . . , P8 to the corners of a cube in
such a way that the points assigned to five of its faces each lie on a circle, then this is also
the case for the points assigned to the 6th face (see Figure 2).

P5

P7

P1

P3

P2

P4

P6
P8

P1 P2

P8
P7

P5 P6

P4
P3

Figure 2: The Six Circles Theorem of Miquel.

It is a famous result by Chen [2] that a Miquelian Möbius plane is isomorphic to a Möbius
plane M(K, q) over a field K where q(z) = z2 + a0z+ b0 is an irreducible polynomial with
a0, b0 ∈ K. Here, the set of points in M(K, q) is

P := K2 ∪ {∞},

where ∞ /∈ K, and the set of blocks B consists of
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• lines, i.e., the sets of solutions (x1, x2) of the equations ux1 + vx2 + w = 0 for
u, v, w ∈ K, (u, v) 6= (0, 0), and the element ∞, and

• circles, i.e., the sets of solutions (x1, x2) of the equations x2
1 +a0x1x2 + b0x

2
2 +ux1 +

vx2 +w = 0 for u, v, w ∈ K, if this set of solutions consists of more than one point.

A point is called incident with a block, if it is an element of the block. Let E be the
splitting field of q. Hence, there are α1, α2 ∈ E such that q(z) = (z + α1)(z + α2), and E
is a two dimensional vector space over K with basis {1, α1} or {1, α2}. Since every point
(x1, x2) ∈ K2 can be represented by z = x1 + α1x2 or z = x1 + α2x2, we can identify K2

with E. If q is separable, i.e., α1 6= α2, then the mapping

¯ : E → E, z = x1 + α1x2 7→ z̄ = x1 + α2x2 = x1 + a0x2 − α1x2

is an involutorial automorphism of E (observe that α1 + α2 = a0). Hence we have

x1 =
α1z̄ − α2z

α1 − α2
, x2 =

z − z̄
α1 − α2

,

and the equation of a line ux1 + vx2 + w = 0 can be written in the form

c̄z + cz̄ = r with c ∈ E \ {0} and r ∈ K. (1)

Similarly, the equation of a circle x2
1 + a0x1x2 + b0x

2
2 + ux1 + vx2 +w = 0 can be written

as a quadratic equation of the form

(z − c)(z̄ − c̄) = r for r ∈ K \ {0} and c ∈ E (2)

(use x2
1 + a0x1x2 + b0x

2
2 = zz̄ for z = x1 + α1x2). For K = R and q(z) = z2 + 1 we have

E = C and we are in the situation of the classical model of the Möbius plane. Another
example is the Galois field K = GF (t) for an odd prime power t = pn, and q(z) = z2 − α
for a non-square α ∈ GF (t). Then, GF (t)(α) ∼= GF (t2) and the conjugation is given by
the Frobenius automorphism z 7→ z̄ = zt. Notice also, that every finite extension of a
finite field is separable. Hence, our proof shows that Theorem 1 is valid in each Miquelian
Möbius plane M(K, q) if q is separable, and in particular in every finite Miquelian Möbius
plane.

3 A simple algebraic proof of Miquel’s

Pentagon Theorem

The reader who skipped Section 2 should consider the points P,Q, . . . in this section als
elements of the complex plane, and z is a complex variable. In this case, z̄ means complex
conjugation, and take E = C and K = R.

The equation of a line through two different points P,Q is given by

(P − z)(Q̄− z̄) = (P̄ − z̄)(Q− z).
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Indeed, z = P and z = Q are solutions of this equation and expanded it has the required
form (1) of a line. Hence, three different points P,Q, z lie on a line if and only if

P − z
Q− z

∈ K \ {0, 1}.

Similarly, a circle through three different points P,Q,R (which do not lie on a line) is
given by

(P −Q)(R− z)(P̄ − z̄)(R̄− Q̄) = (P̄ − Q̄)(R̄− z̄)(P − z)(R−Q)

since z = P, z = Q, z = R are solutions of this equation and expanded it has the form (2) of
a circle. Thus, the fact that four different points P,Q,R, z lie on a circle can be expressed
by the cross ratio

P −Q
R−Q

· R− z
P − z

∈ K \ {0, 1},

and this is still true, if P,Q,R, z lie on a line.

Observe that the group of Möbius transformations

z 7→ az + b

cz + d
, det

(
a b
c d

)
6= 0, a, b, c, d ∈ E,

(with the usual convention 1/0 =∞, 1/∞ = 0) is sharply 3-transitive on the set of points
and maps blocks (i.e., the set of circles and lines) to blocks.

The following result will be useful below (see Figure 3).

Lemma 3. Let c1, c2 be circles which touch each other in a point P . Let h1, h2 be two
lines through P . Then the line through the second intersections of c1 with h1 and h2 is
parallel to the line through the second intersections of c2 with h1 and h2.

Proof. By a suitable linear Möbius transformation we may assume that c1 is given by
the equation (z − 1)(z̄ − 1) = 1 and P = 0. Then the equation of c2 has the form
(z−u)(z̄− ū) = uū for some u = ū ∈ K, and hi is given by āiz+ aiz̄ = 0 for some ai ∈ E.
The second intersection of c1 with hi is Pi = 1− ai

āi
, and the second intersection of c2 with

hi is Qi = u(1 − ai
āi

). So indeed, the line through P1, P2 and the line through Q1, Q2 are
parallel.

We are now ready to give the new, simple algebraic proof of Miquel’s Pentagon Theo-
rem. As a side result, we identify five additional quintuples of points in the pentagon
configuration which are concyclic (see also Miquel’s original proof in [5, Théorème III]).

The Möbius transformation z 7→ 1/(z − I) maps the point I to the point ∞. Hence we
may assume without loss of generality that I is the point∞. We use the cross ratio in the
following way, where we assume for the moment that all numerators and denominators
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Figure 3: Illustration of Lemma 3. The dashed lines are parallel.

are different from 0:

P3, Q1, Q3, S2 ∈ k2 =⇒ µ1 :=
S2 −Q1

Q3 −Q1
· Q3 − P3

S2 − P3
∈ K

P3, Q3, Q5, S4 ∈ k4 =⇒ µ2 :=
Q3 − S4

Q5 − S4
· Q5 − P3

Q3 − P3
∈ K

Q5, S3, S4 ∈ h1 =⇒ µ3 :=
S4 −Q5

S3 −Q5
∈ K

Q1, Q3, S4 ∈ h2 =⇒ µ4 :=
Q1 −Q3

S4 −Q3
∈ K

Q1, S2, S3 ∈ h5 =⇒ µ5 :=
S3 − S2

Q1 − S2
∈ K

The product of the values µi is

α := µ1µ2µ3µ4µ5 =
Q5 − P3

S2 − P3
· S2 − S3

Q5 − S3
.

Similarly, by mirroring the indices 1↔ 4, 2↔ 3 we have

P2, Q4, Q2, S3 ∈ k3 =⇒ ν1 :=
S3 −Q4

Q2 −Q4
· Q2 − P2

S3 − P2
∈ K

P2, Q2, Q5, S1 ∈ k1 =⇒ ν2 :=
Q2 − S1

Q5 − S1
· Q5 − P2

Q2 − P2
∈ K

Q5, S2, S1 ∈ h4 =⇒ ν3 :=
S1 −Q5

S2 −Q5
∈ K

Q4, Q2, S1 ∈ h3 =⇒ ν4 :=
Q4 −Q2

S1 −Q2
∈ K

Q4, S3, S2 ∈ h5 =⇒ ν5 :=
S2 − S3

Q4 − S3
∈ K

The product of the values νi is

β := ν1ν2ν3ν4ν5 =
Q5 − P2

S3 − P2
· S3 − S2

Q5 − S2
.

Since α, β ∈ K, it follows that also

γ :=
S3 − P2

P3 − P2
· P3 − S2

S3 − S2
∈ K.
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Finally, we have

Q1, P1, P3, S2 ∈ k2 =⇒ ξ1 :=
P3 − P1

Q1 − P1
· Q1 − S2

P3 − S2
∈ K

Q4, P2, P4, S3 ∈ k3 =⇒ ξ2 :=
S3 −Q4

P4 −Q4
· P4 − P2

S3 − P2
∈ K

Q1, Q4, P1, P4,∈ k5 =⇒ ξ3 :=
P4 −Q4

Q1 −Q4
· Q1 − P1

P4 − P1
∈ K

Q1, Q4, S2, S3 ∈ h5 =⇒ ξ5 :=
Q1 −Q4

S3 −Q4
· S3 − S2

Q1 − S2
∈ K

Observe that we get the product

ξ1ξ2ξ3ξ4γ =
P4 − P2

P3 − P2
· P3 − P1

P4 − P1
,

which is again an element of K. We conclude that P1, P2, P3, P4 lie on a common circle c1.
By shifting the index by one we also have that P2, P3, P4, P5 lie on a circle c2. However,
c1 and c2 have the three points P2, P3, P4 in common and must therefore agree, which
completes the proof of Theorem 1 if all numerators and denominators of the cross rations
we used are different from 0. This is what we now check.

Recall first that the points Qi, Si, I are pairwise distinct. Notice also that the assertion
of the theorem is trivially satisfied if three of the points Pi coincide or if two pairs of the
points Pi coincide. In particular, we may assume that among the five pairs Pi, Pi+2 at
most one pair collapses, say P3 = P5. From Lemma 3 it follows that Pi = Qi is excluded
since this would imply that to hi−2 and hi+2 are parallel. We can also exclude the case
S2 = P3: Indeed, if we assume S2 = P3 we have that Q3, Q5, P3 lie on the line h4. But
at the same time, these points define the block k4 and hence h4 = k4. This would lead to
S4 = I or S4 = Q3, which is not possible. Similarly, we have S3 6= P2. Next, assume that
P3 = Q5. Now, h4 intersects k2 in the points Q3 and S2. But if Q5 = P3, k2 passes also
through Q5 which is a point of h4. It follows that S2 = Q5 which is not possible. Similarly,
we have P2 6= Q5. Finally, suppose P2 = P3. Since k1 and k4 are both determined by
P2 = P3, P5, Q5 it follows that k1 = k4 (unless P5 = P2, but in that case the assertion of the
theorem is trivial). But this leads to S4 = Q5 or S4 = Q2 which is impossible. Therefore
indeed, all numerators and denominators in the cross rations we used are different from 0.

Notice that α, β ∈ K implies that that the points Q5, P2, P3, S2, S2 lie on a circle. By
shifting the indices cyclically, we obtain the following result.

Proposition 4. The points Qi, Pi−2, Pi+2, Si−2, Si+2 lie on a common Möbius circle ci
for all i ∈ {1, . . . , 5}.

In Figure 1 the circle c4 is drawn.

4 Computation of the points

It is instructive and useful for practical purposes to actually compute the points Si and
Pi. We continue to assume that I =∞. Then, the blocks h1, . . . , h5 are lines of the form

hi : (Qi−1 − z)(Q̄i+1 − z̄) = (Q̄i−1 − z̄)(Qi+1 − z).
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The point Si is the intersection of the lines hi−2 and hi+2. Solving the corresponding
linear system of the two equations yields

Si =
(Qi−2 −Qi+1)(Qi+2Q̄i−1 −Qi−1Q̄i+2)− (Qi−1 −Qi+2)(Qi+1Q̄i−2 −Qi−2Q̄i+1)

(Qi+2 −Qi−1)(Q̄i−2 − Q̄i+1)− (Qi−2 −Qi+1)(Q̄i+2 − Q̄i−1)
.

By assumption, the blocks hi intersect each other at I =∞ (meaning they do not touch)
so that the second intersection Si of hi−2 and hi+2 is different from I. In particular, the
denominator of Si is different from 0 . The equation of the block ki through the points
Si, Qi−1, Qi+1 is then given by

(Si−Qi+1)(Qi−1− z)(S̄i− z̄)(Q̄i−1− Q̄i+1) = (S̄i− Q̄i+1)(Q̄i−1− z̄)(Si− z)(Qi−1−Qi+1).

The blocks ki−1 and ki+1 meet in Qi and Pi. Solving the equation of the circle ki−1 for
the variable z̄, yields

z̄ =
Q̄i−2(Qi−2 −Qi)(Q̄i − S̄i−1)(z − Si−1)− S̄i−1(Q̄i−2 − Q̄i)(Qi − Si−1)(z −Qi−2)

(Qi−2 −Qi)(Q̄i − S̄i−1)(z − Si−1)− (Q̄i−2 − Q̄i)(Qi − Si−1)(z −Qi−2)
.

Similarly, solving the equation of the circle ki+1 for the variable z̄, gives

z̄ =
Q̄i(Qi −Qi+2)(Q̄i+2 − S̄i+1)(z − Si+1)− S̄i+1(Q̄i − Q̄i+2)(Qi+2 − Si+1)(z −Qi)

(Qi −Qi+2)(Q̄i+2 − S̄i+1)(z − Si+1)− (Q̄i − Q̄i+2)(Qi+2 − Si+1)(z −Qi)
.

Equating the resulting expressions yields a quadratic equation in z. However, since z = Qi

is a solution, the equation reduces to a linear one for the second solution z = Pi. One
finds

Pi =
[
(Qi+2 −Qi−1)

(
(Qi+2 −Qi)Qi−2Q̄i+1 − (Qi−2Qi+2 −QiQi+1)Q̄i−2

)
+ (Qi−2 −Qi+1)

(
(Qi −Qi−2)Qi+2Q̄i−1 + (Qi−2Qi+2 −Qi−1Qi)Q̄i+2

)]/[
(Qi+2 −Qi−1)

(
(Qi+2 −Qi)Q̄i+1 − (Qi−2 −Qi −Qi+1 +Qi+2)Q̄i−2

)
+ (Qi−2 −Qi+1)

(
(Qi −Qi−2)Q̄i−1 + (Qi−2 −Qi−1 −Qi +Qi+2)Q̄i+2

)]
.

We now obtain a second proof of Theorem 1: Indeed, the cross ratio δ = P1−P3
P2−P3

· P2−P4
P1−P4

simplifies to

(Q5(Q̄2 − Q̄4) +Q2(Q̄4 − Q̄5) +Q4(Q̄5 − Q̄2))(Q5(Q̄3 − Q̄1) +Q3(Q̄1 − Q̄5) +Q1(Q̄5 − Q̄3))

(Q5(Q̄1 − Q̄4) +Q1(Q̄4 − Q̄5) +Q4(Q̄5 − Q̄1))(Q5(Q̄3 − Q̄2) +Q3(Q̄2 − Q̄5) +Q2(Q̄5 − Q̄3))
.

The first factor of the denominator can be written as

Q5(Q̄2−Q̄4)+Q2(Q̄4−Q̄5)+Q4(Q̄5−Q̄2) = (Q̄2Q4+Q2Q̄5+Q̄4Q5)−(Q̄2Q4 +Q2Q̄5 + Q̄4Q5).

In fact all factors of the numerator and of the denominator are of the form u − ū, and
hence δ ∈ K, which implies that P1, P2, P3, P4 lie on a circle. By shifting the index by
one, we again find all points P1, . . . , P5 on a common circle.

We conclude by the following observation. We have already seen in Section 3 that Pi 6=
Pi±1. Now, the equation Pi−1 = Pi+1 simplifies to

(Qi−1−Qi+1)(Qi−1−Qi+2)(Qi+1−Qi−2)
(
Qi−2(Q̄i+2−Q̄i)+Qi+2(Q̄i−Q̄i−2)+Qi(Q̄i−2−Q̄i+2)

)
×

×
(
Qi(Q̄i+1−Q̄i−1)+Qi−2(Q̄i−1−Q̄i+2)+Qi+1(Q̄i+2−Q̄i)+Qi−1(Q̄i−Q̄i−2)+Qi+2(Q̄i−2−Q̄i+1)

)
= 0.
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The first three factors are clearly different from 0. The next factor is 0 if and only if
Qi, Qi−2, Qi+2 lie on a line, which would mean hi−1 = hi+1 which is excluded. The last
factor is cyclically symmetric in i, hence Pi−1 = Pi+1 for some i implies Pi−1 = Pi+1 for
all i. This leads to the following result.

Proposition 5. Either the points Pi are pairwise distinct or the points Pi collapse to one
single point.
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